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Abstract: Coastal erosion is increasing worldwide due to the increasing frequency of extreme natural
phenomena and excessive human exploitation. In this study, a small model experiment was con-
ducted to investigate the solidification effects of three enzyme sources—soybean urease, freshwater
Bacillus pasteurella, and seawater domesticated Bacillus pasteurella—on coastal sediments and their
impacts in a seawater environment. The solidifying effect of different enzyme sources was determined
by measuring the mechanical properties and corrosion resistance of the cured specimen model. The
influence of solidified seawater in a seawater environment was obtained by measuring the changes in
the pH value, calcium ion concentration, and ammonia nitrogen content of solidified seawater. The
results show that different enzyme sources have a certain strengthening effect on coastal sediments.
The mechanical properties of coastal sediments can be enhanced by increasing the amount of enzyme
solution or level of solidification and can effectively resist simulated flow erosion. Comparing the re-
inforcement effects of different enzyme sources, it can be seen. It was observed that Bacillus pasteurella
acclimated in seawater had better reinforcement effects than Bacillus pasteurella fresh water, and
Bacillus pasteurella fresh water had better reinforcement effects than soybean urease. In the seawater
measurement tests, the solidification of coastal sediments using different enzyme sources led to a
decrease in the seawater pH value, and the acidification of seawater dissolved the generated calcium
carbonate, increased the concentration of calcium ions in seawater, and produced ammonia nitrogen
as a byproduct in the seawater. It was observed that, compared with the other two enzyme source
solutions, the seawater-domesticated Bacillus pasteurella can better adapt to the high-salt environment
of seawater, microbial metabolism is not inhibited, urea decomposition ability is improved, and
calcium carbonate production is higher, which can effectively improve the engineering characteristics
of coastal sediments and play a positive role in coastal protection and development.

Keywords: MICP; EICP; coastal sediment; anti-erosion; penetration resistance

1. Introduction

In recent years, with the increase in sea level and the gradual deepening of coastal
zone development, the artificial shoreline has gradually increased, and coastal erosion is
becoming increasingly serious [1–4]. Coastal erosion is mainly caused by wave erosion
and rainfall. Coastal consolidation can effectively reduce the adverse effects of coastal
erosion, help restore coastal ecological environments, and improve coastal economic bene-
fits. Traditional measures to address coastal erosion can be divided into four categories:
hard structure protection, soft structure protection, land use restriction, and off-site sand
response. These traditional measures mainly involve biotechnology-based coastal con-
servation, which is a soft structure protection measure and emerging technology. This
technology is generally considered to be more durable, favorable, and environmentally
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friendly than traditional physical and chemical curing technology, as well as more suitable
for applications in the special coastal geographical environment [5–8]. At present, the most
common approach to biotechnological coastal stabilization is a combination of artificial
planting of coastline vegetation and traditional solidification methods [9]. In recent years,
microbial-induced carbonate precipitation (MICP) technology has been proposed as a new
solidification technology. MICP can be realized in various ways, such as autotrophic and
heterotrophic, such as urea hydrolysis, sulfate reduction, and denitrification [10,11]. For soil
stabilization applications, a great deal of current research has focused on urea hydrolysis
by urea-soluble bacteria because they are widespread in soils, and the process is simple, as
shown in Equations (1)–(6).

Ca2+ + Cell → Cell − Ca2+, (1)

(NH2)2CO + H2O↔ NH3 + CO2, (2)

NH3 + H2O↔ NH+
4 + OH−, (3)

CO2 + OH− ↔ HCO−3 , (4)

Cl− + HCO−3 + NH3 ↔ NH4Cl + CO2−
3 , (5)

Cell − Ca2+ + CO2−
3 → Cell − CaCO3. (6)

The surface of Bacillus pasteurella is normally negatively charged, constantly adsorbing
Ca2+ from nutrient salts and causing it to aggregate on the outer surface; inside microbial
cells will produce urease, urea that diffuses from nutrient salts into the cell is broken
down, CO2−

3 is generated and transported to the cell surface. Due to NH3 having a much
higher solubility than CO2, pH increases and calcium carbonate is formed when calcium
ions are encountered, which is usually precipitated in the form of calcite [12–15]. Some
researchers have also proposed directly extracting urease from soybeans to induce calcium
carbonate precipitation, a process known as enzymatic-induced carbonate precipitation
(EICP). Both of these methods have the advantages of simple construction, less pollution
and less disturbance, and they have great potential for applications in the field of coastal
foundation solidification. When solidifying coastal sediments, the use of seawater can
reduce the cost of biomineralization compared with the use of fresh water to culture
bacteria. Therefore, many scholars have explored the MICP process in seawater. In terms
of feasibility, Peng et al. and Yu and Ou et al. [16–18] confirmed that the MICP process can
also be carried out in a simulated seawater environment. However, when the seawater pH
< 10 environments, it will not only inhibit the microbial activity but also inhibit the calcium
carbonate production of MICP. In terms of curing methods, in a curing test of marine silt,
Fu et al. and Zhao et al. [19,20] found that a mixing reinforcement method could simplify
the strengthening process, and a cementing liquid with a low concentration and multiple
rounds had better treatment effect. In terms of the influence of the seawater environment on
MICP, Wang et al. [21] studied the influencing factors of MICP in a seawater environment
and found that a high pH value could accelerate the reaction. Cheng et al., Silva et al., and
Ansari et al. [22–24] studied the biomineralization products and mineralization efficiency
of different strains under artificial seawater and seawater desalination conditions. At the
same time, Xiao et al. [25] studied the domestication of Bacillus pasteurella in an artificial
seawater environment and obtained strains that were better adapted to seawater. Liu et al.
and Li [26–28] studied the effect of adding fibers into MICP on soil, and the results show
that fiber reinforcement effectively increased the toughness of the sample. At the same
time, scholars also began to study the seawater solidification process of EICP technology.
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Zhou et al. [29] studied the extraction of soybean urease in EICP and determined that the
optimal ethanol concentration and solid–liquid ratio were 30% and 1:1, respectively. Cao
et al. [30] studied the mineralization method of soil reinforced by biostimulation combined
with EICP, concluding that biostimulation combined with EICP significantly improved the
strength of sand columns. Ahmed et al. [31] conducted EICP treatment on coastal sand and
found that the urea hydrolysis rate in seawater-containing solution increased. This was
speculated to be caused by the faster urease decay rate in the presence of seawater, but it
had no significant impact on the carbonate content and UCS value of coastal sand. Kehinde
et al. [32] compared the permeability of EICP and biopolymers (sodium alginate and guar
gum) to silica sand, finding that sodium alginate was stronger than EICP or guar gum in
reducing the permeability of silica sand. At the same time, researchers also explored the
engineering applications of MICP and EICP, such as the study on their resistance to water
erosion and rain erosion [28,33–36] sadas.

In conclusion, compared with traditional cement solidification, MICP or EICP can
effectively protect the habitat of coastal organisms and reduce the negative impact of coastal
buildings without causing significant or even destructive hardening in coastal sediments.
To this end, the coastal sediments at the junction of sea and land in the Xiaodonghai area
of Sanya were studied. Three urease sources—Sporosarcina pasteurii, Bacillus pasteurella
domesticated in seawater, and soy urease—were selected to solidify coastal sediments.
The coastal sediment samples were solidified using surface spraying, and a control group
was established to compare the solidified effects of three enzyme sources on the coastal
sediments. By monitoring pH, calcium ion concentration, and ammonia nitrogen concen-
tration monitoring, as well as conducting coastal sediment anti-erosion and penetration
resistance tests, the effects of three enzyme sources on the chemical composition of seawater,
mechanical properties, and anti-erosion ability of coastal sediments were analyzed. The
research results can be used as an important reference for future research on coastal erosion
protection and bank slope reinforcement.

2. Materials and Methods
2.1. Sea Water

The seawater used for the experiment was collected from the area near the Dadong
Sea, Sanya, China, with a pH value of 8.25 and a salt content of 3.6%. Longitude and
latitude: 109.50047, 18.22254, located in the intertidal zone. The main ionic components of
seawater are shown in Table 1 [21].

Table 1. Ion composition and concentration.

Major Ion Concentration/(mg·L−1) Major Ion Concentration/(mg·L−1)

Ca2+ 426.53 Ba2+ 0.12
Mg2+ 1219.86 Cl− 18,690.10
Na+ 11,078.58 HCO−3 169.01
K+ 410.16 SO2−

4 2769.10

2.2. Physical Characteristics of Coastal Sediments

The coastal sediments used in the test were taken at the coast near Xiaodonghai, Sanya,
China. The main strata found at the sampling site are as follows. The coastal sediments are
composed of silt, sand, alluvial sand, soil layer, etc., and the basic physical characteristics
of the coastal sediments are determined by referring to the Geotechnical Test Regulations
(SL237-1999) [37]. Figure 1 shows the grain gradation curve of the coastal sediments,
the uneven coefficient, and the curvature coefficient of the coastal sediments, which are
extremely poorly mixed.
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Figure 1. Deposit sediment photo and particle gradation curve.

2.3. Microbial Culture and Soybean Urease Preparation

Escherichia coli ATCC25922 (Bacillus pasteurella), purchased from the Microbial Cul-
ture Collection Center of Guangdong Province, was selected as the test strain. This is a
chemoheterotrophic Gram-positive bacteria and is the most commonly used bacteria in
MICP applications in the field of geotechnical engineering. After activation, the bacteria
were added to the liquid medium for culture. The medium composition was (per 1000 mL
deionized water) urea 20 g (purchased from Aladdin Ltd, Shanghai, China.), peptone 15 g
(purchased from aobox biotechnology, Inc, Beijing, China.), soy peptone 5 g (purchased
from aobox biotechnology, Inc, Beijing, China.), sodium chloride 5 g (purchased from Xiya
Chemical Technology Co., Ltd, Shandong, China), and NaOH solution (purchased from
Xiya Chemical Technology Co., Ltd., Shandong, China.) was used to adjust the pH of the
medium to 7.2–7.5. To ensure suitable for bacterial growth, the medium was placed into the
autoclave, sterilizing at 121 ◦C for 30 min. The medium was incubated at 220 r/min at 30 ◦C
for 36 h. The concentration and urease activity of the bacterial solution was measured.

According to Xiao et al.’s experimental method [25], a three-gradient domestication of
the bacterial solution was carried out: 1 mL of Bacillus pasteurellosis in conical flask A was
added to conical flask B (containing 100 mL of acclimatization medium with 1/3 seawater
concentration), and the Bacillus pasteurellosis was then removed for use after 36 h of culti-
vation. Next, 1 mL of the bacterial solution from cone flask B was added to cone flask C
(containing 100 mL of acclimatization medium with a concentration of 2/3 seawater) and
removed after 36 h of culture for later use. Approximately 1 mL of bacterial solution from
cone flask C was added to cone flask D (containing 100 mL acclimatization medium with
seawater concentration) and then removed after 36 h of culture, thus completing the three-
gradient acclimatization. At this time, the bacteria in cone flask D were the three-gradient
acclimated bacteria. Similarly, the concentration of the bacterial solution and the urease
activity of the bacterial solution was measured after removal.

The method of soybean urease extraction was as follows: 200 g dried commercial
soybean was weighed on a balance, crushed into powder by a wall breaker, dissolved
in 1000 mL seawater, fully stirred, and left for 2~3 h. The supernatant in the beaker was
filtered through gauze and centrifuged at 3500 r/min and 4 ◦C for 10 min. The supernatant
in the centrifuge tube was the soybean urease solution to be extracted. Finally, the extracted
soybean urease solution was stored at 4 ◦C for later use.
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2.4. Determination of Absorbance of Bacterial Solution and Activity of Enzyme Source

Absorbance of bacterial solution was determined using a spectrophotometer (600 nm
wavelength), and the concentration of bacterial solution was expressed according to OD600
value [14]. The OD600 value of the freshwater bacterial solution was 1.203, and the OD600
value of the seawater three-gradient acclimated bacterial solution was 1.676 (the seawater
was used to zero the measurement).

The enzyme activity was measured by the Thunder Magnetic PXS-270 (conductivity
meter) to determine the ability of the bacterial solution to hydrolyze urea. Then, 5 mL
bacterial solution was mixed with 45 mL 1.1 mol/L urea solution, and the conductivity
meter was used to measure the change in the conductivity of the solution (measured for
5 min). The average conductivity change value for the measured 5 min was multiplied
by the dilution ratio (10 times). According to the experimental conclusion of Whiffin [38],
the conductivity change in 1 mS/(cm·min) corresponds to the urea hydrolysis amount of
11.1 mmol/min, and the urea hydrolysis amount of bacterial solution or soybean urease per
minute (mmol/min) is obtained, which is the initial enzyme activity of bacterial solution or
soybean urease. The conductivity change was 7.11 mmol/(L·min) in freshwater bacterial
solution, 7.14 mmol/(L·min) in seawater bacterial solution, and 8.22 mmol/(L·min) in
soybean urease. To make the results of the three enzyme source treatments comparable, the
soybean urease solution and freshwater bacterial solution were diluted so that the urease
activity in the three enzyme source solutions was equal.

2.5. Coastal Sediment Solidification and Sea Water Measurement Test

(1) Coastal sediment filling; acrylic material is used to make a sub-regional scour
model. Its length is 38 cm × 10 cm × 26.2 cm × 26.2 cm, and its tilt angle is 30◦ (each
groove length is 9 cm × 7.5 cm × 11.5 cm). The flow rate of the circulating water pump was
set at 160 L/h. The bottom water flows out from the top layer after passing through the
water pump, successively scours each area, and then re-enters the bottom layer. In order to
facilitate coastal sediment compaction and the spray of bacterial solution or soybean urease
during solidification, the model is tilted so that the finish is level and kept level during
scour. The dried coastal sediment was weighed with a balance of 500 g in two layers, added
to the model tank, and compacted to a height of 5.5 cm. This step was repeated for the
remaining two tanks so that the mass and volume of the coastal sediment in each group
were the same.

(2) Enzyme source and nutrient salt spraying: Factors that impact the curing effect are
very complex. In this study, after the activities of the three enzyme sources are unified, the
relationship between enzyme source dosage and curing days (nutrient salt spraying times)
is studied, as shown in Table 2.

Table 2. Experiment scheme.

Batch Sample
Number

Spray Quantity
of Freshwater

Bacterial
Solution mL

Amount of Seawater
Acclimated Bacteria

Solution Sprayed mL

Spraying
Amount of

Soybean
Urease mL

Single Spraying Amount of
Nutrient Salt mL/Number

of Nutrient Salt Sprays
(Days of Curing)

Seawater
Injection

Volume mL

0 0–0 0 0 0 0 480

1
1–10 10 10 10 10/1 460
1–30 30 30 30 30/1 420
1–60 60 60 60 60/1 360

2
2–10 10 10 10 10/2 450
2–30 30 30 30 30/2 390
2–60 60 60 60 60/2 300

3
4–10 10 10 10 10/4 430
4–30 30 30 30 30/4 330
4–60 60 60 60 60/4 180
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Similarly, in order to make the results comparable, in the experiment, the mole ratio
of CaCl2 (purchased from Xiya reagent) and urea (purchased from Aladdin Ltd.) was
1:1, 1 mol/L calcium chloride was mixed with 1 mol/L urea in equal volume, and the
concentration of nutrient salt after mixing is 1 mol/L (That is, 0.5 mol/L calcium chloride
and 0.5 mol/L urea in the nutrient salt), was formulated according to the test result found
by Wang et al. [21]. The curing test was carried out using a spraying method. The specific
operation steps are as follows (as shown in Figure 2): First, bacterial solution (MICP),
seawater-acclimated bacterial solution and soybean urease (EICP) were uniformly sprayed
on the surface of coastal sediments and left for 12 h. Next, nutrient salts in the same volume
as the enzyme source solution are uniformly sprayed on the surface of the coastal sediment,
and then the spray nutrient salt is every 24 h for reinforcement according to the number
of nutrients grouped in the experiment until the required number of nutrient salt sprays
was completed.
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(3) Seawater injection and the determination of pH, calcium ion concentration and
ammonia nitrogen: microbial urease curing is relatively green and environmentally friendly,
but it still has an impact on seawater pH and ion environment. Therefore, this experiment
mainly explores the effects of different enzyme sources curing seawater pH, calcium ion,
and ammonia nitrogen content. In order to avoid the impact of water flow during water
injection, the peristaltic pump was used to slowly inject seawater (Rate: 100 mL/min).
Due to the limitation of the capacity of the experimental tank, only 480 mL solution can be
added to each tank after adding sediment. After spraying the corresponding enzyme source
solution and nutrient salt of each group, according to Table 2, the remaining volume is the
amount of injected seawater. After the final nutrient spray, let it sit for 24 h before adding
seawater. In the experiment PXS-270 (ion meter), PCa-1-01 (calcium ion electrode), and
232-01 (reference electrode) were used. The ion meter needs to be calibrated with a standard
solution (10−1, 10−4 mol/L calcium chloride solution) before each measurement. Then, use
a standard solution (10−1, 10−2, 10−3, 10−4 mol/L calcium chloride solution) to measure
pX and the corresponding potential value, draw a relationship curve between pX and
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potential, measure the potential value each time, and then obtain the pX value according to
the relationship curve. PHS-25 (pH meter) and E-201-C (pH composite electrode), before
each use of the pH meter, buffer solutions with pH values of 4.00, 6.86, and 9.18 should
be used for calibration, and measurements should be made after stirring evenly each time.
The ammonia nitrogen (free NH3 and NH+

4 in solution) was detected by the Luhengbio-
ammonia nitrogen detection test paper. Calcium ion concentration, ammonia nitrogen
concentration, and pH values were measured at 0 min, 5 min, 10 min, 15 min, 30 min,
45 min, 60 min, 2 h, 3 h, 12 h, 24 h, 36 h, 48 h, 60 h, and 72 h after seawater injection. In order
to reduce measurement errors of ammonia nitrogen and calcium ions, 1 mL of seawater
was diluted to a reasonable range using deionized water.

2.6. Coastal Sediment Scour and Penetration Resistance Test

(1) Coastal sediment scour test: Because the purpose of this test is not to simulate
the real scour process of coastal seafloor sediment after solidification but only to evaluate
the effectiveness of the three enzyme sources against scour, the real scour rule of seafloor
coastal sediment was not taken into account. After the sea water measurements were
carried out, the model was placed level, and the pump was turned on to start the flushing
process, which was recorded using a camera. According to the preliminary test results, the
groups treated with different enzyme sources and the control group tended to be stable
after 4 h, and the scour shape did not change significantly to reach equilibrium. Therefore,
all groups of cameras were recorded 4 h after the scour ended.

(2) Coastal sediment penetration resistance test: In order to explore the bearing capacity
of three enzyme sources on the coastal sediment surface after solidification, the penetration
resistance WXGR-3.0/4.0 miniature penetration instrument (needle type) was used in
this study. A penetration resistance WXGR-3.0/4.0 miniature penetration instrument
(needle type) purchased from Geotechnical Instrument Co., Ltd Changzhou, China with
a penetration depth of 6 mm, a maximum range of 5300 kPa, and a resolution of ±1%F.S
was used. When measuring penetration resistance, solidified samples parallel to the scour
test were prepared according to Table 2 and saturated with seawater, but no scour test was
carried out. After 72 h, the penetration resistance was measured. The average value of the
penetration resistance at 9 equidistance points was measured, as shown in Figure 2, and
represents the group of penetration resistance.

3. Test Results and Analysis
3.1. Effects of Three Enzyme Sources on Seawater

(1) Change in seawater pH: After injection into seawater, the pH of most test groups
steadily decreased, and pH changes in different enzyme sources were similar because the
reaction mechanism of the three different enzyme sources was almost the same before
injecting seawater urea was decomposed into NH3 and CO2 by urease and CO2 was
dissolved in water to form carbonic acid and combined with nutrient salt Ca2+ to form
calcium carbonate. With the increase in time, the pH of seawater decreased, as shown in
Figure 3. It can be seen from the figure that the pH change rate becomes exceptionally
faster within three hours of seawater injection, indicating that different enzyme sources
react with nutrient salts before seawater is added, and the metabolites dissolve in seawater
and volatilization of ammonia after seawater injection, causing a decrease in seawater pH.
After three hours, the pH decline rate gradually stabilized. With increases in the amounts
of enzyme source solution and nutrient salt, the number of metabolic products increased,
causing an increase in the rate of pH decline. In different amounts of enzyme source
solution and different curing times, the pH decline rate of the soybean urease group was
faster than that of the other two groups after injecting seawater. The results show that
soybean urease metabolism was fast, and the nutrient utilization rate was high. In the 60 mL
cementitious quartic group (Corresponds to sample numbers 4–60 in Table 2, the same
below), the sum of the amount of enzyme source solution and nutrient salt was 300 mL,
while the injection of seawater was only 180 mL, resulting in a direct decrease in pH. With
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the hydrolysis of urea, the pH of the solution OH− increased, and the slow increase in
soybean urease also indicated its fast metabolism and high nutrient utilization rate. In
general, the pH of different enzyme sources is close to 7.2–7.6 after seawater injection.
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Figure 3. Change curve of seawater pH after reaction of different enzyme sources. (The amount of
enzyme source injected: (a) 10 mL; (b) 30 mL; (c) 60 mL).

(2) The change in seawater calcium ion concentration: The Ca2+ pair was measured
after seawater injection, as shown in Figure 4. The Ca2+ concentration of the cementitious
quartic group, except for 60 mL, other groups increased with time. It can be seen that the
Ca2+ concentration after injection of different enzyme sources into seawater corresponded
to the pH in Figure 3 in the same group at the same time. Before seawater injection, MICP
or EICP reactions occur between different enzyme source solutions and nutrients. When the
calcium ions provided by nutrients are almost exhausted, microorganisms will continue to
produce urease and carbonate. When seawater is injected, the free calcium ions in seawater
will be rapidly utilized, so when t = 0 min, the measured calcium ion concentration is lower
than the calcium ion concentration in Table 1. As microorganisms metabolize, the pH of
seawater continues to decline, which causes the calcium carbonate attached to the surface
of microorganisms to begin to dissolve, and, thus, the calcium ion concentration in seawater
begins to rise. When t = n, the calcium ion concentration is greater than that in seawater
because most of the calcium ions are additionally provided by the calcium chloride solution
in the sprayed nutrient salt. In addition, when injecting seawater, a peristaltic pump is used
to slowly inject seawater, while t = 0 min is measured when seawater injection is completed,
which also provides time for microorganisms to utilize seawater calcium ions to generate
calcium carbonate. H+ reacts with CaCO3 in the solution to form soluble Ca(HCO3)2
Equation (7). The Ca2+ concentration in the solution is increased, which is consistent with
the experimental results of Daniella et al. [39] and Fei [40]. It can be seen that the rate of
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decrease in the pH of seawater after the soybean urease reaction is fast; therefore, the Ca2+

concentration increase rate of seawater after soybean urease reaction is accelerated, and
the Ca2+ concentration of marine aqueous solution after soybean urease solidification is
higher than that of the other two enzyme source solutions. In the sample in the 60 mL
cementitious quartic group, the calcium ion concentration is three to six times the initial
value, which is due to the excessive calcium ion in the added nutrient salt, resulting in the
inability of microorganisms to fully utilize it. Subsequently, it is mixed with the injected
seawater, resulting in an increase in the concentration of calcium ions in the solution. Ca2+

concentration decreased because the pH of this group increased. The urea decomposition
product CO2 reacted with OH− to form HCO−3 Equation (8), and HCO−3 reacted with OH−

and Ca2+ to form calcium carbonate, in seawater solution Equation (9).

CaCO3 + H+ → Ca2+ + HCO−3 , (7)

CO2 + OH− ↔ HCO−3 , (8)

HCO−3 + OH− + Ca2+ → H2O + CaCO3(s). (9)
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Figure 4. Change curve of seawater calcium ions after different enzyme sources. (The amount of
enzyme source injected: (a) 10 mL; (b) 30 mL; (c) 60 mL).

The amount of calcium carbonate produced after 72 h can be roughly expressed as
the sum of the injected seawater Ca2+ content and the nutrient salt Ca2+ content minus
the Ca2+ content measured after 72 h. Divide the decrease in calcium ion concentration
in the solution by the total amount of the solution (480 mL), and then multiply by the
relative molecular weight of calcium carbonate to obtain the calcium carbonate production
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amount. This calculation method may be interfered with by organic precipitation of calcium
hydroxide or calcium, so there is some error. As shown in Figure 5, although the nutrient
content of each group with the same consolidation times remains the same, the total amount
of calcium carbonate precipitation produced should be the same as the chemical conversion
efficiency, but the calcium carbonate content produced is different. The calcium carbonate
content after soybean urease solidification is lower than that of the other two enzyme source
solutions. It further indicates that the decrease in pH will reduce the content of calcium
carbonate that has been generated, and pH will affect the final curing effect. However, in the
60 mL cementitious quartic group, the production of calcium carbonate in the domesticated
bacteria solution was higher than that of the other two enzyme source solutions, indicating
that the domesticated bacteria solution could better adapt to the high-salt environment of
seawater and become fully reactive.
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Figure 5. Calcium carbonate production 72 h after seawater injection.

Too many metabolites will lead to an increase in the decreasing rate of pH; therefore,
in practice, the pH can be adjusted to ensure that the nutrients are fully utilized and the
generated calcium carbonate is prevented from dissolving.

(3) Changes in ammonia nitrogen content in seawater: free NH3 and NH+
4 reflect

the decomposition of urea in seawater and can be used to study the effects of different
enzymatic sources on seawater eutrophication after solidifying seabed coastal sediments,
as shown in Figure 6. The amount of enzyme source solution solidification and ammonia
nitrogen content in seawater increased simultaneously, and in the 60 mL cementitious quar-
tic group, the ammonia nitrogen content reached a maximum after 2880 min (freshwater
and seawater bacterial solution was 21 g/L; soybean urease solution was 18 g/L). Firstly,
because the ammonia nitrogen content in seawater was close to saturation, the stimulating
and weaker gas, NH3, could be detected in the test. Secondly, due to the decrease in seawa-
ter pH, the increase in metabolites was no longer suitable for microbial survival. In 60 mL
cementitious quartic group, the ammonia nitrogen content significantly increased faster
than that in the other eight groups within 750 min of injection due to the high reactivity
between enzyme source solution and nutrient salt before injection into seawater. The urea
decomposition ability of the domesticated bacterial solution was higher than that of the
other two enzymatic solutions in the six groups of experiments when curing was carried
out two times and four times, while the urea decomposition ability of the three groups of
experiments decreased when the number of curing was carried out once, indicating that the
domesticated bacterial solution with multiple curing times had a better urea decomposition



Water 2023, 15, 1525 11 of 17

ability and could better adapt to the seawater environment. The optimal consolidation
times will be further explored in future tests.
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Figure 6. Change curve of seawater ammonia nitrogen content after different enzyme sources. (The
amount of enzyme source injected: (a) 10 mL; (b) 30 mL; (c) 60 mL).

All three enzymatic sources are cured in a manner based on the urea hydrolysis reac-
tion, which produces a large amount of the byproduct NH+

4 , which can be spontaneously
removed from seawater by the volatilization of NH3 and microbial oxidation to nitrite or
nitrate. The natural seawater environment is conducive to the spontaneous NH+

4 removal
process, but a high NH+

4 content in seawater can cause seawater eutrophication. It is
generally believed that NH3 in the atmosphere is very harmful to the human body when
higher than 10 µg/m3 [41]. Therefore, in the practical application process, the emission of
NH+

4 and NH3 can be reduced by artificially adding nitrifying and denitrifying bacteria or
chemical methods.

3.2. Erosion and Penetration Resistance of Coastal Sediments

(1) Analysis of coastal sediment scour tests: This experiment does not adopt the
method of Liu using a propeller to create harmonic scour sediment [33] and is different
from Fang’s simulation of surface runoff scour sediment [35], but directly uses water scour
to test the anti-erosion ability of sediment. The captured images show changes in the
coastal sediment profile over time. The flow against the wall scours the coastal sediment
and generates shear stress, so the coastal sediment changes considerably only near the
current wall. In the control group, untreated coastal sediments were scoured by currents,
as shown in Figure 7. In these images, it can be clearly seen that the untreated coastal
sediments formed a groove along the wall under erosion by the current, while the alluvial
coastal sediments moved and accumulated downslope. The erosion of coastal sediments
significantly changed within 30 min of the experiment beginning. Then, the further erosion
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and deposition gradually changed, and the distribution of the coastal sediments maintained
a relatively balanced state after 4 h. After treatment with different enzyme sources, the
scour process was similar to the control group, but the grooves formed by scour were
reduced to different degrees compared with the control group.
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Figure 7. Change in untreated coastal sand scouring (Scour time: (a) 0 min; (b) 1 min; (c) 30 min;
(d) 1 h; (e) 2 h; (f) 4 h).

The images were compared after 4 h of scouring with different enzyme sources,
as shown in Figure 8. The soybean urease solution, freshwater bacterial solution, and
acculturated bacterial solution were added to three test tanks in each group from left to
right. It was observed that different enzyme sources had a low anti-scour ability of coastal
sediments under low nutrient salt content and low curing times. In groups 1–10 (See
Table 2, the same below), the three enzyme sources formed significant impact grooves after
scouring, which could not cure the surface of coastal sediments. Horizontally, the same
amount of different enzyme source solutions improved the curing effect by increasing
curing times. Vertically, the same consolidation times can also improve the curing effect
by increasing the content of different enzyme source solutions. The surface cementation
of coastal sediments can clearly be observed in groups 2–10, but the thin cementation
layer causes the water to flow through and scour the unconsolidated coastal sediments
below to form cavities. With the increase in the amount of enzyme source solution and
consolidation, this situation improves. The consolidated layer reached a certain thickness
in 2–60 so the water only scoured the surface of the coastal sediment but failed to scour
the unconsolidated coastal sediment. There were no longer significant changes in the
coastal sediment for the scour of 4–60 groups. Different from Li and Ning, which simulated
rain scour, this experiment adopts simulated water scour, but the conclusions obtained
are consistent with the results that their MICP can greatly improve the surface hardening
ability and anti-erosion ability [28,36]. The penetration resistance analysis is described in
detail later.

(2) Analysis of coastal sediment penetration resistance: The penetration resistance test
was carried out on the parallel group without a scour test. Since the penetration resistance
of the untreated coastal sediment was lower than the minimum range of the micro penetra-
tion resistance meter (14 kPa), it was not explored. As shown in Figure 9, it can be seen that
there is a corresponding relationship between each group of penetration resistance and
its 4 h scour image, that is, with the increase in penetration resistance, the scour grooves
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are reduced. At low enzyme source content (10 mL), prolongation of curing times could
not effectively improve the penetration resistance of coastal sediments. The penetration
resistance significantly increased after groups 2–30, and reached the maximum in groups
4–60 (soybean urease: 764.5 kPa, freshwater bacterial solution: 2903.2 kPa, acclimated
bacterial solution: 3348.6 kPa). Therefore, the penetration resistance can be improved
by increasing the amount and curing times of the three enzyme source solutions in this
experiment. The penetration resistance of acclimated bacterial solution in the six groups of
2d and 4d tests was higher than those of the other two enzyme source solutions. This result
was consistent with the results obtained for the determination of ammonia nitrogen con-
tent. These results demonstrate that the acclimated bacterial solution could better adapt to
seawater and achieve better results at multiple solidification times, which further reflected
the effectiveness of the acclimated bacterial solution. Although the three enzyme source
solutions shown in Figure 9 have almost the same anti-scouring ability on the surface of
coastal sediments after solidification, the penetration resistance of soybean urease is signifi-
cantly lower than that of the other two enzyme source solutions, mainly for two reasons.
Firstly, the content of calcium carbonate in coastal sediments solidified by soybean urease
solution is low; secondly, the analysis of coastal sediments after solidification shows that
soybean urease-induced calcium carbonate precipitation (EICP) solidifies evenly and can
penetrate deep into the coastal sediment. However, it also reduces the content of calcium
carbonate precipitation on the surface of the coastal sediment, while microbe-induced
calcium carbonate precipitation (MICP) mainly concentrates on the shallow surface, which
makes the surface of the coastal sediment more compact. The observed phenomenon is
consistent with Chu et al.’s previous study on the uneven distribution of calcium carbonate
precipitates formed by MICP [8,33,42–44].
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Figure 9. Penetration resistance measured value.

4. Discussion

(1) Under the same enzyme activity conditions, the effect of seawater acclimated
bacterial solution on the solidification of submarine coastal sediments is better than that of
freshwater bacterial solution and soybean urease solution. This technology can be used
as a method to solidify the shallow surface of coastal sediments and prevent erosion. The
effect of the seawater-acclimated bacterial solution is more significant, providing new
ideas for economic and environmental protection to improve coastal sediment foundation
in nearshore engineering. However, since this test only compared the curing effects of
different enzyme sources and did not take into account various complex factors in the real
environment, further tests and summary rules are needed before the actual application of
this technology, especially in the controllability of curing space, durability, the treatment
process of ammonia nitrogen pollution, and other aspects.

(2) The maximum number of curing times set in this test is four, and further study is
needed to initiate longer curing times in order to obtain the optimal number of consolidation
times of coastal sediments and, thus, provide a reference for evaluating the durability of
coastal sediments. Caution should be exercised when applying MICP or EICP on coastal
beaches and dunes. If the reinforcement is excessive, it will make the coastal sediment
extremely hard, which may damage the coastal ecosystem and affect the implementation
of coastal projects. In the future, more research is needed to establish the threshold of
consolidation beyond which dune hardening becomes apparent.

5. Conclusions

In this paper, a small-scale model experiment was conducted to study the solidifying
effect of different enzyme sources on coastal sediments and the effect on the seawater
environment. The mechanical properties and anti-scour properties of cured model samples
were enhanced via different enzyme sources. By measuring the change in pH value, calcium
ion concentration, and ammonia nitrogen content of seawater after solidification with
different enzyme sources, it was found that the reinforcement of samples with different
enzyme sources would have a certain impact on the seawater environment. Specific
conclusions are as follows:

(1) The simulated scour test showed that the three enzyme source solutions all im-
proved the scour resistance of the coastal sediment surface layer, and the scour resistance
was related to the amount of enzyme source solution and the number of curing times. The
scour resistance increased with the increase in the amount of enzyme source solution and
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the number of curing times. However, this does not reflect the relationship between the
curing strength of the three enzyme sources. Since only the surface of coastal sediments
can be solidified by spray curing, the water flow will break through the surface of coastal
sediments and form cavities when the amount of enzyme source solution and a number of
curing times are low.

(2) According to the results of the micro-penetration resistance test, the three enzyme
sources could not effectively resist scouring by increasing the curing times under the
condition of low enzyme source solution quantity (10 mL group), and the penetration
resistance of coastal sediments was not significantly enhanced. The effect of the acclimated
bacterial solution on coastal sediments was better than that of the freshwater bacterial
solution, and the effect of the freshwater bacterial solution on coastal sediments was better
than that of soybean urease under a large amount of enzyme source solution.

(3) The solidification of seafloor coastal sediments by three enzyme sources—soybean
urease, Bacillus pasteurella freshwater, and Bacillus pasteurella acclimated to seawater—
resulted in the decrease in seawater pH, and the pH tended to be between 7.2 and 7.6 under
different enzyme source solution amounts and curing times. The acidification of seawater
dissolved the generated calcium carbonate and increased the concentration of calcium ions
in seawater. Among them, the pH of soybean urease after solidification is lower than that
of the other two enzyme sources, resulting in a higher dissolution of calcium carbonate.

(4) Compared with the other two enzyme source solutions, the liquid phase of the
three types of acclimated bacteria in seawater can better adapt to the high-salt environ-
ment of seawater, and microbial metabolism is not inhibited, thus improving the urea
decomposition ability and producing higher calcium carbonate.
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