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Abstract: This paper studies the spatial distribution characteristics and controlling factors of ground-
water chemistry in the Chahannur Basin. One hundred and seventy shallow groundwater samples
(50 m shallow) are collected, and seven ions, pH, TDS, TH, iron, manganese, COD, barium and
other indicators, are detected. Piper triplex graph, Gibbs model, ion ratio, analysis of variance and
Kriging interpolation are used to carry out the research. The results show that bicarbonate water
is the main water chemical type in the Chahannur Basin, in which bicarbonate water accounts for
65.23%, chloride water accounts for 15.15% and sulfate water accounts for 19.62%. Bicarbonate water
is mainly distributed in the mountainous areas in the north and south of the basin, and the main
controlling factor is rock weathering. Sulfate-type water is mainly distributed in the lower reaches
of the northern mountains of the basin, and the main controlling factors are rock weathering and
evaporation concentration. The chloride water is mainly distributed in the Chahannur Lake area
and the shallow groundwater buried area in the central region of the basin. The main controlling
factors are evaporation concentration and human influence. Na+ is mainly derived from atmospheric
precipitation and rock salt leaching, Ca2+ and Mg2+ are mainly derived from carbonate minerals
leaching, and silicate minerals leaching is less. The pH of groundwater in the basin ranges from
6.3 to 9.18, with an average value of 7.50. The TDS in the basin ranges from 227 to 22,700 mg/L, with
an average of 1661 mg/L. Iron in the catchment ranges from 0.01 to 15.343 mg/L, with a mean of
0.837 mg/L. The manganese content in the basin ranges from 0.005 to 3.802 mg/L, with an average
value of 0.254 mg/L. COD in the basin ranges from 0.71–32.72 mg/L, with an average value of
3.49 mg/L. Barium in the basin ranges from 0.005 to 0.312 mg/L, with an average of 0.075 mg/L. The
research results provide basic scientific data support for groundwater hydrochemistry research in
the Chahannur Basin and show that the types of water chemistry in the study area are complex and
diverse, and although the distribution is still controlled by terrain and geological conditions, the area
affected by human activities accounts for a high proportion, so attention should be paid to the impact
of human activities on groundwater in this area.

Keywords: Chahannur Basin; chemical characteristics; controlling factors; groundwater

1. Introduction

The Chahannur Basin is located in Zhangjiakou City, covering an area of about
6757 km2. The basin is home to a number of lakes, including the Chahannur Lake District.
In recent years, due to the over-exploitation of groundwater, the water level has been
dropping year by year, and then problems such as the gradual reduction in the area of
Chahannur Lake and land desertification occur [1,2]. Therefore, it is extremely urgent to
investigate the groundwater ecological environment geology in the Chahannur Basin [3,4].
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Eco-environmental geology is a discipline that studies and evaluates the impact and effect
of geological environment changes on ecosystems and the correlation law between geologi-
cal environment and ecological environment. It mainly investigates the upper lithosphere,
and the research objects involve the lithosphere, soil sphere, hydrosphere, atmosphere
and biosphere on the surface of the Earth [5]. Research directions include meteorological
hydrology, dynamic change characteristics of groundwater level, dynamic change charac-
teristics of groundwater hydrochemistry and water quality, recharge runoff and drainage
conditions of groundwater, and soil salinization, desertification, ecological degradation and
other disasters caused by groundwater environmental factors [6,7]. In recent years, more
researchers have carried out some studies on groundwater level change, meteorological
factors and ecological degradation risk in the Chahannur Basin. Wang Yixuan analyzed
the changes of lake area in the Chahannur Basin and its response to climate. Summer
precipitation and summer evaporation were the main factors affecting lake area in the wet
season [8]. Chen Moyu studied the evolution characteristics of hydrological elements in the
Chahannur Basin, and believed that the evaporation of groundwater showed an insignif-
icant increase trend, while the runoff showed a significant decline trend throughout the
year [9]. Li Yancang et al., made a quantitative assessment of the spatio-temporal evolution
characteristics and driving factors of the groundwater level in the Chahannur Basin and
concluded that the groundwater level in the study area was low in the middle and high in
the periphery, and there was an obvious downward trend on the whole, especially in the re-
cent 10 years. Groundwater extraction contributes the most to groundwater level, followed
by precipitation and evaporation, and the least to runoff [10]. Chen Peng et al. carried out
a study on the ecological degradation risk of the Chahannur Basin on the Bashang Plateau,
and believed that the ecosystem of the Chahannur Basin was generally good, but due to
poor resilience in local areas, the risk of ecological degradation was at a moderate level [11].
However, there is relatively little research on groundwater chemical characteristics in the
Chahannur Basin. Therefore, the main purpose of this paper is to comprehensively study
the groundwater chemical types and control factors in the inland of the Chahannur Basin,
identify the dynamic evolution of groundwater chemical characteristics in the Chahannur
Basin and provide basic data support for the ecological environment investigation in the
Chahannur Basin.

2. Materials and Methods
2.1. Overview of the Study Area

The total area of the Chahannur Basin is about 6757 km2. The elevation of the basin
ranges from 1270 to 1561 m. The terrain is high around and low in the middle, and
gullies are developed. The average annual rainfall is 364.1 mm, and the average annual
temperature is 3.7 ◦C. The diving in the Chahannur Basin mainly consists of Quaternary
loose rock pore diving and Neogene and Paleogene clastic rock fracture pore diving. The
confined water mainly consists of pore-confined water of Quaternary loose rocks and
fractured-pore-confined water of clastic rocks of Neogene, Paleogene and Cretaceous
Lower series.

2.2. Sample Collection and Analysis

A total of 150 groups of groundwater hydrochemical samples are selected in this
study, all of which are shallow groundwater (within 50 m). See Figure 1 for specific
point locations.
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Figure 1. Bitmap of hydrochemical sampling sites in the Chahannur Basin.

The sampling shall be conducted in strict accordance with the Technical Regulations
for Groundwater Environmental Monitoring (HJ/T164-2020). Before sampling, water
samples to be collected shall be moistened and washed in sampling bottles for three times.
At the same time, the samples shall be filtered by 0.45 um microporous filter membrane, and
then put into polyethylene bottles with a capacity of 1000 mL, sealed by sealing film and
stored in cold storage at 4.0 ◦C. The scomponents of groundwater samples shall be tested
by the Center for Groundwater, Mineral Water and Environment Monitoring, Ministry
of Land and Resources (Institute of Hydrogeology and Environmental Geology, Chinese
Academy of Geological Sciences) in accordance with the Standards for Groundwater Quality
(GB/T 14848-2017). The main testing instruments include plasma emission spectrometer
(iCAP6300,Thermo Fisher, Los Angeles, CA, USA), gas chromatography-mass spectrometry
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(GC-MSQP2010plus, Yidian, Shanghai, China) and atomic absorption spectrophotometer
(TAS-986, Yidian, Shanghai, China).

The detection limits of K+ and Na+ were 0.05 mg·L−1 and 0.01 mg·L−1, respectively,
by flame atomic absorption spectrophotometry. Ca2+, Mg2+ and total hardness (CaCO3)
were determined by ethylenediamine tetraacetic acid disodium titration with a detection
limit of 1.00 mg·L−1. HCO3

− was determined by acid-base titration with a detection limit
of 0.05 mg·L−1. SO4

2− was determined by the barium sulfate turbidimetric method with
a detection limit of 5.00 mg·L−1. Cl− was determined by the silver nitrate volumetric
method with a detection limit of 1.00 mg·L−1. pH was determined by the glass electrode
method; the detection limit was 0.01. The total dissolved solids (TDS) were measured
gravimetrically using an electronic balance (MP8-1,Yidian, Shanghai, China). Iron was
determined by spectrophotometry with the detection limit of 0.01 mg/L. The detection
limit of manganese was 0.01 mg/L by atomic absorption spectrometry. The detection limit
of barium was 0.005 mg/L by inductively coupled plasma mass spectrometry. COD was
determined by the basic permanganate method, and the detection limit was 0.5 mg/L. The
balance error of cion and cion of all tested samples was E < ±5% [12–15].

2.3. Analysis Method

The chemical composition of groundwater is controlled by many factors such as
topography, landform, meteorological hydrology, geological structure, changes in hy-
drogeological conditions and human activities. A Piper three-line diagram was used to
characterize the chemical types of groundwater. The Gibbs model and ion ratio method
were used to discuss the main controlling factors of groundwater hydrochemistry.

The Kriging interpolation method was used to describe the spatial distribution and
variation of pH, TDS, TH, Cl−, SO4

2− Na+, K+, Fe, Mn, COD, barium and other indexes. In
addition, statistical analysis of variance was used to analyze the possibility of ions being
affected by human activities, so as to preliminarily judge the regions heavily affected by
human activities based on the distribution of ions with high values. In statistics, variance is
used to describe the degree to which a random variable is discrete from its mathematical
expectation (mean). If the values of a groundwater chemical composition are concentrated,
the variance is small, indicating that the groundwater chemical composition is mainly
affected by natural processes. On the contrary, the value of the chemical composition of
groundwater is relatively dispersed, so the variance is large, indicating that the chemical
composition of groundwater is mainly affected by human activities [16–21].

The first consideration of a Kriging interpolation is the variation distribution of spatial
attributes in spatial position. Determine the range of distances that affect the value of a
point to be interpolated, and then use the sampling points within this range to estimate the
attribute value of the point to be interpolated. According to the different spatial location of
samples and the different degree of correlation between samples, different weights were
assigned to each sample grade, and a sliding weighted average was carried out to estimate
the average grade of the central block. The graph of ion concentration distribution in this
paper uses a circular function embedded in ArcGIS software.

The variance of a discrete random variable is expressed as follows:

σ2 =
1
n ∑n

i=1

(
Xi − X

)2

where σ2 is the sample variance, n is the number of samples, Xi is the value for each sample
and X is the average of the values of all samples.

Because the absolute range of the variable (the chemical composition of groundwater)
may vary greatly, comparisons cannot be made with the difference alone. Therefore, it is
first defined as the ratio of each variable of the sample to the mean value of that variable.
That is, Vi =

Xi
X

. Since the mean value of the comparison coefficient is 1, each variable is
converted to another variable with the same mean value (the comparison coefficient), and
the variance of the comparison coefficient of each variable is calculated for comparison.
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3. Results and Discussion
3.1. Chemical Types of Groundwater in the Watershed

The hydrochemical type of groundwater in the basin is mainly bicarbonate-type water,
but there is less chloride-type water and sulfate-type water in the central and northeastern
mountains of the basin. The main anions in groundwater are HCO3

−, Cl− and SO4
2−,

among which HCO3, Cl and SO4 account for 60.4%, 21.8% and 17.8%, respectively. The
cations are mainly Ca2+ and Na+. The bicarbonate water is mainly HCO3-Ca·Mg water.
Chloride-type water is mainly Cl-Na·Mg-type water. SO4·CI-Ca·Mg water is the main type
of sulfate water. Bicarbonate water is mainly distributed in the north and south of the basin
and the groundwater recharge runoff area of the basin. Chloride-type and sulfate-type
water are mainly distributed in the lake area and the northeastern part of the basin and the
groundwater discharge area of the basin. See the Figures 2 and 3 below for details.

3.2. Cause Analysis of Hydrochemical Types

The formation mechanism of groundwater chemical components is mainly controlled
by atmospheric rainfall, rock weathering, evaporation-concentration (concentration caused
by evaporation) and mixing [22–26]. Figure 4a,b shows that most of the ion contents of
groundwater sampling points fall in the middle of the Gibbs diagram, indicating that rock
weathering is the main controlling factor of groundwater chemical components in the study
area. However, some sampling points (about 40%) exhibited a tendency to shift to the
upper right region, indicating that evaporation-concentration also has a certain impact on
the chemical components of groundwater in the study area.
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Na+ and K+ in groundwater mainly come from atmospheric precipitation and rock
salt dissolution. Without the influence of human activities, rock salt dissolution is the main
source of Na+ and Cl− in groundwater, and the ratio of their concentrations (milliequiv-
alents per liter, mEq/L) is generally around 1. As shown in Figure 5a, the ratio of the
concentration of Na+ to that of Cl− in the groundwater of the Chahannur Basin is about
1, indicating that Na+ in the groundwater of the Chahannur Basin mainly comes from
atmospheric precipitation and rock salt dissolution.

The ratio of the concentration of Ca2+ to that of Mg2+ can reflect the dissolution of
carbonate minerals such as calcite and dolomite. If the ratio is close to 1, it indicates that
dolomite has dissolved to a large extent. If the ratio increases, it may be because of calcite
dissolution. When the ratio is greater than 2, it indicates silicate mineral dissolution. The
diagram of the relationship between Ca2+ and Mg2+ in groundwater samples (Figure 5b)
shows that a small part of the groundwater samples is located above the 2:1 line, indicating
that Ca2+ and Mg2+ in the groundwater partly originate from the dissolution of silicate
minerals; furthermore, most of the samples are located above the 1:1 line, indicating that
Ca2+ and Mg2+ in groundwater are mainly derived from the dissolution of carbonate
minerals such as dolomite and calcite.
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The ratio of c(Ca2+ + Mg2+)/c(HCO3
− + SO4

2−) was used to characterize the dissolu-
tion of carbonate minerals and sulfate minerals in the groundwater system. As shown in
Figure 5c, the sample points are mainly located near the 1:1 line, indicating both carbonate
dissolution and silicate dissolution. At the same time, the ratio of the sample points is
slightly offset on the 1:1 line, indicating that the SO4

2− sources and the Ca2+ and Mg2+

sources are slightly different. Sulfate may originate from the participation of sulfuric acid in
the dissolution of carbonate rocks and the dissolution of gypsum. Most of the sample points
tend to be above the 1:1 line, indicating that the Ca2+ and Mg2+ ions in the groundwater in
the study area are derived mainly from the dissolution of carbonate minerals and partly
from the dissolution of silicate minerals.

To further understand the main sources of groundwater ions in the basin, the relation-
ship between c(Ca2+ + Mg2+ − HCO3

− − SO4
2−) and c(Na+ − Cl−) (meq/L) was used

to characterize the degree of the effect of ion exchange on the samples. The groundwater
sample points in the Chahannur Basin (Figure 5d) showed a positive correlation between
the two, indicating that there was ion exchange in the region. The Na+ ions in the ground-
water replaced the Ca2+ and Mg2+ ions in the aeration zone and the aquifer medium; this
increased the concentrations of Ca2+ and Mg2+ in the groundwater, thereby increasing the
hardness of the groundwater.

In conclusion, Na+ in groundwater of the Chahannur Basin mainly comes from atmo-
spheric precipitation and halite dissolution. Ca2+ and Mg2+ are mainly derived from the
dissolution of carbonate minerals such as dolomite and calcite, while silicate minerals are
less dissolved. There is ion exchange in the region. Na+ in the groundwater replaces Ca2+

and Mg2+ in the vadic zone and water-bearing medium, which increases the concentration
of Ca2+ and Mg2+ in the groundwater, thus increasing the groundwater hardness.

3.3. Spatial Distribution Characteristics of Groundwater Indexes in Watershed

This section characterized the spatial distribution of pH, TDS, COD, Na, SO4
2−, Fe,

Mn and Ba plasma, preliminarily analyzed the variation rule of ion concentration in
groundwater and the influencing reasons and evaluated each ion according to the standard
of “Groundwater Quality” (GB/T 14848-2017). For details, see the following Table 1.

Table 1. Groundwater quality evaluation criteria.

Index I II III IV V

pH 6.5–8.5 5.5–6.5; 8.5–9.0 <5.5 or > 9.0

TH (mg/L) ≤150 ≤300 ≤450 ≤650 >650

TDS (mg/L) ≤300 ≤500 ≤1000 ≤2000 >2000

COD (mg/L) ≤1.0 ≤2.0 ≤3.0 ≤10.0 >10.0

Na (mg/L) ≤100 ≤150 ≤200 ≤400 >400

CI− (mg/L) ≤50 ≤150 ≤250 ≤350 >350

SO4
2− (mg/L) ≤50 ≤150 ≤250 ≤350 >350

Fe (mg/L) ≤0.1 ≤0.2 ≤0.3 ≤2.0 >2.0

Mn (mg/L) ≤0.05 ≤0.05 ≤0.1 ≤1.5 >1.5

Ba (mg/L) ≤0.01 ≤0.10 ≤0.7 ≤4.00 >4.00

• Spatial distribution characteristics of pH

pH value is an important index of groundwater environmental characteristics and
is closely related to the chemical composition of groundwater. The groundwater pH in
the basin ranges from 6.3 to 9.18, with an average of 7.50. On the whole, the neutral and
weakly acidic groundwater accounts for a large proportion within the basin, and only a
few points have a high pH, which is located near Daqinggou. Generally speaking, the
groundwater is weakly alkaline, and the drainage area in the inland basin is relatively
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weak acidic, indicating that the drainage area in the inland basin is affected by human
activities. According to the standard of “Groundwater Quality” (GB/T 14848-2017), the pH
of groundwater in the whole area meets the Class III water standard. See the table below
for the pH evaluation criteria.as shown in Figure 6a.
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• Spatial distribution characteristics of TDS

Total dissolved solids (TDS) reflect the comprehensive effects of hydrogeochemistry
and human activities on groundwater chemistry. The highest TDS value was 22,700 mg/L
in the Chahannur Lake area. The TDS value in groundwater showed a decreasing trend
from the lake area to the south, north and east. The TDS in the basin ranged from 227 to
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22,700 mg/L, with an average of 1661 mg/L. Due to the drought in the Chahannur Basin,
the Chahannur Lake area is located in the drainage area of the whole basin [1]. Therefore,
evaporation and concentration and man-made action lead to the increase in TDS in the lake
area and its surrounding areas. According to the standard of Groundwater Quality (GB/T
14848-2017), the proportion of the area with groundwater TDS meeting the standard of
Class III and Class IV water is large, and the whole area is in a high TDS environment, as
shown in Figure 6b.

• Spatial distribution characteristics of total hardness (TH)

As shown in Figure 6c, the total hardness of groundwater in the study area is relatively
high on the whole, with TH value ranging from 85.58 to 3390 mg/L, with an average value
of 723.56 mg/L, and it gradually increases from the edge of the basin to the center of the
lake area. The groundwater with low hardness is mainly distributed in a small range of
hills and mountains at the edge of the basin. The lake district in the middle of the basin
and its surrounding areas are used as groundwater runoff and excreta discharge areas. The
total hardness of groundwater is extremely high, up to about 1400 mg/L, far exceeding the
standard of Class V water, and the area of this area accounts for a large proportion.

• Spatial distribution characteristics of chemical oxygen demand (COD)

According to Figure 6d, there are differences in the oxygen consumption concentration
of the water in different regions of the study area. The overall oxygen consumption
concentration is general, showing a banded pattern of decreasing gradually from the
middle to the south to the north. COD in the basin ranges from 0.71–32.72 mg/L, with an
average value of 3.49 mg/L. Based on the analysis of oxygen consumption concentration,
it can be seen that the proportion of Class II and Class III water is the largest in the study
area. Only in the lake area in the middle of the basin did Class V water with high oxygen-
consumption concentration appear, and the highest oxygen consumption concentration
was about 32.72 mg/L.

• Spatial distribution characteristics of chloride (Cl−)

Cl− is easily dissolved, is not ingested by plants and bacteria, is not adsorbed on
the surface of soil particles and is the most stable ion in groundwater. Therefore, Cl− is
the main anion in high-TDS water, so Cl− will increase with the increase in TDS, and the
distribution law of Cl− is consistent with the distribution law of TDS. The concentration of
chloride in groundwater in the study area is relatively high on the whole, and it gradually
increases from the edge of the basin to the center of the basin. Groundwater with low
chloride concentration is mainly distributed in hills and mountains on the edge of the basin.
The lake area in the middle of the basin, as the groundwater discharge area of the study
area, has a very high chloride concentration, up to about 7000 mg/L, far exceeding the
chloride standard of Class V water. The groundwater in other areas outside the lake area
mostly meets the chloride standard of Class II water, as shown in Figure 7a.

• Spatial distribution characteristics of sulfate (SO4
2−)

The concentration of sulfate in the lower water of the basin increased gradually from
the edge to the center of the basin. The sulfate concentration is not high on the whole,
except in the lakes in the middle of the basin. The lake district in the middle of the basin,
as the groundwater discharge area of the study area, has a maximum concentration of
about 2000 mg/L, far exceeding the standard of Class V water. However, in other areas
outside the lake area, the sulfate content in groundwater mostly meets the Class II water
standard (50–150 mg/L), and the sulfate concentration is mostly 50–150 mg/L, as shown
in Figure 7b.
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• Spatial distribution characteristics of sodium (Na+)

As can be seen from Figure 8a, the concentration of Na+ in groundwater in the study
area is relatively high on the whole and gradually increases from the edge of the basin
to the center of the basin, which is similar to the distribution characteristics of chloride.
Groundwater with low Na+ concentration is mainly distributed in hills and mountains on
the edge of the basin. As the groundwater discharge area of the study area, the lake area
in the middle of the basin has a very high concentration of Na+, up to about 7000 mg/L,
far exceeding the standard of Class V water. In other areas outside the lake area, Na+

concentration in groundwater is mostly in Class I and Class II water standards.

• Spatial distribution characteristics of iron (Fe)

As shown in Figure 8b, The concentration of iron ions in the water in different areas
of the study area was significantly different, showing a trend of decreasing from the high
concentration in the Chahannur Lake area to the surrounding area. Iron in the catchment
ranges from 0.01 to 15.343 mg/L, with a mean of 0.837 mg/L. The groundwater with high
concentration of iron ions is mainly distributed in the lake district in the middle of the
basin, with the highest concentration of 15.343 mg/L, which exceeds the standard of Class
V water. The groundwater with low concentration of iron ions is mainly distributed in hills,
mountains and plateaus at the edge of the river basin, and the concentration of iron ions in
the groundwater is mostly 0–0.1 mg/L, belonging to the Class I water standard.

• Spatial distribution characteristics of manganese (Mn)

As shown in Figure 8c, there are obvious differences in the concentration of manganese
ions in groundwater in the study area, and the overall concentration is not high, showing a
ribbon-like pattern gradually decreasing from the middle to the south to the north. Man-
ganese in the catchment ranges from 0.005 to 3.802 mg/L, with a mean of 0.254 mg/L. That
is, the groundwater with high concentration of manganese ions is located in and around
the Chahanzhur Lake area, where the concentration of manganese ions is 0.11–3.802 mg/L,
which is the standard of Class IV water, while the concentration of manganese ions in other
areas is mostly the standard of Class I water.
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• Spatial distribution characteristics of barium (Ba2+)

As can be seen from Figure 8d, the content of barium ions in groundwater in the whole
study area is not high. Barium ions in the basin range from 0.005–0.312 mg/L, with an
average value of 0.075 mg/L. On the whole, Class I and Class II water are dominant, and
Ba2+ concentration is relatively high only in Daheisha Town and Caosiyao Town.

The mean, median and outlier values of pH, TDS, TH, COD, Cl−, SO4
2−, Na+, Fe,

Mn2+, Ba2+ are shown in Figure 9.
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3.4. Source Determination of Groundwater Chemical Components

The factors controlling the formation of the chemical composition of groundwater
include two aspects, one is the influence of natural conditions (such as water-rock inter-
action), and the other is the influence of human activities. Under natural conditions, in a
complete regional groundwater flow system, the TDS value of the recharge area is small.
With the increase in runoff channels, the water-rock interaction time also increases, and
the groundwater TDS value increases. Therefore, the TDS value of the runoff area is larger
than that of the recharge area, and the TDS value of the discharge area is the largest.

The influence of human activities on the chemical composition of groundwater is
different from that of natural conditions. Because the way and intensity of human activities
cannot have uniform influence on groundwater, the influence of human activities on the
chemical composition of groundwater is more random than that of natural conditions.
Therefore, the content of groundwater components mainly affected by human activities
tends to vary in a wide range; that is, it shows great volatility [27,28].

Based on the different characteristics of the influence of natural conditions and human
activities on the chemical composition of groundwater, the method of variance contrast
analysis was used to distinguish the formation of the chemical components of groundwater
that were mainly influenced by the evolution of natural conditions or human activities
and to compare the degree of each component affected by human activities. According to
the data obtained in this study, variance σi2 was calculated for the contrast coefficient of
groundwater chemical components, and the results are shown in Table 2 [29–37].

As can be seen from Table 2, σ2 of manganese and iron has exceeded 10 in the variance
of the contrast coefficients of each component in all sample points, indicating that these ions
are most strongly influenced by human activities. σ2 values of TDS, potassium, sodium,
chloride, sulfate, oxygen consumption and boron are higher (>1), indicating that these
ions are also affected by human activities. Low σ2 values for pH, calcium, magnesium,
bicarbonate and total hardness indicate that these indicators are mainly controlled by
natural water chemical evolution and are less influenced by human activities [38–44].
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Table 2. Variance table of groundwater chemical composition contrast coefficient.

Component TDS pH Potassium Sodium Boron

Lining coefficient 1.74 0.02 6.39 4.69 2.32

Component bicarbonate chloride Magnesium manganese Oxygen consumption

Lining coefficient 0.59 4.79 1.03 15.13 1.17

Component Total hardness iron Calcium

Lining coefficient 0.60 12.37 0.54

Based on the spatial distribution characteristics of groundwater chemical indexes in
the basin, it can be concluded that the concentration of TDS ions in the Chahannur Lake
area and its surrounding areas is higher than that in other areas, showing a trend of gradual
increase from the edge of the Basin to the center of the lake area. Based on the analysis
of groundwater chemical components, it can be seen that TDS ions are also affected by
human activities. Theoretically, in the same hydrogeological unit, the variation of TDS
value from recharge area to discharge area is small, and the variation of TDS concentration
in the Chahannur Lake area in the basin is large, indicating that the Chahannur Lake area
and its surrounding areas are greatly influenced by human activities [45–49].

4. Conclusions

(1) The spatial distribution law of pH, TDS, TH, Cl−, SO4
2−, Na+, iron, manganese, COD,

barium and other indicators is described, which provides basic data support for the
groundwater ecological environment research in the Chahannur Basin.

(2) The plasma concentrations of TDS, TH, Cl, Na and COD are high in the Chahannur
Lake area and its surrounding areas, which are strongly influenced by human activities.

(3) The hydrochemical type of groundwater in the basin is mainly bicarbonate-type
water, but there is less chloride-type water and sulfate-type water in the central and
northeastern mountains of the basin. The bicarbonate-type water is mainly affected by
the natural conditions of rock weathering, while the chloride-type water and sulfate-
type water in the central and northeast are mainly affected by human influence and
evaporation and concentration.

(4) Na+ in the basin groundwater is mainly derived from the dissolution of atmospheric
precipitation and rock salt, Ca2+ and Mg2+ ions are mainly derived from the dissolu-
tion of carbonate minerals, and silicate minerals are less dissolved. The concentrations
of Ca2+ and Mg2+ in groundwater in and around the lake area were increased because
of anthropogenic influences and high ion exchange intensity in the basin.
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