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Abstract: Wastewater from urban and industrial sources can be treated and reused for crop irrigation,
which can certainly help to protect aquifers from overexploitation and potential environmental risks
of groundwater pollution. In fact, water reuse can also have negative effects on the environment,
such as increased salinity, pollution phenomena or soil degradation, among others. Consequently,
reuse of wastewater requires rigorous treatment and a very detailed analysis of different parameters,
in compliance with established quality limitation standards. Therefore, this study was carried out to
develop a prediction of temporal changes in water quality by introducing a wastewater quality index
(WWQI) for four regional wastewater treatment plants (WWTPs) in Murcia, Southeast Spain, where
a significant number of physicochemical and biological parameters are obtained in time series over
the period 2019–2021. For this purpose, multivariate statistical analyses have been adopted to predict
the performance of WWQI. By robust PCA of the sixteen physicochemical variables of the raw and
treated wastewater, five main principal components (PCs) were extracted, which explain between
21.39% and 36.79% of the data variability. From the loadings of the PCs, the relationships between
the original parameters are analyzed. The accuracy of the developed models in terms of fit to the
training dataset ranged from 74.3% to 97.9%, with p-values < 0.05. The techniques incorporated in
this study provided a comprehensive evaluation framework for monitoring wastewater treatment.

Keywords: wastewater; pollution; environmental risks; wastewater quality index; multivariate
statistical analysis

1. Introduction

Water is an essential resource for agricultural land, especially for irrigated crops, which
require the extraction of water from natural resources. However, not as much water is
available due to increased demand, which is affected by climate change that is causing
greater variability in water availability due to sometimes more intense rainfall but also
longer and more unpredictable dry periods.

This situation is exacerbated during periods of drought, forcing governments to im-
plement restriction plans or large-scale hydraulic projects. This has led to the emergence of
wastewater usage for agriculture, aquaculture, groundwater recharge and other applica-
tions. One of the actions aimed at increasing water production may be, among others, the
creation of desalination and/or water treatment plants that can be reused for agricultural,
urban, industrial, recreational or environmental purposes. So, the reuse of treated wastew-
ater is one of the most alternative water resources for crop irrigation and urban-tourism
uses [1], but this reuse can have negative consequences, which is due to the fact that con-
ventional wastewater treatment plants (WWTPs) do not effectively remove some organic
and inorganic pollutants, which could lead to water pollution causing environmental and
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human health problems. In many arid and semi-arid areas of the world, reuse of reclaimed
water has been implemented to secure and improve agricultural production.

Despite the benefits of this resource, the scientific community has identified a number
of concerns and challenges for human health and the environment, as crops in irrigated
areas are exposed to contaminants that are likely to remain in the water after the conven-
tional treatment process that may cause risks to human health or end up in the surrounding
soil endangering freshwater. Throughout history, WWTPs have been designed to remove
certain types of pollutants. Therefore, the presence of these compounds in wastewater and
their impact on the environment puts pressure on WWTPs for their operational removal [2].
In fact, awareness of the problem is beginning to be raised, and studies and tests are starting
to be carried out along the treatment processes at source before it reaches the receiving
bodies. Much research has been done on the subject of wastewater, especially on point
sources of pollution, and it has been shown that conventional WWTPs are not as effective
in removing pollutants.

The application of technologies such as the use of membrane bioreactors, adsorp-
tion with activated carbon or advanced oxidation processes (AOPs) such as ozonation,
photo-Fenton, heterogeneous photocatalysis, etc., to treat water represents an invaluable
improvement in effluent quality but entails higher costs that are necessary to address
this environmental problem prior to its incorporation into a receiving waterway [3–6]. In
wastewater treatment, physico-chemical properties of flows depend on many factors, such
as origin, type of sewerage network, economic growth and meteorology. Thus, wastewater
stream has a multicomposition from organic, inorganic and nutrient loads that vary in time
and space [7,8].

Identifying the dynamics of the wastewater content and its scale is essential to estab-
lish the preferred treatment system [9]. To achieve and ensure water quality, a combination
of technical testing and analysis of water quality parameters is required as complementary
preventive measures before transferring them to stakeholders. In each WWTP, different
processes take place simultaneously, so it is necessary to take into account a large number of
chemical, physical and microbiological parameters to characterize and evaluate wastewater
flows. Therefore, understanding effluent variability and its impact within the treatment
process is essential to prevent adverse health and environmental impacts from reused
wastewater. Although all necessary wastewater analytical data are collected, appropriate
techniques are needed to extract useful information by developing suitable index vari-
ables to better describe wastewater quality and assess the effectiveness of the treatment
system [10,11].

In view of the above, multivariate statistical techniques are used to establish rela-
tionships between interrelated data to better quantify wastewater quality and treatment
processes, as well as to analyze large databases of quantitative variables/observations and
compress them to extract relevant information [12]. An emphasis has been placed by some
scientists on the application of principal component analysis (PCA) and multiple linear
regressions (MLR) to obtain information on the seasonal flow of wastewater generated by
domestic and industrial waste [13–15].

In the course of this research, several of the techniques incorporated in this work have
been carried out using a multivariate statistical analysis approach to extract and organize
information from the water quality monitoring program. This approach used (1) PCA
to reduce the dimensionality of the datasets obtained from the WWTP and analyze the
interconnectedness of variables, as well as quantify the importance of different variables in
the dataset, (2) MLR to predict the performance of wastewater quality index (WWQI) and
develop models that can predict important quality parameters and (3) correlation analysis
to determine the degree to which specific parameters were statistically correlated.

PCA is a widely used statistical technique for decomposing a data matrix into vectors
called factors or principal components without losing most of the original information in
the form of linear combinations of the initial uncorrelated variables [16], with the first factor
representing the largest possible variance of the dataset. The second factor is calculated
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following a similar strategy, only with the condition that it is uncorrelated with the first
and represents the next highest variance. This is repeated until a total of factors equal to
original number of variables are calculated. Therefore, Varimax rotation is used to increase
the participation of the variables with the highest contribution and simultaneously reduce
the weight of the variables with the lowest contribution [17,18].

Apart from PCA, MLR models are a form of linear regression used when there are
two or more predictors that can be applied in WWTP to predict the effect of two or more
independent variables, such as BOD5, COD, TSS, temperature, pH and ammonia in the
case of WWQI. Consequently, the MLR method is used in many environmental studies [19].

To verify their relationship with WWQI, some specific parameters are initially exam-
ined by PCA. Any weakly correlated parameters will be excluded for predicting WWQI.
However, only correlated parameters will be used in the MLR process. By far the most
common measure of correlation is Pearson’s correlation [20].

Considering data analysis in general terms, PCA has a number of advantages:

(1) Reduction of dimensionality of the data. This can be useful when the initial data
contain a large number of variables and are therefore difficult to visualize or analyze.

(2) Derivation/extraction of new features or elements from the original data that are
more insightful or understandable than the original ones.

(3) Visualization of high-dimensional data in two or three dimensions that may not have
been visible in the initial high-dimensional space.

(4) Reduction of the impact of noise or measurement errors on data.
(5) Reduction of the impact of multicollinearity in the analysis by identifying the most

important characteristics or components.

However, there are also some disadvantages to this statistical method, such as:

(1) Difficulty in interpreting the resulting principal components, which are not always
easy to understand or describe in terms of the original characteristics.

(2) Loss of information when choosing a subset of the most crucial features or components
to reduce the dimensionality of the data.

(3) Difficulty in identifying the most crucial features due to distortion of the covariance
matrix by outliers.

(4) Difficulty in scaling: although PCA assumes that the data are scaled and centralized,
some resulting principal components may not correctly represent the underlying
patterns in the data if the data are not correctly scaled.

(5) Given the computational complexity of PCA, it can be costly to compute the eigenvec-
tors and eigenvalues of the covariance matrix for large datasets [21–23].

The results of a correlation analysis are limited to simultaneously assessing correla-
tions between several variables, despite the usefulness of the correlation analysis method
established between two variables [24]. However, PCA can be applied to identify the per-
formance of the treatment process and determine interdependencies between variables [25].

These approaches present a diagnosis of the process in terms of the relationships
established between the analytical measured data. The relationships were used to build
empirical models to estimate one or more properties of the system [26]. During recent
years, many studies on the field of sewage management have widely applied statistical
methods of data analysis for different purposes [27–33]. In this field, some researchers have
made progress in the use of multivariate statistical techniques applied to modeling to assess
water quality. In fact, this approach has been widely adopted to estimate the concentration
of the main effluent quality parameters [31,34].

The current paper presents a novel analysis of physicochemical and biological pa-
rameters of wastewater based on the latest work in the field of multivariate statistics to
develop a simple model based on PCA, correlation, multivariate regression and ANOVA.
The study also involves the development of techniques that provide a framework for the
global evaluation of WWTP quality using the wastewater quality index (WWQI) [35,36].
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2. Materials and Methods
2.1. Study Area Sites

As shown in Figure 1, four representative WWTPs have been chosen for water sam-
pling in the Region of Murcia (Southeast Spain): Alcantarilla (AL), Molina (MO), Los
Alcázares (LZ) and San Pedro (SP). LZ and SP are located in the coastal area adjacent to
the agricultural lands of Cartagena, close to Mar Menor coastal lagoon, while AL and
MO inland also used for agricultural land and public domain. Parameter sampling was
performed at the inlet (influent) and outlet (effluent) of the selected WWTPs from March
2019 to January 2021 according to the standards of the American Public Health Association
(APHA). In addition, the incoming and outgoing water was collected manually 3 times
a day.
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Figure 1. Location of four WWTPs in Murcia, SE Spain.

Most of selected plants mentioned above are the largest of their type in the region,
covering in total most of the principal cities and municipal public WWTPs and operating
with an average daily flow of millions of gallons per day (mgd) and a peak hour flow
capacity of 3 to 6 mgd, serve a population between 16,891 and 69,785 inhabitants and are
designed to treat wastewater from various residential and industrial connections to meet
the needs of their population (see Table 1). For most of WWTPS, the plant is designed as
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a sequential batch reactor (SBR) system consisting of preliminary, secondary and tertiary
treatment systems. Due to the high pollutant load of industrial and agricultural origin
entering these plants and to the need to comply with regulations on the quality of the
treated effluent, their treatment systems have pretreatment with screening, degreasing and
desanding units, clarification basins, secondary biological treatment and finally tertiary
treatment by UV disinfection. In addition, the effluent treated by each WWTP is used for
irrigation and/or public use.

Table 1. Characteristics of WWTPs.

Flow Rate in Million Gallons Day (mgd)

WWTP (*) Population
Served

Design
Flow Flow Treated Effluent Uses Technology Used (**)

AL 41,966 3 1.5 Irrigation CAS + DS + C + F + SF + UV

MO 69,785 6 4 Irrigation & Public
domain CAS + EA + C + F + SF + UV

LZ 16,891 5 1.5 Irrigation CAS + EA + C + F + SF + UV
SP 26,152 4.4 2 Public domain CAS + MBR + UV

Note(s): (*) Source: Elaboration based on ESAMUR (2021), (**) CAS: Conventional Activated Sludge; EA: Extended
Aeration. C: Coagulation; F: Floculation; DS: Double Stage; SF: Sand Filtres; MBR: Bioreactor Membranes;
UV: Ultraviolet.

2.2. Parameters Monitored

During deployment, there are up to 1000 samples for water quality assessment of
these WWTPs. All analytical tests used in the sampling and metrology plan followed
standard methods for water and wastewater testing [37]. Water samples were collected
in acid-washed glass bottles, rinsed with deionized water, sterilized and then stored in a
portable refrigerator at 4 ◦C for proper preservation until arrival at the laboratory. The
eight laboratory analysis parameters were measured by a procedure following the method
recommended by Association of Official Analytical Chemists (AOAC), an International
official method [38]. Measurements of monitored parameters include pH, electrical conduc-
tivity (EC), total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen
(TN), total phosphorus (TP), biological oxygen demand (BOD5) and dissolved organic
carbon (DOC) content in both influent and effluent. Furthermore, a wastewater quality
index (WWQI) has been developed to estimate the overall quality status of the raw and
treated waters.

2.3. Descriptive Statistics

The treatments were carried out using the statistical software Sigma Plot 14.0 (Sta-
tistical Package for the Social Sciences-Sigma Plot for Windows 14.0 ed. Systat Software,
2022. Chicago). Descriptive statistics were performed for each parameter measured in the
influent and effluent of each WWTP to establish the characteristics of central tendency,
dispersion and distribution [39]. The descriptive statistics calculated were mean, median,
standard deviation, standard error, variance, skewness, kurtosis, range, minimum and
maximum. Tables S1–S4 in Supplementary Materials show these statistics for the four
wastewater treatment plants under study.

2.4. Correlation Analysis

All figures were obtained using the statistical software referred to Sigma Plot 14.0.
Regarding data processing, SPSS (Statistical Package for Social Science, version 13.0) and
Sigma Plot were used. In this process, different methods of statistical analysis were applied,
such as correlation, multivariate regression, ANOVA and PCA analysis, where significant
differences were processed by appropriate tests scored as significant at p < 0.05. Principal
component analysis (PCA) is a statistical method that was proposed by Pearson (1901) [40]
and independently also by Hotelling (1933) [41], which consists of describing the variation
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produced by the observation of p random variables in terms of a set of new variables
that are uncorrelated with each other (called principal components), each of which is a
linear combination of the original variables. These new variables are obtained in order of
importance, so that the first principal component (PC1) incorporates the greatest possible
amount of variation due to the original variables; the second principal component (PC2) is
chosen so that it explains the greatest possible amount of variation that remains unexplained
by the PC1, subject to the condition of being uncorrelated with the PC1, etc.

2.5. Wastewater Quality Index Calculations

Wastewater quality index (WWQI) is a defined number digit that cumulatively de-
scribes the quality of an aggregate set of measured physicochemical and biological parame-
ters. The WWQI is a mathematical expression of the Canadian Council of Ministers of the
Environment (CCME) developed for the influent and effluent for the case study [42,43].
This index is one of the most widely used Water Quality Index method in summarizing the
water analytical data into data or information that are beneficial for decision makers based
on three factors of water quality that relate to water quality limitations which consider the
scope (F1), frequency (F2) and amplitude (F3) being calculated based on the quality limita-
tions [44,45]. WWQI of the influent and effluent flows is calculated from the wastewater
monitoring results using Equations (1) to (6):

F1 =
number o f f ailed variables
total number o f variables

× 100 (1)

F2 =
number o f f ailed tests
total number o f tests

× 100 (2)

Excursioni =

(
f ailed test valuei

limiti

)
− 1 (3)

Normalized o f sum excursions (nse) =
∑n

i=1 Excursioni

number o f tests
(4)

F3 =
nse

0.01 nse + 0.01
(5)

WWQI = 100 −

√
F2

1 + F2
2 + F2

3

1.732
(6)

where:
F1 is the percentage of measured variables that do not meet limit at least once during

the time period; F2 is the percentage of individual tests that do not meet limit; F3 is the
amount by which failed test values do not meet limit; Excursion is the number of times
by which an individual test is greater than limit; nse is the collective amount by which
individual tests are out of compliance.

The CCME classification, created in 2001 and used since then in Canada and around
the world, reports water quality using an index that provides information on the overall
condition of water at various monitoring points. Water quality is classified into different
categories with a scoring scale from zero to one hundred. If the weighted arithmetic index
is in the range 95 to 100, it is excellent; if it is in the range 80 to 94, it is good; if it is in the
range 65 to 79, it is fair; if it is in the range 45 to 64, it is marginal; and if it is in the range 0 to
44, it is poor [46]. These five classifications were developed based on measured parameters
and established water quality standards. Table 2 presents the WWQI categories for the four
WWTPs under study.

Upon WWQI analysis, it is expected to find that streams influent to WWTPs have
index quality values between 45 and 60, indicating that water quality was commonly
endangered or impaired and would be harmful to surrounding water bodies if discharged
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without treatment, but after treatment the effluent water quality index was reported to be
uniformly between 95 and 100, revealing that the water quality is excellent and not harmful
to the receiving waters of the discharge.

Table 2. WWQI classification and wastewater quality assessment.

WWQI

Excellent Good Fair Marginal Poor
95–100 80–94 65–79 45–64 0–44
Very

close to natural or
pristine levels

Rarely
depart from natural or

desirable levels

Sometimes depart from
natural or desirable

levels

Often
depart from natural or

desirable levels

Quality is almost
always threatened or

impaired

WWTP
Influent Effluent

Score Category Score Category

AL 45–60 Marginal 95–100 Excellent
MO 44–60 Marginal 96–100 Excellent
LZ 45–60 Marginal 97–100 Excellent
SP 45–60 Marginal 98–100 Excellent

3. Results
3.1. Temporal Evolution of Influent and Effluent Qualities

Figures 2 and 3 show the time evolution of TSS, COD, TN, TP, BOD5 and DOC
measurements of influent and effluent with the same trend in all WWTPs during March 2019
to January 2021. The most remarkable aspect is that the parameters BOD5, TSS, nitrogen and
phosphorus in the influent can be described by a linear expression, while dissolved organic
carbon can be described by a 2nd degree polynomial expression. This opposite trend
indicates that as the amount of available dissolved organic carbon increases, the level of
pollutants in the influent wastewater decreases. Regarding the effluent quality parameters,
it was observed that the variation of organic matter throughout the treatment process had
a considerable impact on the concentration of other quality parameters, especially TSS,
TP and TN. An increase in the amount of DOC, COD and BOD5 led to a decrease in the
concentration of TSS in the effluent and an increase in the level of BOD5. After treatment, it
is possible to reduce suspended particulate matter and achieve a significant reduction in
BOD5 and COD, which allows compliance with discharge regulations for most wastewaters.
In fact, obtaining all wastewater data makes decision making by operators still challenging
due to the complex interrelationships of parameters.

3.2. Multivariate Statistical Analysis Approach

This statistical analysis incorporates techniques such as correlation analysis, principal
component analysis (PCA) and exploratory factor analysis (EFA) using SPSS and the choice
of the number of components to be extracted. PCA was performed for all parameters. The
analysis extracted five principal factors based on Kaiser’s rule of eigenvalues greater than
one [47], as shown in Tables S5–S8 in Supplementary Materials.

Table 3 presents the results of the rotated factor matrix obtained through an exploratory
factor analysis using the maximum likelihood method with Varimax rotation to analyze the
factor structure and correlation between the components or factors included in the scale.
After rotation, the loadings are readjusted to the proper size to ensure equal weight to all
items when performing the rotation.
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Figure 3. Temporal variation of average monthly effluent (e) parameters.

According to these procedures, the dimension of the dataset was reduced from sixteen
variables to five factors with information around 71.31% and 81.15%, as shown in Table 3.
However, it was observed that two components (PC1 and PC2) had higher loadings that
can better explain characteristics of the dataset. The remaining components do not satisfy
the general trend of actions between variables.

Developing the correlated values of the significant factor loadings (component’s score)
in four WWTPs, the highest loading of the total variance of each dataset was attributed
to PC1 (34.32%) in AL-WWTP and 28.82% in MO-WWTP, respectively, being labeled as
the loading of the influent quality parameters. This fact reveals that it is the dominant
data pattern to better understand the influent wastewater characteristics. The second
component PC2 contributed 13.17% in AL-WWTP and 15.93% in MO-WWTP of the initial
variance of the data, mainly considered for the oxygen demand characteristics of the treated
wastewater, including phosphorus and nitrogen.

The analysis carried out for LZ-WWTP, where the first component represents 36.79% of
initial data variance, contained significant loadings for the ion activity component because
it highly represented the influent and effluent EC values. In this plant, PC2 (17.58%) was
correlated with the nutrient removal performance of the WWTP as well as with the nutrient
load of the effluent wastewater, which changed significantly. Regarding SP-WWTP, PC1
component (21.39%) was initially related to the organic loading of the influent wastewater,
while PC2 (17.62%) was correlated to the effluent oxygen demand that can be concluded
due to positive observed scores for this component.

As a rule, to understand the structure of the data, PCA usually involves the inter-
pretation of the components (PCs) that are extracted from the original dataset. Table 3
shows the rotated component matrix, which is a matrix of the component loadings of
each variable on each PC that can explain the relationships between the original variables
(parameters). Regarding the raw AL-WWTP, PC1 was saturated mainly by BOD5 and COD,
followed by TN, TSS and TP. Rather, the effluent was dominated by TN, TSS and COD.
These parameters characterize the organic and inorganic compounds present in municipal
wastewater; PC2 was affected by COD. PC3 was affected mainly by BOD5 and COD; PC4
was affected by pH; and PC5 was affected by TP and COD. In the case of the MO-WWTP,
the first component of influent values presents high pH and moderate effluent load. The
second component presents high TSS, TN, BOD5 and TP values, which is attributed to the
massive input of organic waste due to increased biological activities. PC3 presents high EC
loadings in both influent and effluent and high COD loadings, a common parameter used
to characterize the total content of organic and inorganic compounds in the effluent. The
fourth component has high pH and TP loadings, and PC5 was affected mainly by BOD5.
In the case of LZ-WWTP, PC1 presents high negative loads with EC in both influent and
effluent and positive loads with DOC in influent and also TP, TN and COD in effluent. PC2
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exhibits high nitrate, phosphate and also BOD5 and COD loads, mainly due to nutrients
that have passed through the aerobic part of an activation tank. PC3 was affected mainly
by pH. PC4 was affected by BOD5 and TSS. PC5 of the influent values was heavily loaded
with TSS and DOC. Concerning the SP-WWTP, the first component has a high pH load for
both influent and effluent. PC2 was saturated mainly in the influent by BOD5, COD, TN,
TSS and TP. The third component has high EC loadings in the influent and also TSS. PC4
has high negative loadings with BOD5 in the effluent and positive loadings with TP and
COD. Finally, PC5 has positive loadings with DOC in both influent and effluent and also
with TSS in effluent, which were of low concentrations and therefore contributed to the less
important PCs.

Table 3. Rotated component matrix with factor loadings (>0.4).

AL
Principal Component a

MO
Principal Component b

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5

pHi −0.56 0.45 0.79
ECi −0.78 0.84
TSSi 0.69 0.90

CODi 0.92 0.86
TNi 0.88 0.89
TPi 0.69 0.83

BODi 0.91 0.85
DOCi 0.88 0.68
pHe -0.85 0.77 0.47
ECe −0.44 0.49 −0.45 −0.44 −0.44 0.81
TSSe 0.50 −0.76

CODe 0.42 0.71 0.78
TNe 0.73 −0.76
TPe 0.55 0.70

BODe 0.90 0.53
DOCe 0.68 0.42 0.48
Eigenv 6.18 2.37 1.73 1.50 1.27 5.19 2.87 2.29 1.76 1.43
Var (%) 34.32 13.17 9.61 8.32 7.03 28.82 15.93 12.73 9.79 7.93

Cum (%) 34.32 47.49 57.10 65.41 72.44 28.82 44.75 57.48 67.27 75.20

LZ
Principal Component c

SP
Principal Component d

PC1 PC2 PC3 PC4 PC5 PC1 PC2 PC3 PC4 PC5

pHi 0.90 0.90
ECi −0.66 0.94
TSSi 0.86 0.56 0.56

CODi 0.77 0.86
TNi 0.63 0.68 0.76
TPi 0.74 −0.45 0.78

BODi 0.91 0.61
DOCi 0.65 0.64 −0.57 0.54
pHe 0.95 0.86
ECe −0.83 0.93
TSSe 0.86 0.59

CODe 0.68 −0.69 0.48
TNe 0.55 −0.60 −0.68
TPe 0.70 0.60

BODe 0.83 −0.65
DOCe −0.77 0.68
Eigenv 6.62 3.17 1.82 1.69 1.31 3.85 3.17 2.31 2.09 1.42
Var (%) 36.79 17.58 10.13 9.36 7.29 21.39 17.62 12.82 11.61 7.87

Cum (%) 36.79 54.37 64.50 73.86 81.15 21.39 39.01 51.83 63.44 71.31

Note(s): a Rotation converged in 9 iterations; b Rotation converged in 8 iterations. c Rotation converged in 7
iterations; d Rotation converged in 7 iterations.
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In computational terms, data obtained have been analyzed using PCA to identify the
dominant parameters of the processes occurring simultaneously in WWTPs (mainly BOD5,
TSS and nutrient pollution) with the aim of extracting further information for process
optimization [48].

3.3. Approach to Statistical Modeling

Multivariate statistical techniques were applied in this section to develop predictive
models of water quality parameters from the database of historical measured processes.
Considering as training data, the quality and quantity parameters measured during March
2019 to January 2021, the development of descriptive numerical models was carried out to
predict the influent and effluent WWQIs. The prediction models of the quality parameters
are based on different combinations of available variables for TSS, TN, TP and BOD5
concentrations of influent and effluent. A total of 10 numerical expressions derived from
the influent and effluent quality parameters considered above were used to identify the
WWQIs described in Table 4.

Table 4. Predictive statistical models of the raw and treated wastewater quality index.

WWTP Numerical Expression

R2 RMSE

Data

Train Train Test

AL
WWQIi = 70.06 − 0.06TSSi − 0.8TNi + 3.6 × 10−5BOD2

I + 4.2 × 10−5TSS2
i +

0.012TN2
i − 0.001BODi × TNi + 0.001TNi × TSSi − 0.001TPi × BODi

0.903 2.15 7.06

WWQIe = 72.96 − 0.09TSSe + 0.99TNe + 0.36BOD2
e + 0.31TSS2

e + 0.025TN2
e −

0.001BODe × TNe + 0.001TNe × TSSe − 0.001TPe × BODe
0.907 1.20 1.36

MO
WWQIi = 60.9 − 0.04TSSi − 0.9TNi + 10−5BOD2

I + 2.6 × 10−5TSS2
i +

0.02TN2
i − 0.0011BODi × TNi + 0.0011TNi × TSSi − 0.0011TPi × BODi

0.952 0.67 2.20

WWQIe = 92.15 − 0.1TSSe − 0.1TNe + 0.1BOD2
e + 10−5TSS2

e +
0.08TN2

e − 0.001BODe × TNe + 0.001TNe × TSSe − 0.001TPe × BODe
0.927 0.04 0.17

LZ
WWQIi = 58.2 − 0.05TSSi − 0.7TNi + 4.1 × 10−5BOD2

I + 3.8 × 10−5TSS2
i +

0.015TN2
i − 0.0011BODi × TNi + 0.0011TNi × TSSi − 0.003TPi × BODi

0.782 0.24 3.29

WWQIe = 122.1 − 9TSSe − 0.3TNe + 10−5BOD2
e + 0.9TSS2

e +
0.03TN2

e − 10−5BODe × TNe + 0.002TNe × TSSe − 0.2TPe × BODe
0.909 0.05 0.29

SP
WWQIi = 66.9 − 0.05TSSi − 0.8TNi + 3.7 × 10−5BOD2

I + 4.2 × 10−5TSS2
i +

0.013TN2
i − 0.0011BODi × TNi + 0.0011TNi × TSSi − 0.0011TPi × BODi

0.816 0.20 0.68

WWQIe = 93.04 − 0.3TSSe + 0.3TNe + 0.1BOD2
e + 0.03TSS2

e +
0.1TN2

e − 0.2BODe × TNe + 0.2TNe × TSSe + 0.2TPe × BODe
0.979 0.01 0.02

GL *
WWQIi = 76.01 − 0.06TSSi − 0.8TNi + 3.6 × 10−5BOD2

I + 4.2 × 10−5TSS2
i +

0.012TN2
i − 0.001BODi × TNi + 0.001TNi × TSSi − 0.001TPi × BODi

0.810 0.84 1.51

WWQIe = 58.82 − 0.1TSSe + 0.1TNe + 0.1BOD2
e + 0.02TSS2

e +
0.22TN2

e − 0.1BODe × TNe + 0.1TNe × TSSe + 0.1TPe × BODe
0.743 0.08 0.10

Note(s): * GL: Global.

3.4. Assessment and Verification of Model Quality

A complex matrix of physicochemical and biological parameters is obtained from the
wastewater monitoring data, which alone cannot provide a reliable temporal assessment
of wastewater quality or evaluate WWTP performance. To address this problem, two
methods were applied: (1) PCA to identify the dominant process parameters occurring
simultaneously at WWPTs and (2) WWQI index to summarize a large number of monitored
parameters into a single unitless value.

The PCA has identified the dominant process parameters occurring simultaneously at
the WWTPs, mainly BOD5, TSS and nutrient pollution in this study. Therefore, they have
been considered in the regression to predict the WWQI index.
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During the validation of the accuracy of the models, the dataset was divided into
training data and test data. Through analysis of the predicted and originally calculated
WWQI results, a validation dataset was used to examine the prediction performance of
the models. As performance indicators, the accuracy of these models was assessed by
the coefficient of determination (R2) and the root mean square error of prediction of the
concentrations (RMSE), which was calculated based on the Equation (7). These standard
metrics were used to assess the quality of each model by indicating the concentration of the
data around the line of best fit between the measured concentrations of the training data
and the precision with which the test data were estimated.

This index was calculated numerically as follows:

RMSE =

√
∑N

i=1(Predictedi − Calculatedi )
2

N
(7)

where

Predictedi = values of predicted parameter
Calculatedi = values of measured parameter
N = Total number of samples

After analysis of the model dataset, the results confirmed a high accuracy, ranging
from 74.3% to 97.9%, whereas the RMSE (root mean square error of predicted scores) = 7.06
represented a higher value for the influent WWQI model fitted with the test dataset. At
the same time, in a scatter model with the training dataset, it was observed that the plot of
the coefficient of determination also showed that the scatter points were more aggregated
around the fit line, suggesting that the prediction point of the influent WWQI model was
closer to the calculated value (Figure 4). Overall, however, we can confirm that there is
high accuracy, suggesting that all the data were suitable for these models.

As can be seen from the scatter plots (Figure 5) of the calculated and predicted global
values, there are many scatter points that are well fitted and clustered, indicating that all
data were suitable for this model, which can serve as a reference for global data processing,
especially for large amounts of data and provide better results.
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4. Conclusions

This study has focused on the assessment of wastewater quality using statistical
techniques. In order to develop a simple and reliable WWQI prediction method that
would provide a better estimation of the overall quality of raw and treated wastewater in
4 WWTPs, a significant number of parameter data were integrated into a single score. High
accuracy of the overall model developed indicates that the model performed well and could
be used to predict the WWQI of WWTPs as a whole and provide better results. As expected,
in the development of the WWQI, the influent of the plant has a low rate. However, after
treatment, all effluent flows were in satisfactory compliance with the established discharge
standards. These calculated rates were therefore in the range of 95 and 100, indicating that
they could be discharged into the surrounding water bodies. Furthermore, in addition
to the prediction of wastewater quality, the numerical description of the quality of water
flows such as TSS, TN, TP and BOD5 using empirical expressions could be used as a first
approximation for the modeling of a wastewater treatment process at any WWTP, which
will certainly help to minimize the negative impact generated by the reuse of these water
resources in agricultural areas with water scarcity. Similarly, these methodological tools
can contribute to restore, as far as possible, the quantity and quality of groundwater in
overexploited and degraded coastal aquifers.
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