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M.; et al. Linear and Non-Linear

Modelling of Bromate Formation

during Ozonation of Surface Water in

Drinking Water Production. Water

2023, 15, 1516. https://doi.org/

10.3390/w15081516

Academic Editor: Yidi Chen

Received: 15 March 2023

Revised: 31 March 2023

Accepted: 11 April 2023

Published: 13 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Linear and Non-Linear Modelling of Bromate Formation during
Ozonation of Surface Water in Drinking Water Production
Marija Gregov 1 , Ana Jurinjak Tušek 1,*, Davor Valinger 1, Maja Benković 1 , Tamara Jurina 1, Lucija Surać 1,
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Abstract: Bromate formation is a complex process that depends on the properties of water and the
ozone used. Due to fluctuations in quality, surface waters require major adjustments to the treatment
process. In this work, we investigated how the time of year, ozone dose and duration, and ammonium
affect bromides, bromates, absorbance at 254 nm (UV254), near-infrared (NIR) spectra, and fluorescent
components (humic-like and tyrosine-like) during surface water ozonation. Linear and non-linear
models were used to determine and predict the relationships between input and output variables.
Season, ozonation dose and time were correlated with the output variables, while ammonium affected
only bromates. All coefficients of determination (R2) for the multiple linear regression models were
>0.64, while R2 for the piecewise linear regression models was >0.89. The season had no effect on
bromate formation in either model, while ammonium only affected bromides and bromates. Three
input variables influenced UV254 in both models. The artificial neural network (ANN) model with
the season, ozonation dose and time, ammonium, and NIR spectra was an effective way to describe
water ozonation results. The multilayer perception neural network 14-14-5 had the lowest errors and
was the best ANN model with R2 values for training, testing, and validation of 0.9916, 0.9826, and
0.9732, respectively.

Keywords: ozonation; modelling; drinking water; artificial neural network; bromate

1. Introduction

Obtaining drinking water in the world is becoming an increasingly important challenge [1].
In some regions, water scarcity is increasing the demand for new water sources. Where possible,
surface waters such as natural lakes and artificial reservoirs are being used for drinking water
production. However, the quality of surface water varies greatly compared to groundwater
due to susceptibility to various direct and indirect contaminants as well as climate-change-
induced conditions. Due to large open areas, surface waters heat up with the resulting thermal
stratification leading to a reduction in dissolved oxygen, release of metals from sediments,
growth of pathogens, aquatic algae, and bacteria, all of which contribute to an increase in the
concentration of organic matter [2]. Various combinations of physicochemical processes are used
in the production of drinking water to remove undesirable constituents such as microorganisms,
metals, organics, and turbidity. These include disinfection, oxidation, sedimentation, flocculation,
and various filtration processes from sand filters to membrane processes. In addition to the
removal of undesirable constituents, the treatment processes also generate new undesirable
compounds whose formation must be minimized (e.g., trihalomethanes and haloacetic acids
after chlorine disinfection [3] or bromates after ozonation). The process conditions in water
treatment plants are determined by the quality of raw water used to obtain safe drinking water.
Since the quality of raw water is constantly changing, so must the complexity and cost of
treatment. Given the limited supply and health requirements necessary for the production of
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high-quality water, treatment technologies are constantly being adapted and new solutions are
being sought [4].

Bromide (Br−) is a bromine anion that occurs naturally in marine waters, while its
amount in groundwater or surface water depends largely upon the water source. The
natural source of bromide in groundwater is usually seawater intrusion [5,6] or lithosphere
dissolution. Anthropogenic sources include pesticide use, surface runoff containing road
salt, domestic or industrial wastewater, or landfill leachate [7]. Bromide in water can pro-
duce undesirable by-products such as bromate (BrO3

−) which is produced upon ozonation
during drinking water production. The maximum contaminant level (MCL) of bromate in
water has been set at 10 µg/L due to its known carcinogenicity [8,9]. The literature reports
that bromate formation during the ozonation of water is influenced by bromide concen-
tration and ozone dose as the main reactants of the reaction, as well as pH, temperature,
alkalinity, ammonium (NH4

+), organic matter concentration, and the presence of hydrogen
peroxide [10,11]. It has also been suggested that bromate formation can be minimized
through lowering the pH, adding ammonia or hydrogen peroxide, or using a combination
of both for pre-treatment [12].

Since ozonation has a wide range of applications, including water disinfection, or-
ganics degradation, and inorganics removal, it is important to evaluate key phenomena
which occur during this process. These phenomena can be explained by different empirical
models in order to facilitate the control of the drinking water treatment process [13–15].

According to von Gunten [16], the probability of bromate formation during ozonation
is very low if the water contains less than 20 µg/L of bromides. Waters with a bromide
content between 50 and 100 µg/L have the possibility of bromate formation above the
MCL, while waters with a bromide content greater than 100 µg/L are considered very
problematic during treatment with ozone. Since bromate formation has been detected as
an influential experimental factor in the application of ozone during treatment of water
containing high levels of bromide, two modelling approaches have been developed for
modelling bromate concentrations. The first approach considers specific reaction pathways
and kinetics, while the second one employs empirical models. Although the first approach
explains the mechanisms of bromide oxidation by ozone, empirical models better explain
the complex nature of natural waters [6].

Multiple linear and non-linear regression models have been primarily used for the
prediction of bromate formation based on different independent (input) variables such as
bromide concentration, pH, ozone concentration, contact time, ammonium concentration,
and absorbance at 254 nm (UV254) [6,17]. In addition, the general form of these models
is expressed as a multiparameter power function with exponents varying significantly,
depending on different process conditions [13]. Since the currently available models are
mostly specific and applicable only to the water samples on which they are based [17], there
is a need for the introduction of artificial neural networks (ANNs), as a new modelling
strategy [14,18]. ANNs represent machine-learning systems composed of processing layers
(neurons) with the ability to use input variables that may not be independent of one
another and with non-linear relationships between variables [14,19,20]. ANN modelling
enables the analysis of large experimental datasets, preliminary model development, and
model optimization [18].

Since organics have a major impact on bromate formation during ozonation, new
methods are being sought that better describe their composition and structure, especially if
they are non-invasive and can be easily applied and adapted in existing water treatment
systems. One of these new methods is the characterization of natural organic matter by
fluorescence (humic-like (HL) and tyrosine-like (TL) components) [21]. The other new
method is near-infrared (NIR) spectroscopy, which is characterized by its simplicity, rapidity,
and nondestructive measurement that can be used to observe the chemical composition
in terms of the relative proportions of molecular bonds (C-H, N-H, and O-H) in the NIR
spectral region (750–2500 nm). NIR spectroscopy is considered a powerful tool to be
associated with chemometrics [22,23]. With these new methods of organic characterization
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(fluorescence and NIR spectroscopy), there is a possibility to replace the existing analysis
techniques, which are more complex and time-consuming, as well as being more expensive.
The existing analysis techniques such as the measurement of total organic carbon, dissolved
organic carbon, UV254, or chemical oxygen demand provide insufficient information about
the properties of organic matter, since their purpose is to determine the concentration of
total organic matter [24].

The aim of this work was to study the influence of input variables (season, ozonation
dose and duration, and ammonium) on output values (concentration of bromides and
bromates, UV254, NIR spectra, HL and TL fluorescent components) during the ozonation of
water and to apply different mathematical models suitable to understand their relationships
and predict their changes. For this study, water from the Butoniga water treatment plant
(Croatia) was used to investigate the formation of bromate by ozonation. Spearman’s
correlation matrix, multiple linear regression (MLR), piecewise linear regression (PLR), and
ANNs were used to analyze the obtained experimental data. These models could facilitate
the refinement of the water treatment process used for drinking water production in plants
using ozone, especially in predicting the dependence of input and output variables and
bromate formation.

2. Materials and Methods
2.1. Water Samples

Water samples were collected from the Butoniga water treatment plant after the dual
media rapid filtration (DMRF) phase, i.e., after water pre-treatment (pre-ozonation and
filtration) during two seasons: summer (12 July 2019) and autumn (23 September 2019).

2.2. Ozonation Experiment

The ozonation experiment was performed with an ozone generator (Ozone generator
“Pacific ozone G-10”) that converted oxygen 2.6 (Messer Croatia Plin d.o.o., Zaprešić,
Croatia) into ozone. The hose through which the ozone flowed was connected to a gas
flow meter (which is part of the ozone generator). The tubing was then immersed in a
500 mL plastic measuring cylinder containing a DMRF water sample. The desired residual
ozone concentration in the water samples was adjusted by the gas flow rate on the flow
meter and the ozone production intensity control on the ozone generator. Before ozone
was injected into the water samples, ozone was first introduced into a graduated cylinder
containing distilled water to determine the ideal combination of oxygen flow rate and
ozone production in the generator to achieve the desired residual ozone concentration.
Only then was ozone introduced into the cylinder containing the tested water sample under
the same conditions.

During experiments, 500 mL of the sample was ozonated in a plastic measuring cylin-
der with residual ozone concentrations of 0.1, 0.3 and 0.5 mg/L. Oxygen flow through the
ozone generator was continuous at 4 L/min, while the total treatment period of the water
samples was 45 min. The experiments were performed at room temperature (22 ◦C) without
correction of water pH which was in the range of 8.5–9.0. At time intervals of 0, 5, 10 and
45 min samples were collected for the determination of Br−, BrO3

−, UV254, HL and TL
fluorescence components and NIR spectroscopy analysis. Collected samples were poured
into 5 mL plastic cuvettes to which 0.1 mL of sodium sulphite solution (126.043 mg/mmol)
(Na2SO3 anhydrous ACS, BDH Prolabo, Merck Ltd., Darmstadt, Germany) was previously
added to completely remove residual ozone without any excess reagent. When testing sam-
ples with ammonium addition, the adjustment of the desired ammonium ion concentration
at 0.4 mg/L in the sample was performed by adding 1 M ammonium chloride solution
(NH4Cl p. a., Gram-Mol d.o.o., Zagreb, Croatia). Ozonation experiments were performed
in duplicate to check the repeatability of the results.
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2.3. Analytical Determination
2.3.1. Conventional Analytical Methods

The analysis of the treated water samples was carried out in the internal laboratory of
the Istrian Water Supply Company (Istarski vodovod d.o.o.) in Buzet, where bromides and
bromates were determined using the Dionex ICS 3000 ion chromatography system (Thermo
Fisher Scientific, Waltham, MA, USA). Bromides were measured according to HRN EN ISO
10304-1:2009/Cor 1:2012 and bromates according to HRN EN ISO 15061:2001.

Ozone concentration in water samples was determined using the Hach cuvette test
LCW 510 for the photometric determination of ozone (DPD method: ISO 7393-1-2-1985)
with a range of 0.03–1.5 mg O3/L, and ammonium content in water samples was deter-
mined using the Hach cuvette test LCW 304 (indophenol blue method: ISO 7150-1) with a
range of 0.02–2.5 mg NH4/L.

2.3.2. Fluorescence

A spectrofluorometer (Horiba Aqualog Jobin Yvonn Spectrofluorometer, Kisshoin,
Minami-ku, Kyoto, Japan) was used to characterize the natural organic matter (HL and TL).
Samples were collected in opaque plastic bottles and stored at 4 ◦C until analysis. Fluo-
rescence analysis was performed on unfiltered samples, and all analyses were performed
within 24 h of sample collection. Samples were stabilized at room temperature before analy-
sis. Excitation–emission matrices (EEMs) were obtained by scanning excitation wavelengths
from 240 nm to 600 nm (in 5 nm steps) and emission wavelengths from 246.62 to 829.14 nm
(in 5 nm steps) with an integration time of 1.0 s. The analyses were carried out in a quartz
cuvette with a film thickness of 1 cm. The fluorescence of a blank solution (Milli-Q water)
was subtracted from the excitation emission matrix of the samples. The charge-coupled
device gain was set to ”medium”, and the saturation mask width was 10 nm. The data
were corrected for inner filter effects and Rayleigh masking (1st and 2nd order). After nor-
malization of the samples, parallel factor analysis (PARAFAC) modelling was performed
using Solo software (Eigenvector Research Incorporated, Manson, Washington). Samples
were collected and modelled with two components identified. Absorbance at 254 nm of
organic components in water samples was determined also with a spectrofluorometer.

2.3.3. NIR Spectroscopy

The NIR spectrophotometer NIR128L-1.7-USB/6.25/50 µm (Control Development,
South Bend, IN, USA) was used in combination with the Control Development software
Spec32 to record all water samples studied. The use of the NIR instrument was previously
described in the work of Bicanic et al. [25]. Briefly, NIR spectra in the wavelength range of
λ = 904–1699 nm, were recorded ten times for all water samples using disposable sample
holders in 1 mL quartz cuvettes placed in a cuvette holder. No sample preparation was
required, and the recorded spectra were not altered (pre-processed) in any way prior to
chemometric analysis.

2.4. Data Analysis and Modelling
2.4.1. Descriptive Statistics

Basic statistical analysis including average values and standard deviations was per-
formed in Statistica v14.0 software (Tibco Software, Palo Alto, Santa Clara, CA, USA).
Spearman’s rank-order correlations were performed in Statistica 14.0 to test the correla-
tions between all analyzed variables (ozone dose, ozonation time, season, and ammonium,
UV254, Br−, BrO3

−, HL, and TL).

2.4.2. Principal Component Analysis (PCA) of NIR Spectra

PCA is one of the most commonly used chemometric techniques to not only show
similarities and differences between samples but to reduce data matrix for larger datasets [26].
The reason for PCA application in this instance was to reduce the large dataset derived from
NIR spectra, reducing the data matrix from the original state of 360 × 344 to 360 × 10 in terms
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of 10 factors that explained 99.9% of the total variance. The raw NIR spectra were used to
perform the PCA by the Statistica v.14.0 software.

2.4.3. Multiple Linear Regression (MLR), Piecewise Linear Regression (PLR) and Artificial
Neural Network (ANN) Modelling

The effects of season (X1), ozone dose (X2), ozonation time (X3) and presence of NH4
+

(X4) on UV254, BrO3
−, Br−, HL, and TL fluorescence were modelled using MLR, PLR, and

ANNs (Equation (1)):

(UV254, BrO3
−, Br−, HL, TL) = f (season, O3 dose, O3 time, NH4

+) (1)

Parameters for the MLR models Equation (2) and PLR models Equation (3) were
estimated using the Levenberg–Marquardt algorithm implemented in Statistica 14.0. The
algorithm ensures numerical solutions in function parameter space using the least-squares
method. Calculations were performed in 50 iterations with convergence of 10−6 and
95% confidence interval.

(UV254, BrO3
−, Br−, HL, TL) = b0 + b1·X1 + b2·X2 + b3·X3 + b4·X4 (2)

(UV254, BrO3
−, Br−, HL, TL) = (b01 + b11·X1 + b21·X2 + b3·X31 + b41·X4) · ((UV254, BrO3

−, Br−, HL, TL) ≤ bn) + (b02

+ b12·X1 + b22·X2 + b32·X3 + b42·X4) · ((UV254, BrO3
−, Br−, HL, TL) > bn)

(3)

The performance of MLP and PLR models was evaluated based on the coefficient of
determination (R2), adjusted coefficient of determination (Radj

2) and standard error (SEE).
Artificial neural network modelling was applied to describe UV254, Br−, BrO3

−, HL,
and TL fluorescence based on ozone dose, ozonation time, and season. Moreover, ANN
models were developed using NIR spectra (10 factors derived from PCA) in combination
with ozone dose, ozonation time and season as input parameters. Multiple layer per-
ceptron neural networks (MLPs) were developed in Statistica v.14.0 software. The ANN
training was performed with separation of data into training, test, and validation sets, at
a 70:15:15 ratio. The back error propagation algorithm available in Statistica v.14.0 was
applied for the model training. The model performance was evaluated based on the R2

and root mean squared error (RMSE) values for training, test, and validation determined
between the experimental data and model-predicted data.

3. Results and Discussion
3.1. Ozonation Experiment

The Butoniga water treatment plant is one of the largest producers of drinking water
in Croatia that uses ozonation, and in recent years bromate has been detected in the treated
water because the raw surface water from the reservoir contains bromides (<20 µg/L),
which are the precursors of bromate in the ozonation process. According to the literature,
this surface water should have no potential for bromate formation because it contains less
than 20 µg/L of bromide [16]. It was necessary to investigate correlations between bromide,
bromate, and other water quality parameters with the applied ozone doses to determine
their relationship and why this water has this potential for bromate formation.

Two seasons (summer and autumn) were selected to study the effects of raw water
quality: when the lake was stratified and when it was not. In the water treatment plant,
the main ozonation occurs at lower doses than those used during pre-ozonation but over
a much longer period, so this was simulated in the laboratory. The DMRF phase also
removes metals such as manganese and iron, which are mainly oxidized by ozone during
the pre-treatment, so it was possible to study the effect of ozone in the main ozonation
almost exclusively on bromate formation. Although it is known that iron can contribute to
the Fenton oxidation process [27], in this work it was assumed that no dissolved metals
were present in the samples because they had been previously removed. The organic matter
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change was observed as UV254, HL, and TL fluorescence instead of total organic carbon or
dissolved organic carbon [21,28].

One problem that occurs with raw lake water is temperature stratification in the
summer. The lake is relatively shallow (the maximum depth near the dam is 16 m) and
there is temperature stratification of water and other water compounds that affect the
quality of raw water obtained for drinking water. In the water extraction tower, the water
can be taken from four different depths, which allows the selection of water with optimal
quality for treatment.

The average raw water results after DMRF are presented in Table 1, with ammonium
concentrations found to be below the quantification limit (<0.003 mg/L). Since the mech-
anism of bromate formation from bromide is very complex, it is difficult to predict the
degree of bromate formation without conducting experiments on the specific water to be
ozonated [10]. From the water analysis data, it appears that most of the bromate formation
occurred only in water after the main ozonation phase, in which the duration was longer,
and the ozone dose was higher and remained higher in the next treatment phases. Consid-
ering the literature on bromate formation during ozonation, the concentration of residual
ozone and ammonium were selected as the variables that could have the greatest influence
on bromate formation [29].

Table 1. The quality results of raw water after DMRF (average values with standard deviation).

Season UV254 (cm−1) BrO3− (µg/L) Br− (µg/L) Humic-Like (RU) Tyrosine-Like (RU)

Summer 0.039 ± 0.001 0 10.77 ± 0.08 0.0237 ± 0.0030 0.0084 ± 0.0026

Autumn 0.027 ± 0.002 0 13.20 ± 0.14 0.0287 ± 0.0024 0.0026 ± 0.0009

Bromate formation (Figure 1a, at the lowest ozone dose of 0.1 mg/L) was observed in
the samples without ammonium addition in the 20th minute. In the presence of ammonium,
an increase in bromate formation in the summer was observed in the 30th minute, while in
the autumn, no bromate was formed after 45 min of ozonation. This could mean that in
certain seasons the formation of bromates can be prevented by the addition of ammonium
during the treatment with a low dose of ozone. Bromate formation was less than 7 µg/L
in all samples, which is below the MCL. Samples treated with an ozone dose of 0.3 mg/L
(Figure 1b) showed an increase in bromate levels after 5 min in both seasons, while other
samples with added ammonium showed bromate formation after 20 min of ozonation.
More bromates were formed in the autumn than in the summer.

At a low residual ozone concentration of 0.1 mg/L (Figure 1a), bromates were detected
after 10 min, whereas at ozone concentrations of 0.3 (Figure 1b) and 0.5 mg/L (Figure 1c),
formation was visible after 5 min. Although the difference in the amount and rate of
bromate formation in water after DMRF was not large at ozone concentrations of 0.3 and
0.5 mg/L, the ozone dose of 0.5 mg/L resulted in faster rates of formation and higher final
concentrations. The results suggest that it would be possible to control bromate formation
by reducing the ozone dosage and duration. In addition, higher bromate formation was
observed in the autumn than in the summer, implying that greater caution should be taken
when ozonating water during this time of year.

Von Gunten [16] pointed out that the formation of bromate is the most important
problem in ozonation. Furthermore, the effect of organic matter on bromate formation was
studied by Song et al. [30], and they concluded that organic matter reduces the formation
of bromate. In addition to the effects of organic matter, Siddiqui and Amy [31] and
Song et al. [30] found that bromate formation was reduced by increased ammonium
concentrations in water. This was also confirmed in this study as the elevated ammonium
concentration (0.4 mg/L) in the water reduced the formation of bromate during ozonation
for both seasons, and all bromates formed were below the MCL.
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3.2. Data Analysis and Modelling
3.2.1. Spearman’s Correlation Matrix

Spearman’s correlation coefficients were calculated to evaluate the correlations be-
tween variables in ozonated water. As seen in Table 2, the season was positively correlated
with UV254 values, which means that the sample collected in the autumn had significantly
higher UV254 values than the sample collected in the summer. UV254 was significantly
correlated with water quality as a function of season [32], bromate formation, and ozona-
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tion time. Higher HL fluorescence levels were found in the summer period, while higher
TL fluorescence levels were found in the autumn period. Since UV254 is associated with
organic matter, it can be concluded that samples collected in the autumn have a higher
concentration of organic matter. The Br− concentration was significantly lower in the
samples collected in the autumn so it was expected that fewer bromates would form in the
water collected in the summer than in the water collected in the autumn. Bromides showed
a negative but significant correlation with season, ozonation time, and bromate formation.
The levels of Br−, UV254, HL, and TL were dependent on time of year, indicating that
water composition varies significantly with sampling time [33].

Table 2. The Spearman’s rank-order correlations for all analyzed properties. Values marked bold
with * are significant at p < 0.05.

Parameter Season Ozone Dose
(mg/L)

Ozonation
Time (min)

NH4
+

(mg/L)
UV254
(cm−1)

BrO3−

(µg/L)
Br−

(µg/L) HL (RU) TL (RU)

Season - 0.036 −0.006 0.011 0.603* 0.021 −0.518 * −0.654 * 0.672 *

Ozone dose
(mg/L) 0.036 - 0.033 −0.038 −0.213 0.265* −0.203 −0.002 0.075

Ozonation time
(min) −0.006 0.033 - −0.024 −0.650* 0.784 * −0.650 * −0.583 * 0.523 *

NH4
+ (mg/L) 0.011 −0.038 −0.024 - 0.113 −0.254 * 0.158 −0.118 −0.183

UV254 (cm−1) 0.603 * −0.213 −0.650 * 0.113 - −0.586 * 0.185 −0.002 0.026

BrO3
− (µg/L) 0.021 0.265 * 0.784 * −0.254 * −0.586* - −0.760 * −0.498 * 0.499 *

Br− (µg/L) −0.518 * −0.203 −0.650 * 0.158 0.185 −0.760 * - 0.766 * −0.770 *

HL (RU) −0.654 * −0.002 −0.583 * −0.118 −0.002 −0.498 * 0.766 * - −0.676 *

TL (RU) 0.672 * 0.075 0.523 * −0.183 0.026 0.499 * −0.770 * −0.676 * -

Ozone dose was positively correlated with BrO3
− content, with higher ozone dose

resulting in higher BrO3
− concentrations detected in the samples, consistent with previous

studies [11]. Ozonation time significantly affected the levels of UV254, HL, TL, and Br−,
with the highest value for BrO3

− (r = 0.784). Longer ozone treatment times resulted in an
increase in BrO3

− and TL levels while decreasing UV254, Br−, and HL levels. A negative
correlation was found between BrO3

− concentrations and NH4
+, Br−, HL, while the TL

values showed a positive correlation with BrO3
− concentration.

The fluorescent components (HL and TL) were significantly correlated with Br−

concentration, ozonation time, and each other. Moreover, an increase in the levels of
HL showed a decrease in TL levels, as indicated by a negative Spearman’s correlation
coefficient (r = −0.676). HL was significantly correlated with Br−, while a decrease in Br−

was followed by the formation of TL. Bromate formation was significantly correlated with
decreases in UV254, Br−, and HL values, while bromate was positively correlated with
TL formation and increased with dose and duration of ozonation. Li et al. [34] observed
appreciable bromate formation only after UV254 and HL fluorescence values in ozonated
samples decreased compared to their initial values. In this research, there were negative
correlations between bromate and HL fluorescence. R2 coefficients were in the range from
−0.76 (samples with ammonium addition) to −0.998 (without ammonium addition). An
example of this correlation can be seen in Figure 2 for an ozone dose of 0.3 mg/L which
shows the decomposition of HL fluorescence as bromate was formed.

The addition of ammonium decreased the BrO3
− content in this study during the ozonation

experiment, as previously determined by Siddiqui and Amy [31] and Song et al. [30]. However,
according to the Spearman’s rank-order correlation in this study, NH4

+ addition had no other
significant correlation with the remaining output parameters. This was expected since the
addition was performed in a laboratory experiment, whereas these four outputs were associated
with raw water quality after DMRF.
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3.2.2. Multiple Linear Regression and Piecewise Linear Regression Models

The effects of season (X1), the ozone dose (X2), the ozonation time (X3), and the
presence of NH4

+ (X4) on UV254, BrO3
−, Br−, HL, and TL fluorescence were analyzed by

multiple linear regression, piecewise linear regression, and artificial neural networks. The
performance of MLP and PLR models was evaluated based on R2, Radj

2, and SEE.
Parameters of the MLR and PLR models were estimated using the Levenberg–Marquardt

algorithm implemented in Statistica v14.0. The obtained values, as well as the basic statistical
analysis of the developed models, are given in Table 3. The results for the multiple linear regres-
sions (Table 3) show the best agreement between the model-predicted data and experimental
data obtained for the Br− content (R2

adj = 0.8056), followed by UV254 (R2
adj = 0.7579). On the

other hand, the highest dissipation between the model and experimental data was obtained for
the TL values (R2

adj = 0.6173). Furthermore, statistical analysis of the MLR models revealed that
dose and time of ozonation had a significant positive effect on bromate formation, while the
presence of ammonium led to a decrease in bromate formation. Season, time, and ozone dose
contributed significantly to the decrease in bromide concentration, while this effect was much
smaller in the presence of ammonium. Since bromates are formed from bromides, it is logical
that as bromide concentration decreases, bromate concentration increases. Therefore, the factors
that affect the reduction of bromide also affect the formation of bromate and vice versa.

According to Ryan and Porth [35], when working with variables that have various
linear connections over different ranges, a single regression cannot accurately capture the
relationship between model input and model output variables. Therefore, PLR can be used
as an efficient alternative. The PLR models explained the experimental data with more
precision than the MLR models in this study. Linear regression computes an equation
that minimizes the distance between the fitted line and all the data points. A model fits
the data well in general if the differences between the observed and predicted values
are small. The concept behind piecewise linear regression is that if the data demonstrate
distinct linear patterns through various parts of the data, the regression function should
be modelled in pieces. In this work, the data regression model was fitted to the data for
two ranges of x, x ≤ bn and x > bn; therefore, piecewise linear regression ensured better
agreement between the experimental data and model-predicted data. When a multiple
linear regression model was utilized, for example, the agreement between the experimental
and model-predicted data for BrO3

− was quite poor (R2
adj = 0.7091). The piecewise

linear regression method ensured high agreement between the experimental and model
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data (R2
adj = 0.9494). Furthermore, according to the developed MLR and PLR models,

the presence of ammonium and ozone had no significant effect on HL and TL values.
Ozonation time and season, which affect water quality and composition, had significant
positive effects on TL and a significant negative effect on HL. The value of HL decreased
with the change of season and a longer ozonation time, while at the same time the value of
TL increased. It can be concluded that part of HL converts to TL components. A similar
phenomenon was observed with the decrease in bromide concentrations while the bromate
concentrations increased.

The proposed multiple linear regression models as well as the piecewise linear regres-
sion models were both found to be statistically significant (for p < 0.05) with p-values < 0.001
(Table 3). Statistical analysis (ANOVA) revealed that the F-values were likewise high (in
the range from 28.43 to 118.44), compared to F-critical. Higher F-test values and lower
p-values, according to Pilkington, Preston and Gomes [36], show the relative significance of
the derived models. The gathered findings demonstrated the validity of the created models
throughout the spectrum of variables evaluated.

3.2.3. Near-Infrared (NIR) Spectroscopy and Principal Component Analysis (PCA)

Near-infrared spectroscopy is a specific method where one cannot determine which
peak of spectra is correlated to a specific compound without the use of chemometrics.
Therefore, in this case principal component analysis was used. The goal of the PCA was to
extract data in the form of principal components (factors) that will later be used for artificial
neural network modelling. The raw spectra presented in Figure 3 showed slight differences
that are sometimes not visible from such a large dataset when presented in this way.

There is also a visible area where spectra overlap (940–1355 nm), which is specific for water
samples [37]. For further analysis, via PCA, the spectral range from 1355 to 1699 was used.
The initial dataset comprised 36 water samples (each recorded five times) measured two times
(July (summer) and September (autumn)), resulting in a datasheet of 360 rows (samples) and
344 columns (number of wavelengths). With the use of PCA, this dataset was decreased to
360 rows (samples) and 10 columns (i.e., the first 10 factors from the PCA). The first 10 factors
were selected for further analysis since they represent 99.9% of variability in samples.

3.2.4. ANN Models

To test the applicability of ANN models for describing the ozonation process, two
different approaches were used: (i) input for artificial neural networks without NIR spectra;
(ii) input for artificial neural networks consisted of input that was used for the first approach
with the addition of the PCA-derived data for the NIR spectra (10 additional variables). The
selection of the optimal neural network was performed based on the linear coefficient of
determination (R2) and on the RMSE between the measured value and the model-predicted
value. The ANN models were run by splitting the data into 70:15:15 training, testing, and
validation sets, as this gave the best results in terms of not overfitting or underfitting the
model out of all the ratios tested (50:30:20, 60:20:20, 70:20:10, 70:15:15). The back error
propagation algorithm available in Statistica v14.0 was used for model training.

The characteristics of the selected developed neural networks are given in Table 4. In
cases where ANN models were developed using the parameters “season”, “ozone dose”,
“ozonation time”, and “presence of NH4

+“ for the simultaneous prediction of UV254,
BrO3

−, Br−, HL, and TL fluorescence, MLP 4-8-5 was selected as optimal. The selected
ANN model included four neurons in the input layer, eight neurons in the hidden layer,
and five outputs. Based on the R2 values of training, testing, and validation, this ANN
model produced the highest values with the lowest errors. Comparisons between the
experimental and model-predicted data are given in Figure 4, while a detailed overview of
the selected ANN performance is provided in Table 5. Notably, when using the selected
ANNs, the lowest R2 values for validation were obtained for HL (0.9365) and the highest
for Br− (0.9775), which confirmed the applicability of the ANN modelling for simulation
description of several output variables [38,39].
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Table 3. MLR and PLR model coefficients. Values marked bold are significant at p < 0.001. (R2
adj = R2 adjusted; SEE = standard error; F-value critical for this dataset was 2.53).

Model
Output b0 b1 (Season) b2 (Ozone Dose) b3 (Ozonation Time) b4 (NH4

+) Break Point R2 R2
adj SEE F-Value

M
LR

UV254 0.019 ± 0.002 0.009 ± 0.001 −0.010 ± 0.003 −2.430 × 10−4 ±
2.500 × 10−5 0.002 ± 0.002 0.7722 0.7579 0.0036 54.227

BrO3
− −0.529 ± 1.033 −0.610 ± 0.546 5.961 ± 1.709 0.181 ± 0.015 −4.976 ± 1.432 0.7262 0.7091 2.2642 42.434

Br− 16.840 ± 0.739 −2.284 ± 0.390 −4.896 ± 1.222 −0.160 ± 0.011 3.808 ± 1.025 0.8170 0.8056 1.6196 71.442

HL 0.040 ± 0.002 −0.009 ± 0.001 −0.002 ± 0.003 −2.670 × 10−3 ±
2.500 × 10−4 −0.003 ± 0.002 0.7857 0.7723 0.0037 58.668

TL −0.009 ± 0.003 0.011 ± 0.001 0.003 ± 0.004 2.630 × 10−3 ±
3.800 × 10−5 −0.005 ± 0.004 0.6398 0.6173 0.0056 28.429

PL
R

UV254 0.019 ± 0.001
0.025 ± 0.011

0.005 ± 0.001
0.006 ± 0.002

−0.004 ± 0.001
−0.011 ± 0.004

−1.680 × 10−4 ±
1.248 × 10−5

−2.180 × 10−4 ±
1.113 × 10−5

3.160 × 10−4 ±
1.111 × 10−5

0.001 ± 0.001
0.026 0.9187 0.9136 1.7277 × 10−5 118.437

BrO3
− −0.492 ± 0.025

−1.437 ± 0.078
0.186 ± 0.044
−1.370 ± 0.069

1.037 ± 0.128
11.681 ± 0.887

0.038 ± 0.012
0.226 ± 0.056

−0.589 ± 0.023
−14.181 ± 0.785 2.466 0.9524 0.9494 3.5157 × 10−5 110.241

Br− 16.519 ± 0.987
16.229 ± 0.547

−0.526 ± 0.011
−2.604 ± 0.147

−13.039 ± 0.567
−0.906 ± 0.025

−0.180 ± 0.004
−0.065 ± 0.007

10.907 ± 0.147
0.960 ± 0.221 10.009 0.9753 0.9737 1.2528 × 10−5 105.138

HL 0.043 ± 0.001
0.031 ± 0.003

−0.013 ± 0.004
−0.004 ± 0.001

−0.003 ± 0.001
0.005 ± 0.001

−2.340 × 10−4 ±
1.870 × 10−5

−1.530 × 10−4 ±
3.125 × 10−5

0.001 ± 0.001
−0.005 ± 0.002 0.020 0.9507 0.9476 2.1110 × 10−6 110.641

TL
6.250 × 10−4 ±

2.011 × 10−5

−0.007 ± 0.001

0.004 ± 0.002
0.011 ± 0.007

−0.002 ± 0.001
0.006 ± 0.003

8.900 × 10−5 ±
2.155 × 10−6

2.260 × 10−4 ±
1.118 × 10−5

−0.004 ± 0.001
0.001 ± 0.001 0.011 0.8923 0.8855 1.1199 × 10−7 75.402
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Table 4. Characteristics of the generated artificial neural networks.

ANN Structure Training perf./
Training Error

Test perf./
Test Error

Validation perf./
Validation Error

Hidden
Activation

Output
Activation

A
N

N
m

od
el
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w

it
ho

ut
N

IR
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ta
as

th
e

m
od

el
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pu
t

MLP 4-5-5 0.9401
0.0179

0.9386
0.0191

0.9328
0.0175 Tanh Identity

MLP 4-9-5 0.9646
0.0106

0.9630
0.0113

0.9530
0.0124 Tanh Tanh

MLP 4-6-5 0.9447
0.0176

0.9445
0.0179

0.9318
0.0184 Exponential Exponential

MLP 4-8-5 0.9685
0.0097

0.9681
0.0099

0.9581
0.0110 Exponential Logistic

MLP 4-6-5 0.9321
0.0194

0.9225
0.0221

0.9185
0.0164 Logistic Tanh
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as
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t

MLP 14-14-5 0.9899
0.0031

0.9811
0.0062

0.9717
0.0071 Logistic Tanh

MLP 14-14-5 0.9916
0.0025

0.9826
0.0059

0.9732
0.0067 Tanh Logistic

MLP 14-13-5 0.9814
0.0057

0.9726
0.0097

0.9616
0.0114 Exponential Exponential

MLP 14-8-5 0.9838
0.0050

0.9789
0.0070

0.9737
0.0068 Logistic Exponential

MLP 14-11-5 0.9878
0.0037

0.9806
0.0064

0.9755
0.0065 Logistic Logistic

MLP 14-14-5 0.9899
0.0032

0.9811
0.0063

0.9717
0.0071 Logistic Tanh

Prior to the use of the NIR spectra as input data for ANNs, a PCA was performed. The
first 10 factors derived from the NIR spectra, which explained 99.9% of the variance [20,40,41],
were used as input variables along with the first four variables (time and dose of ozonation,
ammonium, season) for the ANN development. As in the previous case, the effect of different
number of neurons was tested, and in this case the range was 3–14 neurons. In addition, the
models of ANNs were run with a 70:15:15 split of the data into training, testing, and validation
sets, which again gave the best results in terms of R2 values with the lowest errors. Based on
the results presented in Table 4, which lists five of the best-fitting ANNs, MLP 14-14-5 was
selected as the best-fitting network in terms of R2 values for training, testing, and validation,
which were 0.9916, 0.9826, and 0.9732, respectively, and had the lowest errors. Compared to
the MLR and PLR results presented in Table 3 and Figure 4, higher values for training, testing,
and validation were obtained for all five analyzed output variables. As in the earlier work
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of Kim et al. [37] which related to wastewater constituents, ANNs show a promising way to
explain nonlinear interactions between process variables used in water treatment.
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Table 5. Coefficients of determination of analyzed output variables based on selected ANNs.
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UV254 0.9712 0.9620 0.9431

BrO3
− 0.9760 0.9811 0.9623

Br− 0.9824 0.9903 0.9774

HL 0.9622 0.9713 0.9365

TL 0.9311 0.9104 0.9459
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UV254 0.9789 0.9657 0.9559

BrO3
− 0.9898 0.9921 0.9876

Br− 0.9851 0.9916 0.9795

HL 0.9848 0.9735 0.9688

TL 0.9803 0.9716 0.9766

The model can serve as a guide for waters with different characteristics, but the result is
not reliable. Model deviation due to climate change could be expected since the WHO notes
that several potential changes in water quality may occur as a result of a global increase
in the frequency and magnitude of extremely high temperatures and more frequent and
intense heavy precipitation, including impacts on sediment loading, chemical composition,
total organic carbon content, and microbial composition [42]. ANN structures were not
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determined based on the specific rules but on a trial-and-error basis. Although artificial
neural networks have been demonstrated to be a useful tool for modelling complicated
connections between input and output variables, their use in experimental data fitting may
have some drawbacks that have to be taken into consideration when developing an ANN
model. The first of them is overfitting. As described previously [43], ANN overfitting is
evident when the error on the testing or validation dataset is significantly higher than the
error on the training dataset. According to Table 4, overfitting was not evident for the ANN
models developed in this work. Furthermore, ANN models can be considered as black-box
models in the sense that, while they can estimate any function, examining its structure
provides no information about the structure of the function being approximated [44].
Based on that, ANN models can be thought highly sensitive to the quality and quantity of
input data [45]. Moreover, when developing the ANN model’s extrapolation capacity, the
proposed model must be tested so that model predictively is estimated on an individual set
of data [46], and computation complexity has to be taken into consideration [47]. As such,
this could be considered as a potential limitation of this study.

4. Conclusions

In this work, the influence of season, ozonation dose and duration, and ammonium
addition during ozonation of surface water on the concentration of bromides, bromates,
UV254, NIR spectra, and fluorescent components (HL and TL substances) in drinking
water was analyzed. The Spearman’s correlation analysis showed that season, ozonation
dose, and time had significant correlations with all output variables, especially bromate
formation, while ammonium affected only bromate and no other outputs. Moreover,
the results showed that the MLR models ensured high R2 coefficients (0.82 for bromides
prediction), while the PLR models had even higher R2 (up to 0.98 for bromides), and all
input variables had a significant effect on bromides. For both MLR and PLR models, season
had no significant effect on bromate formation, while ammonium addition affected only
bromides and bromates. In addition, three of four input variables showed significant
correlation with UV254 in both models. ANNs combined with NIR spectra showed a
promising way to connect input process variables with output (results) for water treatment.
MLP 14-14-5 was selected as the most appropriate ANN model. The R2 values for training,
testing, and validation were 0.99, 0.98, and 0.97, respectively, and had the lowest errors. Of
all the methods used for data analysis, ANN modelling provided the best performance in
terms of R2 values for validation of the tested samples.
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