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Abstract: Addressing the issue of shrinking saline lakes around the globe has turned into one of the
most pressing issues for sustainable water resource management. While it has been established that
natural climate variability, human interference, climate change, or a combination of these factors can
lead to the depletion of saline lakes, it is crucial to investigate each case and diagnose the potential
causes of this devastating phenomenon. On that note, this study aims to promote a comprehensive
analytical framework that can reveal any significant depletion patterns in lakes while analyzing
the potential reasons behind these observed changes. The methodology used in this study is based
on statistical analysis, data mining techniques, and remote sensing-based datasets. To achieve the
objective of this study, Maharlou Lake has been selected to demonstrate the application of the
proposed framework. The results revealed two types of depletion patterns in the lake’s surface area:
a sharp breaking point in 2007/2008 and a gradual negative trend, which was more pronounced in
dry seasons and less prominent in wet seasons. Furthermore, the analysis of hydro-climatic variables
has indicated the presence of abrupt and gradual changes in these variables’ time series, which
could be interpreted as a signal that climate change and anthropogenic drought are changing the
basin’s status quo. Lastly, analyzing the statistically significant correlation between hydro-climatic
variables and the lake’s surface area showed the potential connection between the observed changing
patterns. The results obtained from data mining models suggest that Maharlou Lake has undergone a
morphological transformation and is currently adopting these new conditions. If preventive measures
are not taken to revive Maharlou Lake, the tipping point might have been reached, and reviving the
lake could be improbable, if not impossible.

Keywords: climate change; remote sensing; time series analysis; data mining; artificial neural
network; environmental monitoring; shrinking lake
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1. Introduction

A school of thought has gained traction among scholars recently that argues that many
of the changes observed in water bodies in the recent past are at least partially attributable
to human activities [1]. One of the most notable examples of such impacts is the change in
inland water bodies, particularly saline lakes. A total of 44% of all lakes, volumetrically
speaking, consist of large saline lakes [2]. However, many saline lakes worldwide are
shrinking at alarming rates [3,4]. In addition to endangering habitats and ecosystems, such
phenomena could potentially lead to human health hazards as these lakes continue to
deteriorate [5].

In certain instances, human activities have been identified as the direct cause of such
occurrences. Lakes Alemaya and Hora-Kilole, Ethiopia [6]; the Dead Sea, West Bank [7];
Lake Ebinur, China [8]; and Lake Corangamite, Australia [9] are merely a few examples of
such cases. The Aral Sea and Owens Lake are two classic examples of the desiccation of
salt lakes [5]. In other cases, climate change has been identified as the underlying cause
of the issue [10]. Natural variation in hydro-climatic variables is another well-studied
reason behind shrinking patterns in lakes [11,12]. More often, however, a combination of
the previously mentioned factors is the reason behind the deterioration of an inland water
body [13–16]. It is worth noting, however, that detection, let alone understanding the cause
of such deterioration, is a challenging task [17].

The computational challenges of identifying such changes notwithstanding, detecting
and, in turn, understanding such depletion patterns in a timely fashion are quite crucial
from the water resources management perspective. It is worth noting that often the uncer-
tainty associated with these patterns is one of the main notable challenges to understanding
and, in turn, unraveling these depletion patterns. That said, the idea is that, should unnatu-
ral causes be detected during the investigation, one can attempt to mitigate or halt these
adverse impacts. On that note, implementing remote sensing (RS)-based data to monitor
and unveil the depletion patterns of inland water bodies has proven to be an effective
practice e.g., [18–22]. It should be noted, however, that while RS can help extract vital
raw data, additional data processing schemes are required to detect such deterioration
patterns. To that end, some scholars have used statistical frameworks to discern the causes
of shrinking surface area e.g., [17,23]. Although limited examples are available for this,
machine-learning-oriented methods are another viable alternative to interpreting hydro-
climatic data to reveal these changing patterns in inland water bodies e.g., [24]. Often,
these studies rely solely on classification or clustering methods to unveil such patterns. An
interesting angle is incorporating regression data mining methods such as artificial neural
networks (ANN) to monitor these patterns from a more numeric-oriented perspective. The
added benefit of such an approach would be that the results obtained from the data mining
models would be complementary to the statistical-based analysis. On that note, this study
utilizes both statistical and data mining-oriented analysis to evaluate hydro-climatic and
RS-based data as a potential means to unveil hidden depletion patterns in inland water
bodies. Lake Maharlou, Iran, is a case study to demonstrate this idea. Maharlou, once
considered a permanent inland water body in southwestern Iran, may have reached a
critical condition, and seasonal drying of the lake has become a recurring phenomenon [25],
which makes it an ideal case to explore the potential behind this framework.

2. Study Area

The Maharlou Lake basin (Figure 1), with a catchment area of 4720 km2, is located
in southwestern Iran in the area circumscribed by a rectangle at 29.32◦–29.55◦ N and
52.69◦–52.90◦ E. While the basin normally (based on data from 1987 to 2016) experiences
mild variations in rainfall and temperature (Figure 2), the southern part of the watershed
receives an average of approximately 250 mm of precipitation annually, and the northern
and central parts of the basin receive as much as 480 mm. The basin’s average annual
rainfall is approximately 390 mm. Average annual temperatures range from 18 to 19 ◦C,
with a regional average of 19 ◦C [26]. Due to the region’s semi-arid climate, the stream
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network of the region is ephemeral; in most cases, streams and other water bodies only
appear during wet seasons [26].

Maharlou Lake is a local landmark, a recreational site for locals, and a considerable
environmental and economic asset for the basin. At an elevation of 1460 m.a.s.l., the lake
lies in a vast endorheic basin surrounded by mountains that reach 2800 m.a.s.l. It is worth
noting that the lake is mostly recharged via surface water, with no recharge points from
the region’s groundwater system. Despite observed historical patterns, the lake’s water
volume was, until recently, relatively consistent in both the wet (winter and spring) and
dry (summer) seasons. Since the early 2000s, however, the lake’s reservoir has seemingly
experienced more pronounced fluctuations. The lake’s depth varies seasonally from 0 m
in the dry season to about 3.5 m in the wet seasons, and the lake’s ponded area spreads
to 275 km2 [25]. This begs the question: are the recently observed fluctuating patterns in
line with the historic hydro-climatic behavior of the lake? If not, at what point did such
changes start revealing themselves?
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3. Methodology

This study tests a systematic framework to investigate changing patterns in the surface
area of an inland water body. In the first stage, a remote sensing-based algorithm is
used to delineate the lake’s surface extent over a monthly time step from 1992 to 2017.
Unusual changes in the lake’s surface area and three additional hydro-climatic variables
(i.e., precipitation, temperature, and streamflow) are investigated through conventional
statistical-based time series analysis. To that end, the Pettitt test [27] is used to examine the
data for statistically significant shifts in trends, and the combination of the Mann–Kendall
test [28,29] and Sen’s slope estimator [30] is employed to measure these possible trends
quantitatively. The Spearman’s test [31] is then used to conduct correlation tests between
the hydro-climatic variables and the lake’s surface area measurements. As the final leg of
this framework, a data mining-oriented model (i.e., ANN) is used to investigate the hidden
patterns in the lake’s surface area data set. This framework would help further investigate
the presence of any irregular behavior in the data.

3.1. Detection of Water Bodies

RS is a very efficient tool for monitoring spatio-temporal variations of the extent of
surface water at a large scale [32,33]. Accordingly, optical sensors such as the Moderate
Resolution Imaging Spectroradiometer (MODIS), Landsat, HuanJing satellite constellation-
1 (HJ-1), GaoFen-1 (GF-1), Synthetic Aperture Radar (SAR), Phased Array type L-band
SAR (PALSAR), and Sentinel-1A have been used for water body change detection [34–37].
Compared to images produced by other satellites, Landsat images have proven to be more
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efficient for distinguishing water pixels from non-water pixels, primarily due to their long
history of data acquisition and their resolution [38,39]. So, Landsat imagery has been used
in this research. It should be noted that the images from the said dataset were free of clouds,
and as such, no additional image pre-processing was required.

Water bodies absorb in the near-infrared (NIR) and shortwave-infrared (SWIR) and
reflect in the green and blue portions of the visible spectrum, so water and vegetation-
covered surfaces can be distinguished from each other. Accordingly, various indices
based on these main spectra for water-body extraction from imagery have been proposed.
These indices include the normalized difference water index (NDWI) [40], the modified
normalized difference water index (MNDWI) [41], the high-resolution water index [42],
and the automatic water extraction index [43]. The MNDWI segregates and detects water
bodies and can be mathematically expressed as follows [44]:

MNDWI = (Γ −M)/(Γ + M) (1)

where Γ is the green band and M is the middle infrared band. To minimize the effects of
vegetation on water-body mapping, vegetation indices can be applied. Pixels with water
signals greater than vegetation signals would be classified as water, while the rest would
be classified as non-water.

3.2. Pettit Test

The Pettit test is a nonparametric statistical test that is widely used to identify mono-
tonic jump points in a hydro-climatic data time series [17,45–47]. The null hypothesis
(H0) is that there is no abrupt change in the given time series. However, an alternative
hypothesis (HA) is a statistically significant monotonic change-point in the time series.
For a time series of continuous data xi, the test statistic Ut,N is calculated at the tth time
step [27]:

Ut,N =
t

∑
i=1

N

∑
j=t+1

sgn(xi − xj) ∀i (2)

where N = the sample size; i and j = the ith and jth time step (e.g., year; season; month),
respectively; and

sgn(xi − xj) =


1, xi > xj

0, xi = xj

−1, xi < xj

(3)

The location of the change-point (KN) is:

KN = max|Ut,N | (4)

The significance probability (α) of the change-point is approximately [17,45]:

α ∼= 2 exp

(
−6K2

N
N3 + N2

)
(5)

Low α-values indicate that the null hypothesis should be rejected; a significant change-
point divides the time series into pre- and post-change segments.

3.3. Mann–Kendall Test

The Mann–Kendall test [28,29] is a ranking-based, nonparametric method widely used
to investigate statistically significant monotonic trend segments in hydro-climatic time
series datasets [48–50]. The null hypothesis is that the data are identically distributed and
come from a population with independent realizations. The alternative hypothesis is that
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the time series set contains a monotonic trend component. The Mann–Kendall test statistic
(SMK) is defined [28,29]:

SMK =
N−1

∑
j

N

∑
i=j+1

(xi − xj); (6)

when the number of data points is equal to or greater than 8 (N ≥ 8), SMK is assumed to be
asymptotically normal with a variance (σ2

SMK
) equal to [17]:

σ2
SMK

=
N(N − 1)(2N + 5)

18
. (7)

The Mann–Kendall test statistic (ZMK) is calculated as follows [28,29]:

ZMK =


SMK−1
σSMK

, SMK > 0

0, SMK = 0
SMK+1
σSMK

, SMK < 0

. (8)

The null hypothesis is confirmed in a two-sided test if |Z|≤ Zα/2 at the α-level of
significance. A positive value of ZMK indicates an upward trend in the time series dataset;
a negative value indicates a downward trend in the data.

3.4. Sen’s Slope Estimator

While the Mann–Kendall test is a classical statistical test that identifies the trend
component in a time series, it cannot quantify the magnitude or rate of the change (i.e.,
the trend’s slope). Sen’s slope estimator is a nonparametric procedure that can be used
to estimate the slope of the linear trend (i.e., the linear rate of change per unit of time).
Sen’s slope estimator has been verified for its applicability to hydro-climatic time series
data [45,51,52]. Moreover, the rate of change can be computed [30,45]:

ξ = median
( xj − xi

j− i

)
∀j < i (9)

In which ξ = the median of all computed linear slopes.

3.5. Spearman’s Rank Correlation

Spearman’s rank correlation is the nonparametric version of the Pearson product-
moment correlation, which measures the strength and direction of the monotonic relation-
ship between two ranked variables. Spearman’s is a robust and resistant method [17,53].
The null hypothesis is that there is no statistically significant correlation between paired
variables. The alternative hypothesis is that there is a monotonic relationship between the
given pairs in the time series. This method has been used to investigate any correlations
between paired hydro-climatic variables [17,54]. Spearman’s rank correlation coefficient
ranges between −1 and 1; negative correlations imply an inverse relationship between
paired variables [55]. Accordingly, Spearman’s rank correlation coefficient (ϑ) is given
by [53]:

ϑ = 1−
6

N
∑

i=1
d2

i

N(N2 − 1)
(10)

where di = the difference in the ranks of the values of the two given paired variables. The
test statistic (ZS) is calculated by [45]:

ZS = ϑ
√

N − 1. (11)

If |ZS| > Zα, the null hypothesis is rejected.
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3.6. Artificial Neural Network (ANN)

ANN is a data-driven technique widely applied in time series forecasting and anomaly
detection [56]. ANN is well known for its capability to deal with non-stationary data.
Among many different kinds of neural networks, the multilayer perceptron (MLP) received
the most attention due to its simplicity and capability to solve complex nonlinear prob-
lems [57]. As such, MLP is used in this paper to detect the change point of lake surface area
and predict the future behavior of lake surface area.

The MLP is structured with a particular topology consisting of connected neurons and
layers. Generic architectures of MLP networks are depicted in Figure 3. The input values
are transmitted through links and neurons to the output values. All links between each
neuron have an associated weight to scale the value traveling on that link [58]. During the
model training process, the weight of each connection is adjusted iteratively to minimize a
“cost function” such as the mean squared error (MSE). Once the topology of the MLP is
designated, the model could learn the data behavior automatically and generate a mapping
function to represent the mathematical relationship between inputs and outputs as:

Yj = f

(
θj +

n

∑
i=1

wjiXi

)
(12)

where Xi = the ith input variable; Yj = the jth output variable; θj = the bias in the hidden
layer; n is the number of neurons in the hidden layer; wji = the connection weight; and
f = the transfer function between layers.
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The MLP model used in this paper is trained with backpropagation. The model is
built using the Keras package in Tensorflow, all of which are coded in Python. Each layer is
densely connected to the adjacent layers. The hyperparameters of the MLP model (e.g., the
number of neurons or the number of layers, the learning rate) are determined based on the
grid search strategy, and a detailed description of the parameter settings is summarized
in Table 1. As shown in Figure 3, two MLP models are developed in this study. The first
model (Figure 3a) is used to map the relationship between the extraneous factors (e.g.,
temperature, streamflow, rainfall) and the lake’s surface area. The second model (Figure 3b)
is used to generate a multi-step forecasting model based on the historical data of lake
surface area to predict its future behavior. It should be noted that the dataset has been
divided into two mutually exclusive sets, where 60% has been used as the training set and
the remaining 40% has been used to test the trained model.
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Table 1. Hyperparameters settings of the proposed ANN models.

Parameter Model I Model II

Input Rainfall, temperature, streamflow, lake’s
surface area from last time step Last 24 steps of lake’s surface area data

layers 2 2
No. of neurons of 1st layer 25 20
No. of neurons of 2nd layer 10 15

Output One step of lake’s surface area data 12 steps of lake’s surface area data
Activation function between hidden layers Relu Relu
Activation function between hidden layers

and output layers Linear Linear

Learning rate 0.01 0.01
Optimizer Adamax Adamax

Loss function Mean squared error Mean squared error

4. Results and Discussion

The monthly fluctuations in Maharlou Lake’s surface over the period from 1992 to
2017 are depicted in Figure 4. While the lake’s surface area shrank from May to October
(i.e., as highlighted by lower average values in these months), the interquartile range (IQR)
for these particular months is higher, which indicates that the lake’s area exhibits more
significant fluctuation during these months. The annual average of the lake’s surface area
was graphed from 1992 to 2017 (Figure 5). The Pettit test has identified a significant shift
in the time series, which occurred in 2007. Statistically speaking, the said test indicates
that the lake’s surface area experienced such an abrupt change that the data series can be
divided into pre-change-point and post-change-point sets.
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Each month’s time series was isolated to investigate this alleged abrupt change further.
As such, each was represented by a series that showed the function of the lake’s surface
area in the said month from 1992 to 2017. Similarly, the Pettit test was employed to identify
any potential jumping points in these series. The monthly changing points for each month
were determined (Table 2). Apart from November and December, for which jumping
points could be identified in 2001 and 2006, respectively, the rest of the months experienced
breaking points in 2007.

Table 2. The results of the detected changing points in the lake’s surface area.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Jumping point 2007 2007 2007 2007 2007 2007 2007 2007 2007 2007 2001 2006

As stated earlier, one can also resort to data mining methods to provide additional
context about the hidden structures in the dataset. On that note, an MLP model (model
I) was trained to simulate the lake’s surface area time series using extraneous factors.
Figure 6 visualizes the overall performance of the calibrated model I. Figure 6a compares
the obtained results from the calibrated model I against the observed data, and Figure 6b
shows the residual values that represent the absolute prediction error at each timestep.
Based on the obtained results, model I’s performance can be broken down into two sections,
where the first portion represents the model’s results before 2008 and the second section
denotes the 2008-onward data. As can be seen in Figure 6, the accuracy of model I in the
first portion of the dataset can be deemed acceptable. However, the prediction accuracy
of the regression model drastically declines in the second portion of the simulation. This,
in and of itself, hints that the underlying structure of the data has experienced a sudden
change, to the point that the calibrated mode cannot accurately capture the behavior of the
second portion of the time series.
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The next stage of the investigation is the identification of any potential gradual changes
in the structure of the dataset using statistical analysis. The Mann–Kendall test and Sen’s
slope estimator were used to identify the gradual changes in surface area (Table 3). The
results show a statistically significant negative trend component in each of the lake’s surface
area time series. These components are more pronounced from June to October; moderate
in May, November, and December; and mild from January to April. From a statistical
point of view, the results indicate that the lake’s surface area is showing both abrupt and
gradual changes, which can be confirmed by the change-detection analysis of Maharlou
Lake (Figure 7).
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Table 3. Detected trend component in the lake’s surface area time series.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Trend component −3.98 −3.31 −4.00 −3.84 −5.45 −7.47 −8.71 −8.99 −8.69 −8.11 −5.66 −5.09

Note: These values were deemed statistically significant at α = 0.05.
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In addition to the above analysis, it was also essential to analyze the components
of the hydro-climatic time series and, in turn, identify any anomalies in the behaviors
of the hydro-climatic variables (e.g., rainfall, temperature, and streamflow) during the
study period. An aberration in the natural fluctuations of these variables could signify the
presence of external stressors that could change or have changed the status quo of Maharlou
Lake. Therefore, a series of statistical tests were used to detect irregularities in the behaviors
of the variables. Tables 4–6 summarize the detected changing points among the rainfall,
temperature, and streamflow datasets that were deemed statistically significant. While the
detected change points occurred from the late 1980s to the mid-2000s, most of the jumps
occurred in 1998 and 1999. The temperature data exhibit the highest number of statistically
significant jump points, while the rainfall data contain the least number of jump points (all
of these occur in March). All of the monitoring stations in the vicinity of the lake (including
Dobaneh and Shiraz synoptic stations) reveal that change-points occurred in 1999. The
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annual time series of all hydro-climatic variables are homogeneous, and the change-points
in these data were not found to be statistically significant.

Table 4. Changing points detected in the monthly rainfall time series of selected stations.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Dobaneh - - 1999 - - - - - - - - -
Ghalat - - 1999 - - - - - - - - -

Mehrabad-Ramjerd - - 1999 - - - - - - - - -
Sarvestan - - 1999 - - - - - - - - -

Shiraz (Sazman-e-Ab) - - 1999 - - - - - - - - -

Note: These values were deemed statistically significant at α = 0.05.

Table 5. Changing points detected in the monthly temperature time series of selected stations.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fasa - - 1999 1998 1998 1997 2002 2000 2009 2000 - -
Sad-e-Dorodzan - - 1999 - - 2005 2005 - - 1998 - -
Shiraz (Synoptic) - 1998 1999 - - 1997 - - - 1996 - -

Zarghan - - 1999 - 1998 2005 2005 - - 2000 - -

Note: These values were deemed statistically significant at α = 0.05.

Table 6. Changing points detected in the monthly streamflow time series of selected stations.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Chenar - - - - - - - - - - - 1987
Chenar-Sokhteh - - - - 1999 - - - - - - -

Pol-e-Fasa 2006 2006 1999 1999 1999 - - - - - - -

Note: These values were deemed statistically significant at α = 0.05.

The Mann–Kendall test and Sen’s slope estimator were used to identify and measure
the gradual changes in patterns in the hydro-climatic data (Tables 7–9). Rainfall shows the
most change per unit of time. In contrast, the temperature data displayed the least amount
of change, though the gradual temperature change was an upward trend. In the case of
streamflow, the data showed only downward trends. The rainfall data displayed a negative
trend in March, but an upward trend appeared in November.

Table 7. Detected trend component in the monthly rainfall time series of selected stations.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Dobaneh - - −1.75 - - - - - - - - -
Ghalat - - −2.33 - - - - - - - 1.44 -

Mehrabad-Ramjerd - - - - - - - - - - - -
Sarvestan - - −1.40 - - - - - - - 0.20 -

Shiraz (Sazman-e-Ab) - - −1.76 - - - - - - - 0.53 -

Note: The trends that were significant at α = 0.05 were measured by Sen’s slope test and reported here.

Table 8. Detected trend component in the monthly temperature time series of selected stations.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Fasa - 0.07 0.10 0.07 0.09 0.08 0.07 0.04 0.04 0.06 - -
Sad-e-Dorodzan - 0.08 - - 0.05 0.08 0.05 - - 0.06 - -
Shiraz (Synoptic) - 0.07 0.09 - - 0.04 - - - - - -

Zarghan - 0.05 0.08 - 0.07 0.05 - - - 0.05 - -

Note: The trends that were significant at α = 0.05 were measured by Sen’s slope test and reported here.
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Table 9. Detected trend component in the monthly streamflow time series of selected stations.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Chenar - - - - - - - - - - - -
Chenar-Sookhteh - - - - −0.01 - - - - - - -

Pol-e-Fasa −0.11 −0.18 −0.23 −0.10 −0.05 - - - - - - −0.07

Note: The trends that were significant at α = 0.05 were measured by Sen’s slope test and reported here.

While detecting gradual and abrupt changes in the hydro-climatic variables could
be interpreted as signals for climate change and anthropogenic drought, respectively,
linking these changes to those identified by monitoring the lake’s surface area requires
further analysis. From a statistical analysis standpoint, one can attempt to relate the abrupt
changes in surface area to those processes revealed by the time series of hydro-climatic
variables. To unravel the potential cause behind the withering of the lake, Spearman’s
test was used to identify the statistically significant correlations between surface area and
hydro-climatic variables (Table 10). The results show that apart from August and December,
the surface area during the rest of the months is statistically related to the hydro-climatic
variables; these correlations are positive for rainfall and streamflow (i.e., the increase in
rain and flow correlates to increasing surface area) and negative for temperature (i.e.,
increasing temperature correlates with decreasing surface area). The obtained results from
the correlation analysis are also in line with the findings from the data mining methods.
The point being that the trained MLP model (model I) was able to accurately emulate
the patterns in the lake’s surface area data set through the extraneous factors before the
occurrence of the abrupt change in the structure of the data. Thus, it is safe to assume
that the changes in the hydro-climatic variables would impact the lake’s area. As for the
reason the shrinkage is more pronounced in June to October, one could recall the hydro-
climatic conditions in these particular months (Figure 2). During those months, rainfall
and streamflow are virtually nonexistent, and the temperature has a more significant
effect, evaporating the lake’s water. The lake’s surface area (Figure 4) and volume are
at their lowest points at that time. As such, the same amount of water loss that may be
happening during periods of greater input (i.e., rainfall) would result in a more pronounced
depletion rate.

Table 10. Spearman’s test results to identify any correlation between lake’s surface area and hydro-
climatic variables.

Temperature Rainfall Streamflow

Jan 0.672
Feb 0.718
Mar −0.614 0.484 0.758
Aar 0.771
May −0.624 0.759
Jun −0.619 0.525 0.708
Jul −0.482 0.292

Aug
Sea −0.447
Oct −0.442
Nov 0.420
Dec

Note: Only the correlation coefficients that were significant at α = 0.05 were reported here.

As the final phase of this investigation, a data mining-based model (model II) was
used to understand the current status of the lake. Figure 8 shows the predicted behavior
of Maharlou Lake’s surface area in the future based on the MLP model II mentioned in
Section 3.6. The obtained results from the MLP model (model II) show that the emulated
patterns in the lake’s surface area dataset closely resemble the same behavior observed



Water 2023, 15, 1508 13 of 16

after the identified abrupt change in 2007/2008. This goes to show that the lake has
undergone a morphological change since the change point and is currently adopting this
new equilibrium.
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It should be noted, however, that the depletion patterns in Maharlou Lake are slightly
different from the patterns at Urmia Lake, another iconic inland water body in Iran. Though
the early signs for both occurred in the same period (i.e., the late 1990s), the changing pat-
terns in the climatic variables (i.e., precipitation and temperature) were not as pronounced
in Maharlou’s basin as they were in Urmia’s basin [17,59]. In other words, Urmia’s deterio-
ration was due to direct anthropogenic stress that changed the region’s water budget. As
for the Maharlou, while one cannot dismiss direct adverse impacts from people’s activities,
the changes in the hydro-climatic variables also played a crucial role in the deterioration of
the lake. This makes the rectification of this case a bit more challenging. It is worth noting
that further studies are needed to reveal the precise impact of direct human impact on the
lake’s shrinking pattern.

5. Conclusions

Whether it is the increasing human population or the impacts of climate change,
sustainable management of water resources is proving to be more challenging than ever
before. One of the frontiers of this continuous struggle is the preservation of inland water
bodies such as saline lakes. Understanding the nature of lakes’ depletion could help
decision-makers cope with the problem by implementing a lake recovery and protection
strategy, mitigating the adverse impacts of the loss of the lakes, and/or adapting to the
new situation. This study presents a comprehensive analytical framework that can reveal
depletion patterns using RS, statistical analysis, and data mining techniques. Maharlou
Lake, Iran, was used as a case study to demonstrate the application of the proposed
framework.

The results reveal specific depletion patterns in Maharlou’s surface area. The shrinking
pattern of Maharlou Lake occurred in two different ways: a sharp reduction in 2007/2008
and a gradual decline that was more pronounced during dry seasons and less noticeable
during wet seasons. Hydro-climatic variables (i.e., rainfall, temperature, and streamflow)
were tested for any statistically significant patterns of change. This revealed that there
were both abrupt and gradual changes in these variables’ time series, and the changes
could be signaling the impacts of climate change and anthropogenic drought. The analysis
of the relationships between the hydro-climatic patterns and the surface area patterns
indicated that the correlations were complicated. The magnitude of the lake’s depletion
was determined in part by the season. For instance, when the lake’s storage was low
in the dry season, the recharge components (i.e., rainfall and streamflow) were virtually
nonexistent, and temperatures were at their highest. During this time, depletion is more
pronounced. The obtained results from data mining models show that Maharlou Lake
is undergoing a permanent morphological change. If preventive measures are not taken
soon, the lake could potentially pass a point of no return, after which recovery of the lake
and preservation of the associated ecosystems and dependent economic activities would
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be next to impossible. Preventive measures such as incorporating long-term watershed
strategies may provide a remedy to mitigate these observed patterns.

It should be noted, however, that the temporal depletion patterns of Maharlou Lake
are somewhat different from the temporal depletion patterns of Urmia Lake, a similar saline
lake in Iran. Urmia’s deterioration arose primarily from anthropogenic causes that upset
the region’s water budget. While one cannot dismiss the direct adverse impact of human
activities, the changes in the hydro-climatic variables in the Maharlou Basin have also led
to the deterioration of the lake. The complex nature of the causes makes the management
of this case more challenging.
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