Integrated Water Management in Mountain Communities: The Case of Feutap in the Municipality of Bangangté, Cameroon
Abstract
:1. Introduction
2. An Overview of Feutap
2.1. General Aspects
2.2. Physical and Administrative Aspects
2.3. Historical Sketch of Water Supply in Feutap
2.3.1. General Aspects
2.3.2. Protected Springs and Their Uses
2.3.3. Groundwater Sources
2.4. Drinking Water Supply in Feutap
3. Rainwater Harvesting (RWH) Supply vs. Water Demand Evaluation
4. Achieving SDG 6.1 in Feutap
4.1. Lessons Learned from Water Supply in Colonial St. Eustatius
4.2. The Cascade of Sri Lanka
4.3. Water Supply in Ekpoma (Edo State/Nigeria)
4.4. The Current Water Management in Feutap
5. The Future Water Management in Feutap
5.1. The Approach
5.2. Technical Aspects
5.3. The Economics
6. The Kilimanjaro Concept in Feutap
6.1. General Aspects
6.2. Infrastructural Aspects
6.3. Economic Aspects
Cost Analysis of a Household RWH System Comprising a 30 m3 Cistern
6.4. Cultural Aspects
6.5. Public Health Aspects
7. Toward a New Economic Era in Feutap?
8. Recommendations
- A partnership concept should be developed between the municipality of Bangangté and active associations in Feutap (e.g., APADER, CODEF, EPPT) for effective and efficient water supply. This is because the provision of safe drinking water is not a task that the residents should do alone.
- The construction of community-scale storage systems in Feutap should be planned and realized to reduce the problem of water scarcity and/or reduce the distance to the water source for the residents who cannot afford their own cisterns.
- Government should provide assistance (loans, subsidies) to the residents to construct rainwater harvesting systems at household and farm levels to enhance water supply.
- The installation of single-household gray water recycling schemes should be advocated and implemented by the municipality. This is the best way to introduce modern sanitation practices while creating awareness of their importance for public health.
- Community mobilization, focused group discussion, installation of diverse storage tanks for RW collection, training workshops on RWH and conservation, and publication of case studies should be regularly organized by the municipality and the civil society.
- The municipality of Bangangté (representing the Government of Cameroon) should endorse the responsibility for good water quality. Health officers should be routinely deployed and equipped to inspect and monitor the various sources of water.
9. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN SDGs. Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution Adopted by the UN General Assembly, 25 September 2015. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 26 January 2022).
- World Health Organization; United Nations Children’s Fund. Progress on Drinking Water, Sanitation and Hygiene: 2017 Update and SDG Baselines; World Health Organization: Geneva, Switzerland, 2017; Available online: https://data.unicef.org/resources/progress-drinking-water-sanitation-hygiene-2017-update-sdg-baselines (accessed on 6 March 2022).
- Zhang, Z.; Zhang, W.; Hu, X.; Li, K.; Luo, P.; Li, X.; Xu, W.; Li, S.; Duan, C. Evaluating the efficacy of point-of-use water treat-ment systems using the water quality index in Rural Southwest China. Water 2020, 12, 867. [Google Scholar] [CrossRef] [Green Version]
- Kemajou, D.N. Climate variability, water supply, sanitation and diarrhea among children under five in Sub-Saharan Africa: A multilevel analysis. J. Water Health 2022, 20, 589–600. [Google Scholar] [CrossRef]
- Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. Nature 2008, 452, 301–310. [Google Scholar] [CrossRef]
- Hering, J.G.; Maag, S.; Schnoor, J.L. A call for synthesis of water research to achieve the sustainable development goals by 2030. Environ. Sci. Technol. 2016, 50, 6122–6123. [Google Scholar] [CrossRef] [Green Version]
- Nanseu-Njiki, C.P.; Gwenzi, W.; Pengou, M.; Rahman, M.A.; Noubactep, C. Fe0/H2O filtration systems for decentralized safe drinking water: Where to from here? Water 2019, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Marwa, J.; Lufingo, M.; Noubactep, C.; Machunda, R. Defeating fluorosis in the East African Rift Valley: Transforming the Kilimanjaro into a rainwater harvesting park. Sustainability 2018, 10, 4194. [Google Scholar] [CrossRef] [Green Version]
- Pembe-Ali, Z.; Mwamila, T.B.; Lufingo, M.; Gwenzi, W.; Marwa, J.; Rwiza, M.J.; Lugodisha, I.; Qi, Q.; Noubactep, C. Application of the Kilimanjaro Concept in Reversing Seawater Intrusion and Securing Water Supply in Zanzibar, Tanzania. Water 2021, 13, 2085. [Google Scholar] [CrossRef]
- Schiller, E.J.; Latham, B.G. A generalized method for designing rainwater collectors. Canadian Water Resour. J. 1992, 17, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Mays, L.; Antoniou, G.P.; Angelakis, A.N. History of water cisterns: Legacies and lessons. Water 2013, 5, 1916–1940. [Google Scholar] [CrossRef] [Green Version]
- Espíndola, J.G.; Sánchez, Y.C.; Flores, C.C. Mexican rainwater harvesting movement in recent years. In International Rainwater Catchment Systems Experiences: Towards Water Security; Espíndola, J.A.G., Flores, C.A.C., Pacheco-Vega, R., Montes, M.R.P., Eds.; IWA Publishing: London, UK, 2020; pp. 73–82. [Google Scholar] [CrossRef]
- Indika, S.; Wei, Y.; Cooray, T.; Ritigala, T.; Jinadasa, K.B.S.N.; Weragoda, S.K.; Weerasooriya, R. Groundwater-Based Drinking Water Supply in Sri Lanka: Status and Perspectives. Water 2022, 14, 1428. [Google Scholar] [CrossRef]
- Kattel, R.R.; Nepal, M. Rainwater harvesting and rural livelihoods in Nepal. In Climate Change and Community Resilience: Insights from South Asia; Haque, A.K.E., Mukhopadhyay, P., Nepal, M., Shammin, M.R., Eds.; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Oyerinde, A.O.; Jacobs, H.E. Determinants of household water demand: A cross-sectional study in South West Nigeria. J. Water Sanit. Hyg. Dev. 2022, 12, 200–207. [Google Scholar] [CrossRef]
- Oyerinde, A.O.; Jacobs, H.E. The complex nature of household water supply: An evidence-based assessment of urban water access in Southwest Nigeria. J. Water Sanit. Hyg. Dev. 2022, 12, 237–247. [Google Scholar] [CrossRef]
- Njoyim, E.B.T.; Menga, T.R.; Mofor, N.A.; Nchofua, F.B.; Njoyim, I.K. Evaluation of surface and ground water quality in the Bangangte municipality—West Cameroon. Int. J. Res. Rev. Appl. Sci. 2016, 28, 53–64. [Google Scholar]
- Nya, E.L. Access to Drinking Water and Sanitation in Nde Division, Cameroon. Ph.D. Dissertation, University of Yaoundé I, Yaoundé, Cameroon, 2020; p. 483. [Google Scholar]
- Nya, E.L.; Feumba, R.; Fotsing-Kwetché, P.R.; Gwenzi, W.; Noubactep, C. A hybrid model for achieving universal safe drinking water in the medium-sized city of Bangangté (Cameroon). Water 2021, 13, 3177. [Google Scholar] [CrossRef]
- Wagner, E.G.; Lanoix, J.N. Water Supply for Rural Areas and Small Communities; Monograph Series of the World Health Organization Series No. 42; World Health Organization: Geneva, Switzerland, 1959. [Google Scholar]
- Hussam, A. Contending with a development disaster: Sono filters remove arsenic from well water in Bangladesh. Innovations 2009, 4, 89–102. [Google Scholar] [CrossRef]
- Kozicki, Z.A.; Baiyasi-Kozicki, S.J. The survival of mankind requires a water quality and quantity index (WQQI) and water applied testing and environmental research (WATER) centers. World Water Policy 2019, 5, 55–70. [Google Scholar] [CrossRef]
- Hubbart, J.A.; Gootman, K.S. A call to broaden investment in drinking water testing and community outreach programs. Challenges 2021, 12, 32. [Google Scholar] [CrossRef]
- Ndé-Tchoupé, A.I.; Tepong-Tsindé, R.; Lufingo, M.; Pembe-Ali, Z.; Lugodisha, I.; Mureth, R.I.; Nkinda, M.; Marwa, J.; Gwenzi, W.; Mwamila, T.B.; et al. White teeth and healthy skeletons for all: The path to universal fluoride-free drinking water in Tanzania. Water 2019, 11, 131. [Google Scholar] [CrossRef] [Green Version]
- Qi, Q.; Marwa, J.; Mwamila, T.B.; Gwenzi, W.; Noubactep, C. Making Rainwater Harvesting a Key Solution for Water Supply: The Universality of the Kilimanjaro Concept. Sustainability 2019, 11, 5606. [Google Scholar] [CrossRef] [Green Version]
- Huang, Z.; Cao, V.; Nya, E.L.; Gwenzi, W.; Noubactep, C. Kanchan arsenic filters and the future of Fe0-based filtration systems for single household drinking water supply. Processes 2021, 9, 58. [Google Scholar] [CrossRef]
- Huang, Z.; Nya, E.L.; Cao, V.; Gwenzi, W.; Rahman, M.A.; Noubactep, C. Universal access to safe drinking water: Escaping the traps of non-frugal technologies. Sustainability 2021, 13, 9645. [Google Scholar] [CrossRef]
- Huang, Z.; Nya, E.L.; Rahman, M.A.; Mwamila, T.B.; Cao, V.; Gwenzi, W.; Noubactep, C. Integrated water resource management: Rethinking the contribution of rainwater harvesting. Sustainability 2021, 13, 8338. [Google Scholar] [CrossRef]
- Mwenge-Kahinda, J.; Taigbenu, A.E. Rainwater harvesting in South Africa: Challenges and opportunities. Phys. Chem. Earth 2011, 36, 968–976. [Google Scholar] [CrossRef]
- Kuller, M.; Dolman, N.J.; Vreeburg, J.H.G.; Spiller, M. Scenario analysis of rainwater harvesting and use on a large scale–assessment of runoff, storage and economic performance for the case study Amsterdam Airport Schiphol. Urban Water J. 2017, 14, 237–246. [Google Scholar] [CrossRef]
- Uppala, P.; Dey, S. Design of potential rainwater harvesting structures for environmental adoption measures in India. Polytechnica 2021, 4, 59–80. [Google Scholar] [CrossRef]
- Laskar, N. Reviving traditional rain-water harvesting system and artificial groundwater recharge. Sādhanā 2022, 47, 258. [Google Scholar] [CrossRef]
- Khan, A.S. A Comparative analysis of rainwater harvesting system and conventional sources of water. Water Resour. Manag. 2023, 37, 2083–2106. [Google Scholar] [CrossRef]
- Cook, S.; Sharma, A.K.; Gurung, T.R. Evaluation of alternative water sources for commercial buildings: A case study in Brisbane, Australia. Resour. Conserv. Recycl. 2014, 89, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Nnaji, C.C.; Aigbavboa, C. A scenario-driven assessment of the economic feasibility of rainwater harvesting using optimized storage. Water Resour. Manag. 2020, 34, 393–408. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S.A. Sources of pollution in rooftop rainwater harvesting systems and their control. Crit. Rev. Environ. Sci. Technol. 2011, 41, 2097–2167. [Google Scholar] [CrossRef]
- Amos, C.C.; Ahmed, A.; Rahman, A. Sustainability in water provision in rural communities: The feasibility of a village scale rainwater harvesting scheme. Water Resour. Manag. 2020, 34, 4633–4647. [Google Scholar] [CrossRef]
- Nya, E.L.; Lufingo, M.; Njau, K.N.; Gwenzi, W.; Wydra, K.; Keding, G.; Noubactep, C. Making decentralized options the pillar for universal access to safe drinking water in Africa. Kenya Policy Briefs, 2022; in press. [Google Scholar]
- Jasrotia, A.S.; Majhi, A.; Singh, S. Water balance approach for rainwater harvesting using remote sensing and GIS techniques, Jammu Himalaya, India. Water Resour. Manag. 2009, 23, 3035–3055. [Google Scholar] [CrossRef]
- Jamali, B.; Bach, P.M.; Deletic, A. Rainwater harvesting for urban flood management—An integrated modelling framework. Water Res. 2020, 171, 115372. [Google Scholar] [CrossRef]
- Taddele-Dile, Y.; Karlberg, L.; Temesgen, M.; Rockström, J. The role of water harvesting to achieve sustainable agricultural intensification and resilience against water related shocks in sub-Saharan Africa. Agric. Ecosyst. Environ. 2013, 181, 69–79. [Google Scholar] [CrossRef]
- Cheo, A.E.; Amankwah, E.; Techoro, P.S. Water Harvesting: A potential means for water security in the Far North Region of Cameroon. Agric. Res. 2014, 3, 331–338. [Google Scholar] [CrossRef]
- Macias-Corral, M.A.; Sanchez-Cohen, I. Rainwater harvesting for multiple uses: A farm-scale case study. Int. J. Environ. Sci. Technol. 2019, 16, 5955–5964. [Google Scholar] [CrossRef]
- Neupane, N.; Paudel, S.; Sapkota, R.; Joshi, Y.P.; Rijal, Y.; Chalise, A. Enhancing the resilience of food production systems for food and nutritional security under climate change in Nepal. Front. Sustain. Food Syst. 2022, 6, 968998. [Google Scholar] [CrossRef]
- Staddon, C.; Rogers, J.; Warriner, C.; Ward, S.; Powell, W. Why doesn’t every family practice rainwater harvesting? Factors that affect the decision to adopt rainwater harvesting as a household water security strategy in central Uganda. Water Int. 2018, 43, 1114–1135. [Google Scholar] [CrossRef]
- Ako Ako, A.; Nzali, C.T.; Lifongo, L.L.; Nkeng, G.E. Rainwater harvesting (RWH): A supplement to domestic water supply in Mvog-Betsi, Yaoundé- Cameroon. Water Supply 2022, 22, 1141–1154. [Google Scholar] [CrossRef]
- Mbua, R.L. Water Supply in Buea, Cameroon: Analysis and the Possibility of Rainwater Harvesting to Stabilize the Water Demand. Ph.D. Dissertation, Brandeburg University of Technology, Cottbus, Germany, 2013. [Google Scholar]
- Cheo, A.E. Understanding seasonal trend of rainfall for the better planning of water harvesting facilities in the Far-North region, Cameroon. Water Util. J. 2016, 13, 3–11. [Google Scholar]
- Cheo, A.E. Integrated Water Resources Management (IWRM): The Case Study of the Far-North Region, Cameroon. Ph.D. Dissertation, Brandenburg University of Technology, Cottbus, Germany, 2018. [Google Scholar]
- Zoyem-Tedonfack, S.; Nfor, J.T. Rainfall variability and quantity of water supply in Bamenda I, Northwest Region of Cameroon. In African Handbook of Climate Change Adaptation; Springer International Publishing: Cham, Switzerland, 2021; pp. 713–733. [Google Scholar] [CrossRef]
- Ntali, Y.M.; Lyimo, J.G.; Dakyaga, F. Trends, impacts, and local responses to drought stress in Diamare Division, Northern Cameroon. World Dev. Sustain. 2023, 2, 100040. [Google Scholar] [CrossRef]
- Pachpute, J.S.; Tumbo, S.D.; Sally, H.; Mu, M.L. Sustainability of rainwater harvesting systems in rural catchment of Sub-Saharan Africa. Water Resour. Manag. 2009, 23, 2815–2839. [Google Scholar] [CrossRef]
- Ishaku, H.; Majid, M.R.; Johar, F. Rainwater harvesting: An alternative to safe water supply in Nigerian rural communities. Water Resour. Manag. 2012, 26, 295–305. [Google Scholar] [CrossRef] [Green Version]
- Andoh, C.; Gupta, S.; Khare, D. Status of rainwater harvesting (RWH) in Ghana. Curr. World Environ. 2018, 13, 172. [Google Scholar] [CrossRef] [Green Version]
- Durodola, O.S.; Bwambale, J.; Nabunya, V. Using every drop: Rainwater harvesting for food security in Mbale, Uganda. Water Pract. Technol. 2020, 15, 295–310. [Google Scholar] [CrossRef]
- Nguyen, X.C.; Nguyen, T.T.H.; Bui, X.T.; Tran, X.V.; Tran, T.C.P.; Hoang, T.H.; La, D.D.; Chang, S.W.; Ngo, H.H.; Nguyen, D.D. Status of water use and potential of rainwater harvesting for replacing centralized supply system in remote mountainous areas: A case study. Environ. Sci. Pollut. Res. 2021, 28, 63589–63598. [Google Scholar] [CrossRef]
- Egerton, F.C.C. Record of Refuge at the Court of the King of Bangangté in the French Cameroon; George Routledge and Sons, Ltd.: London, UK, 1938. [Google Scholar]
- Scarrone, F. Les productions végétales en pays Bamiléké au Cameroun Français. J. Agric. Tradit. Bot. Appl. 1950, 30, 158–167. [Google Scholar] [CrossRef]
- Tardits, C. Les Bamiléké de l’Ouest Cameroun; Berger-Levrault: Paris, France, 1960. [Google Scholar]
- Hurault, J. Essai de synthèse du système social des Bamiléké. Africa 1970, 40, 1–24. [Google Scholar] [CrossRef]
- Tchindjang, M. Le rebord du plateau Bamiléké autour de Bangangté. In Mémoire de Géographie Physique; University of Yaoundé: Yaoundé, Cameroon, 1985; 125p. [Google Scholar]
- Puertas, D.G.L.; Woldearegay, K.; Mehta, L.; van Beusekom, M.; Peréz, M.A.; van Steenbergen, F. Roads for water: The unused potential. Waterlines 2014, 33, 120–138. [Google Scholar] [CrossRef] [Green Version]
- Notué, J.P.; Perrois, L. Les sociétés secrètes chez les Bamiléké de l’Ouest-Cameroun; ISH-ORSTOM: Yaoundé, Cameroon, 1984; 144p. [Google Scholar]
- Tatuebu-Tagne, C.; Bopda, A. L’Ouest-Cameroun et l’héritage du maquis (1955–1971). Temps “longs”, “moyens” et “courts” de la géographie d’une population de territoire terrorisé. In Population, Temps, Territoires; Session, F., Ed.; 2020; Available online: https://cist2020.sciencesconf.org (accessed on 26 January 2022).
- Obeta, M.C. Rural water supply in Nigeria: Policy gaps and future directions. Water Policy 2018, 20, 597–616. [Google Scholar] [CrossRef]
- Obeta, M.C. Private for-profit rural water supply in Nigeria: Policy constraints and options for improved performance. J. Water Land Dev. 2019, 41, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Chinyere-Onyeche, L. Emerging trends in access to drinking water in Etche Ethnic Nationality of Niger Delta, Nigeria, from pre-colonial era until now. World Water Policy 2021, 7, 52–62. [Google Scholar] [CrossRef]
- Tsalefac, M. L’ambiance Climatique Dans Les Hautes Terres de l’Ouest Cameroun. Ph.D. Thesis, 3ème cycle de Géographie, University of Yaoundé, Yaoundé, Cameroon, 1983; 398p. [Google Scholar]
- Klingborg, P.; Finné, M. Modelling the freshwater supply of cisterns in ancient Greece. Water Hist. 2018, 10, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Farhat, N.; Subramanian, S.V. Water Management across Space and Time in India; ZEF Working Paper Series, No. 61; University of Bonn, Center for Development Research (ZEF): Bonn, Germany, 2010. [Google Scholar]
- Nya, E.L. Approvisionnement en eau et Impacts Sur la Santé des Populations Dans la Ville de Bangangté et sa Périphérie. Master’s Thesis, Université de Yaoundé 1, Yaoundé, Cameroon, 2014; 174p. [Google Scholar]
- Makokove, R.; Macherera, M.; Kativhu, T.; Gudo, D.F. The effect of household practices on the deterioration of microbial quality of drinking water between source and point of use in Murewa district, Zimbabwe. J. Water Health 2022, 20, 518–530. [Google Scholar] [CrossRef] [PubMed]
- Egunjobi, L. Rainwater harvesting initiatives in Ekpoma, Nigeria. In Water, Sanitation, Environment and Development, Proceedings of the 19th WEDC International Conference, Accra, Ghana, 6–10 September 1993; Water, Engineering and Development Centre, Loughborough University of Technology, WEDC: Loughborough, UK, 1993; pp. 57–59. Available online: https://repository.lboro.ac.uk/articles/conference_contribution/Rainwater_harvesting_initiatives_in_Ekpoma_Nigeria/9595532 (accessed on 6 March 2023).
- Smith, W.J., Jr. Problem-centered vs. discipline-centered research for the exploration of sustainability. J. Contemp. Water Res. Ed. 2009, 142, 76–82. [Google Scholar] [CrossRef]
- Peters, E.J. Water quality of rainwater cisterns in the Grenadines. West Indian J. Eng. 2011, 33, 56–64. [Google Scholar]
- Gould, J. Rainwater harvesting for domestic supply. In Rainwater Harvesting for Agriculture and Water Supply; Springer: Singapore, 2015; pp. 235–268. [Google Scholar]
- Fernando-Gumbs, A.; Dierberg, F.E. Heavy metals in the drinking water from cisterns supplying single-family dwellings. Water Int. 1985, 10, 22–28. [Google Scholar] [CrossRef]
- Smith, W.J., Jr. Improving access to safe drinking water in rural, remote, and least wealthy small islands: Non-traditional methods in Chuuk State, Federated States of Micronesia. Int. J. Environ. Waste Manag. 2009, 10, 167–189. [Google Scholar]
- Peter, S.; Schirmer, M.; Lathan, P.; Stimpfl, G.; Ibrahim, B. Performance analysis of a solar-powered multi-purpose supply container. Sustainability 2022, 14, 5525. [Google Scholar] [CrossRef]
- Harper, R.K. An Ethnoarchaeological Study of the Cisterns in Oranjestad, Sint Eustatius, Netherlands Antilles. Master’s Thesis, College of William & Mary, Williamsburg, VA, USA, 1990. [Google Scholar] [CrossRef]
- Van Meter, K.J.; Basu, N.B.; Tate, E.; Wyckoff, J. Monsoon harvests: The living legacies of rainwater harvesting systems in South India. Environ. Sci. Technol. 2014, 48, 4217–4225. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.H.; Martinson, D.B. Roofwater Harvesting: A Handbook for Practitioners; IRC International Water and Sanitation Centre: Delft, The Netherlands, 2007. [Google Scholar]
- Prinz, D. Water harvesting: Past and future. In Sustainability of Irrigated Agriculture. Proceedings, NATO Advanced Research Workshop, Vimeiro, Portugal, 21–26 March 1994; Pereira, L.S., Ed.; Balkema: Rotterdam, The Netherlands, 1996; pp. 135–144. [Google Scholar]
- Mwamila, T.B.; Han, M.Y.; Kim, T.I.; Ndomba, P.M. Tackling rainwater shortages during dry seasons using a socio-technical operational strategy. Water Sci. Technol. Water Supply 2015, 15, 974–980. [Google Scholar] [CrossRef] [Green Version]
- McAllister, G.; Wright, J. Agroecology as a practice-based tool for peacebuilding in fragile environments? Three stories from rural Zimbabwe. Sustainability 2019, 11, 790. [Google Scholar] [CrossRef] [Green Version]
- Han, M.Y.; Mun, J.S. Particle behaviour consideration to maximize the settling capacity of rainwater storage tanks. Water Sci. Technol. 2007, 56, 73–79. [Google Scholar] [CrossRef]
- Domènech, L. Rethinking Water Management: From Centralised to Decentralised Water Supply and Sanitation Models. Doc. Anal. Geogr. 2011, 57, 293–310. [Google Scholar] [CrossRef]
- Mankad, A.; Tapsuwan, S. Review of socio-economic drivers of community acceptance and adoption of decentralised water systems. J. Environ. Manag. 2011, 92, 380–391. [Google Scholar] [CrossRef]
- Moglia, M.; Sharma, A.; Alexander, K.; Mankad, A. Perceived performance of decentralised water systems: A survey approach. Water Sci. Technol. Water 2011, 11, 516–526. [Google Scholar] [CrossRef]
- Moglia, M.; Alexander, K.S.; Sharma, A. Discussion of the enabling environments for decentralised water systems. Water Sci. Technol. 2011, 63, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
- Ross, T.T.; Alim, M.A.; Rahman, A. Community-scale rural drinking water supply systems based on harvested rainwater: A case study of Australia and Vietnam. Water 2022, 14, 1763. [Google Scholar] [CrossRef]
- Rockström, J.; Falkenmark, M. Agriculture: Increase water harvesting in Africa. Nature 2015, 519, 283–285. [Google Scholar] [CrossRef] [Green Version]
- Enthoven, V. That abominable nest of pirates: St. Eustatius and the North Americans, 1680–1780. Early Am. Stud. Interdiscip. J. 2012, 10, 239–301. [Google Scholar] [CrossRef] [Green Version]
- Magnus, O.O. Assessment of rain water harvesting facilities in Esanland of Edo state, Nigeria. J. Hum. Ecol. 2011, 34, 7–16. [Google Scholar] [CrossRef]
- Howard, B.P. Fortifications of St Eustatius: An Archaeological and Historical Study of Defense in the Caribbean. Master’s Dissertation, The College of William and Mary, Williamsburg, VA, USA, 1991. [Google Scholar]
- Van Keulen, F. The Island without Water: The Cisterns of St. Eustatius in the Colonial Era. Master’s Dissertation, Leiden University, Leiden, The Netherlands, 2018. [Google Scholar]
- Ranaweera, M.P. Sustainable development, ancient wisdom and Sri Lankan technology. In Proceedings of the International Conference on Sustainable Built Environment (ICSBE-2010), Kandy, Sri Lanka, 14–26 December 2010. [Google Scholar]
- Murray, F.J.; Little, D.C. The Nature of Small-Scale Farmer Managed Irrigation Systems in North West Province, Sri Lanka and Potential for Aquaculture; Institute of Aquaculture, University of Stirling: Stirling, Scotland, 2000; Available online: https://hdl.handle.net/1834/20684 (accessed on 19 September 2022).
- Shannon, K.; Manawadu, S. Indigenous landscape urbanism: Sri Lanka’s reservoir and tank system. J. Landscape Arch. 2007, 2, 6–17. [Google Scholar] [CrossRef]
- Vidanage, S.P.; Kotagama, H.B.; Dunusinghe, P.M. Sri Lanka’s small tank cascade systems: Building agricultural resilience in the dry zone. In Climate Change and Community Resilience; Haque, A.K.E., Mukhopadhyay, P., Nepal, M., Shammin, M.R., Eds.; Springer: Singapore, 2022; pp. 225–235. [Google Scholar] [CrossRef]
- Alens, O.P. Assessment of the use of surface water and its environmental health effects in Ekpoma, Nigeria. Int. J. Dev. Sust. 2017, 6, 2147–2161. [Google Scholar]
- Tenebe, I.T.; Emenike, P.C.; Nnaji, C.C.; Babatunde, E.O.; Ogarekpe, N.M.; Dede-Bamfo, N.; Omole, D.O. Bacterial characterization and quantification of rainwater harvested in a rural community in Nigeria. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100370. [Google Scholar] [CrossRef]
- Tenebe, I.; Emenike, P.C.; Babatunde, E.O.; Neris, J.B.; Fred-Ahmadu, O.H.; Dede-Bamfo, N.; Etug, E.-E.; Ogarekpeh, N.M.; Emakhui, J.; Nsikak, B.U. Assessing the state of rainwater for consumption in a community in dire need of clean water: Human and health risk using HERisk. Water Pract. Technol. 2022, 17, 2005–2022. [Google Scholar] [CrossRef]
- Tepong-Tsindé, R. Designing and Piloting a household filter for the peri-urban population of Douala (Cameroon). Freiberg Online Geosci. 2021, 61, 1–80. [Google Scholar]
- Vargas-Parra, M.V.; Rovira-Val, M.R.; Gabarrell, X.; Villalba, G. Rainwater harvesting systems reduce detergent use. Int. J. Life Cycle Assess. 2019, 24, 809–823. [Google Scholar] [CrossRef]
- Mwamila, T.B. Rainwater Harvesting Potential and Management Strategies for Sustainable Water Supply in Tanzania. Ph.D. Thesis, Civil and Environmental Engineering Department, Seoul National University, Seoul, Republic of Korea, 2016; p. 168. [Google Scholar]
- Akkerman, P. The Calabash Cistern 5000 L in Africa. In International Rainwater Catchment Systems Experiences: Towards Water Security; Espíndola, J.A.G., Flores, C.A.C., Pacheco-Vega, R., Montes, M.R.P., Eds.; IWA Publishing: London, UK, 2020. [Google Scholar] [CrossRef]
- Li, F.; Cook, S.; Geballe, G.T.; Burch, W.R. Rainwater harvesting agriculture: An integrated system for water management on rainfed land in China’s semiarid areas. AMBIO A J. Human Environ. 2000, 29, 477–483. [Google Scholar] [CrossRef]
- Burney, J.A.; Naylor, R.L. Smallholder irrigation as a poverty alleviation tool in sub-Saharan Africa. World Dev. 2012, 40, 110–123. [Google Scholar] [CrossRef]
- Kifle, M.; Engdaw, D.; Alemu, K.; Sharma, H.R.; Amsalu, S.; Feleke, A.; Worku, W. Work related injurie and associated risk factor among iron and steel industries workers in Addis Abeba. Ethiopia 2014, 63, 211–216. [Google Scholar]
- Mango, N.; Makate, C.; Tamene, L.; Mponela, P.; Ndengu, G. Adoption of small-scale irrigation farming as a climate-smart agriculture practice and its influence on household income in the Chinyanja Triangle, Southern Africa. Land 2018, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Burney, J.; Woltering, L.; Burke, M.; Naylor, R.; Pasternak, D. Solar-powered drip irrigation enhances food security in the Sudano–Sahel. Proc. Natl. Acad. Sci. USA 2010, 107, 1848–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwenzi, W.; Chaukura, N.; Noubactep, C.; Mukome, F.N.D. Biochar-based water treatment systems as a potential low-cost and sustainable technology for clean water provision. J. Environ. Manag. 2017, 197, 732–749. [Google Scholar] [CrossRef]
- Nakawuka, P.; Langan, S.; Schmitter, P.; Barron, J. A review of trends, constraints and opportunities of smallholder irrigation in East Africa. Glob. Food Secur. 2018, 17, 196–212. [Google Scholar] [CrossRef]
- Fusco, G. Climate rcurity in the Northern and Eastern African Regions: A Panel Data Analysis. Sustainability 2022, 14, 12664. [Google Scholar] [CrossRef]
- Karlvin, J.; Lik-Pueh, L.L.; Ai-Wie, T.I. Determination of suitable biochar precursor as alternative for enabling access to clean water supply in rural areas. J. Sust. Sci. Manag. 2022, 17, 66–78. [Google Scholar] [CrossRef]
- Szabó, Z.; Pedretti, D.; Masetti, M.; Ridavits, T.; Csiszár, E.; Falus, G.; Palcsu, L.; Mádl-Szőnyi, J. Rooftop rainwater harvesting by a shallow well—Impacts and potential from a field experiment in the Danube-Tisza interfluve, Hungary. Groundw. Sust. Dev. 2023, 20, 100884. [Google Scholar] [CrossRef]
- Page, D.; Bekele, E.; Vanderzalm, J.; Sidhu, J. Managed aquifer recharge (MAR) in sustainable urban water management. Water 2018, 10, 239. [Google Scholar] [CrossRef] [Green Version]
- Cresti, D. Analysis and Design of Household Rainwater Catchment Systems for Rural Rwanda. Master’s Dissertation, Massachusetts Institute of Technology, Cambridge, MA, USA, 2007. [Google Scholar]
- Rees, D.; Nyakaana, S.; Thomas, T. Very-Low-Cost Roofwater Harvesting in East Africa; Domestic Rainwater Harvesting Research Programme; University of Warwick: Coventry, UK, 2000. [Google Scholar]
- Muchangi-Mbogo, E. Factors Influencing Adoption of Rain Water Harvesting Technologies among Households in Mbeere South Sub-County, Kenya. Master’s Dissertation, University of Nairobi, Nairobi, Kenya, 2014. [Google Scholar]
- Rahman, S.; Khan, M.T.R.; Akib, S.; Din, N.B.C.; Biswas, S.K.; Shirazi, S.M. Sustainability of rainwater harvesting system in terms of water quality. Sci. World J. 2014, 2014, 721357. [Google Scholar] [CrossRef] [Green Version]
- Binyam, A.Y.; Desale, K.A. Rainwater harvesting: An option for dry land agriculture in arid and semi-arid Ethiopia. Int. J. Water Resour. Environ. Eng. 2015, 7, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Lade, O.; Oloke, D. Modelling rainwater system harvesting in Ibadan, Nigeria: Application to a residential apartment. Am. J. Civil Eng. Archit. 2015, 3, 86–100. [Google Scholar]
- Bernard, B.; Joyfred, A. Contribution of rainfall on rooftop rainwater harvesting and saving on the slopes of Mt. Elgon, East Africa. Sci. World J. 2020, 2020, 7196342. [Google Scholar] [CrossRef] [PubMed]
- Moraes, A.F.J.; Rocha, C. Gendered waters: The participation of women in the ‘One Million Cisterns’ rainwater harvesting program in the Brazilian Semi-Arid region. J. Clean. Prod. 2013, 60, 163–169. [Google Scholar] [CrossRef]
- Petersen, P.F.; Silveira, L.M. Agroecology, public policies and labor-driven intensification: Alternative development trajectories in the Brazilian semi-arid region. Sustainability 2017, 9, 535. [Google Scholar] [CrossRef] [Green Version]
- Lindoso, D.P.; Eiró, F.; Bursztyn, M.; Rodrigues-Filho, S.; Nasuti, S. Harvesting water for living with drought: Insights from the Brazilian human coexistence with semi-aridity approach towards achieving the sustainable development goals. Sustainability 2018, 10, 622. [Google Scholar] [CrossRef] [Green Version]
- Brandão, E.A.F.; Santos, T.D.R.; Rist, S. Family farmers’ perceptions of the impact of public policies on the food system: Findings from Brazil’s semi-arid region. Front. Sust. Food Syst. 2020, 4, 556732. [Google Scholar] [CrossRef]
- Jalil, L.; Neves, R. The One Million Cisterns Programme: New Approaches and Challenges for the Brazilian Semi-Arid Region. Infrastructure Case Study 2022, p. 6. Available online: https://d3n8a8pro7vhmx.cloudfront.net/eurodad/pages/2581/attachments/original/1642428056/case-study-brazil-FINAL.pdf?1642428056 (accessed on 6 March 2023).
- Marguerat, Y. Des montagnards entrepreneurs: Les Bamileke du Cameroun. Cah. Estud. Afr. 1983, 23, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Heijnen, H. Enhancing Economic Resilience in North Eastern Brazil by Harnessing Rain; Rainwater Harvesting Implementation Network (RAIN): Amsterdam, The Netherlands, 2013. [Google Scholar]
- Mou, H. Rainwater utilization for sustainable development in north China. Waterlines 1995, 14, 19–21. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, Y. Rainwater harvesting for survival and development: A revolution in Gansu, China. Waterlines 2000, 18, 11–14. [Google Scholar]
- Cook, S. Assessing the achievements and problems of rural resource management programs in western China: A case study from Gansu Province. China Environ. Series 2004, 7, 55–60. [Google Scholar]
- Zhou, J.; Pang, Y.; Fu, G.; Wang, H.; Zhang, Y.; Memon, F.A. A review of urban rainwater harvesting in China. Water Reuse 2023, 13, 1–17. [Google Scholar] [CrossRef]
- Palmer, C.L. Feasibility of combined sewer systems. Water Pollut. Control Fed. 1963, 35, 162–167. [Google Scholar]
- Ahmed, W.; Gardner, T.; Toze, S. Microbiological quality of roof-harvested rainwater and health risks: A review. J. Environ. Qual. 2011, 40, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Mendez, C.B.; Klenzendorf, J.B.; Afshar, B.R.; Simmons, M.T.; Barrett, M.E.; Kinney, K.A.; Kirisits, M.J. The effect of roofing material on the quality of harvested rainwater. Water Res. 2011, 45, 2049–2059. [Google Scholar] [CrossRef]
- Devkota, J.; Schlachter, H.; Apul, D. Life cycle based evaluation of harvested rainwater use in toilets and for irrigation. J. Clean. Prod. 2015, 95, 311–321. [Google Scholar] [CrossRef]
- Gwenzi, W.; Dunjana, N.; Pisa, C.; Tauro, T.; Nyamadzawo, G. Water quality and public health risks associated with roof rainwater harvesting systems for potable supply: Review and perspectives. Sustain. Water Qual. Ecol. 2015, 6, 107–118. [Google Scholar] [CrossRef]
- Hamilton, K.; Reyneke, B.; Waso, M.; Clements, T.; Ndlovu, T.; Khan, W.; DiGiovanni, K.; Rakestraw, E.; Montalto, F.; Haas, C.N.; et al. A global review of the microbiological quality and potential health risks associated with roof-harvested rainwater tanks. NPJ Clean Water 2019, 2, 7. [Google Scholar] [CrossRef] [Green Version]
- Khayan, K.; Heru Husodo, A.; Astuti, I.; Sudarmadji, S.; Sugandawaty Djohan, T. Rainwater as a source of drinking water: Health impacts and rainwater treatment. J. Environ. Public Health 2019, 2019, 1760950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alim, M.A.; Rahman, A.; Tao, Z.; Samali, B.; Khan, M.M.; Shirin, S. Suitability of roof harvested rainwater for potential potable water production: A scoping review. J. Clean. Prod. 2020, 248, 119226. [Google Scholar] [CrossRef]
- Tepong-Tsindé, R.; Ndé-Tchoupé, A.I.; Noubactep, C.; Nassi, A.; Ruppert, H. Characterizing a newly designed steel-wool-based household filter for safe drinking water provision: Hydraulic conductivity and efficiency for pathogen removal. Processes 2019, 7, 966. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Managing Water in the Home: Accelerated Health Gains from Improved Water Supply; World Health Organization (WHO): Geneva, Switzerland, 2002. [Google Scholar]
- Karikari, A.Y.; Ampofo, J.A. Chlorine treatment effectiveness and physicochemical and bacteriological characteristics of treated water supplies in distribution networks of Accra-Tema Metropolis, Ghana. Appl. Water Sci. 2013, 3, 535–543. [Google Scholar] [CrossRef] [Green Version]
- Kessener, P.M. Roman water transport: Pressure lines. Water 2022, 14, 28. [Google Scholar] [CrossRef]
- Bitterman, P.; Tate, E.; Van Meter, K.J.; Basu, N.B. Water security and rainwater harvesting: A conceptual framework and candidate indicators. Appl. Geogr. 2016, 76, 75–84. [Google Scholar] [CrossRef]
- Bun, S.; Sek, S.; Oeurng, C.; Fujii, M.; Ham, P.; Painmanakul, P.A. Survey of household water use and groundwater quality index assessment in a rural community of Cambodia. Sustainability 2021, 13, 10071. [Google Scholar] [CrossRef]
- Gebremichael, S.G.; Yismaw, E.; Tsegaw, B.D.; Shibeshi, A.D. Determinants of water source use, quality of water, sanitation and hygiene perceptions among urban households in North-West Ethiopia: A cross-sectional study. PLoS ONE 2021, 16, e0239502. [Google Scholar] [CrossRef]
- Hope, R.; Ballon, P. Individual choices and universal rights for drinking water in rural Africa. Proc. Natl. Acad. Sci. USA 2021, 118, e2105953118. [Google Scholar] [CrossRef]
- Hewawasam, V.; Matsui, K. Traditional water governance practices for flood mitigation in ancient Sri Lanka. Climate 2022, 10, 69. [Google Scholar] [CrossRef]
- Gangadhara, K.R.; Jayasena, H.A.H. Rainwater harvest by tank cascades in Sri Lanka—Was it a technically adapted methodology by the ancients? In Proceedings of the Twelfth International Conference on Rain Water Catchment Systems, New Delhi, India, 1 November 2005. [Google Scholar]
- Imteaz, M.A.; Boulomytis, V.T.G.; Yilmaz, A.G.; Shanableh, A. Water quality improvement through rainwater tanks: A review and simulation study. Water 2022, 14, 1411. [Google Scholar] [CrossRef]
- Li, H.; Cohen, A.; Lin, L.; Zhang, X.; Zhang, R. Recollection: Water supply improvement and health promotion campaigns in rural areas−China, 1949−2020. China CDC Wkly. 2021, 3, 10–13. [Google Scholar] [CrossRef]
- Lilje, J.; Mosler, H.-J. Continuation of health behaviors: Psychosocial factors sustaining drinking water chlorination in a longitudinal study from Chad. Sustainability 2016, 8, 1149. [Google Scholar] [CrossRef] [Green Version]
- Carter, R.C.; Tyrell, S.F.; Howsam, P. The impact and sustainability of community water supply and sanitation programmes in developing countries. Water Environ. J. 1999, 13, 292–296. [Google Scholar] [CrossRef]
- Enéas da Silva, F.O.; Heikkila, T.; de Souza Filho, F.A.; Costa da Silva, D. Developing sustainable and replicable water supply systems in rural communities in Brazil. Int. J. Water Resour. Dev. 2013, 29, 622–635. [Google Scholar] [CrossRef]
- Miao, G.; Fry, C. Improving safe drinking water programs one essential service at a time: Closing the water quality gap. J. Environ. Health 2018, 80, 28–30. [Google Scholar]
- Ogisma, L. Ensuring Safe Drinking Water for the Northern Corridor of Haiti Through Expanded Testing Services. Ph.D. Dissertation, Auburn University, Auburn, WA, USA, 2022. [Google Scholar]
- Tchawa, P. La dégradation des sols dans le Bamiléké méridional conditions naturelles et facteurs anthropologiques. Cah. D’outre-Mer. 1993, 181, 75–104. [Google Scholar] [CrossRef]
- Fonjong, L.N.; Ngwa-Nebasina, E.; Fonchingong, C.C. Rethinking the contribution of indigenous management in small-scale water provision among selected rural communities in Cameroon. Environ. Dev. Sustain. 2005, 6, 429–451. [Google Scholar] [CrossRef]
Quarters | Nature of the Water Point | Functionality | Number |
---|---|---|---|
Feutap 1 | Managed spring (public) | Yes | 1 |
Public borehole with human-powered pump | Yes | 1 | |
Private borehole with electric pump | No | 1 | |
Private wells with pulley | Yes | 2 | |
Private well with electric pump | Yes | 2 | |
Private well with electric pump | No | 2 | |
Feutap 2 | Managed spring (public) | Yes | 1 |
Private borehole with human-powered pump | No | 2 | |
Private well with electric pump | Yes | 2 | |
Private wells with pulley | Yes | 6 | |
Private wells without pulley | No | 1 | |
Water tower | No | 1 | |
Public standpipes | No | 12 |
Domains Impacted | Advantages of KC in Feutap |
---|---|
|
|
|
|
|
|
|
|
Item | Cost Per Unit | Number Of Units | Total Cost | Total Cost |
---|---|---|---|---|
(F CFA) | (F CFA) | (F CFA) | (EUR) | |
Bricks | 400 | 320 | 128,000 | 195,42 |
Sand | 55,000 | 2 | 110,000 | 167,94 |
Gravel | 120,000 | 2 | 240,000 | 366,41 |
Cement | 5450 | 50 | 272,500 | 416,03 |
Waterproof cement | 6000 | 20 | 120,000 | 183,21 |
Water | 10,000 | 5 | 50,000 | 76,34 |
Steel rebar FeE215 | 1600 | 16 | 25,600 | 39,08 |
Steel rebar FeE400 | 4525 | 24 | 108,600 | 165,80 |
Steel rebar FeE400a | 6450 | 12 | 77,400 | 118,17 |
Hydrofuge (sikali 5 L) | 20,000 | 2 | 40,000 | 61,07 |
Iron nails 80 mm | 4500 | 5 | 22,500 | 34,35 |
Iron wire | 9000 | 2 | 18,000 | 27,48 |
Formwork material | 150,000 | 1 | 150,000 | 229,01 |
Other usables | 120,000 | 1 | 120,000 | 183,21 |
Transport | 30,000 | 1 | 30,000 | 45,80 |
Unskilled labor | 3500 | 43,2 | 151,200 | 230,84 |
Mason fees | 498,390 | 1 | 498,390 | 760,90 |
Total | 2,162,190 | 3,301,05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nya, E.L.; Mwamila, T.B.; Komguem-Poneabo, L.; Njomou-Ngounou, E.L.; Fangang-Fanseu, J.; Tchoumbe, R.R.; Tepong-Tsindé, R.; Gwenzi, W.; Noubactep, C. Integrated Water Management in Mountain Communities: The Case of Feutap in the Municipality of Bangangté, Cameroon. Water 2023, 15, 1467. https://doi.org/10.3390/w15081467
Nya EL, Mwamila TB, Komguem-Poneabo L, Njomou-Ngounou EL, Fangang-Fanseu J, Tchoumbe RR, Tepong-Tsindé R, Gwenzi W, Noubactep C. Integrated Water Management in Mountain Communities: The Case of Feutap in the Municipality of Bangangté, Cameroon. Water. 2023; 15(8):1467. https://doi.org/10.3390/w15081467
Chicago/Turabian StyleNya, Esther Laurentine, Tulinave Burton Mwamila, Lydie Komguem-Poneabo, Emma Laureane Njomou-Ngounou, Junior Fangang-Fanseu, Raoul Rodrigue Tchoumbe, Raoul Tepong-Tsindé, Willis Gwenzi, and Chicgoua Noubactep. 2023. "Integrated Water Management in Mountain Communities: The Case of Feutap in the Municipality of Bangangté, Cameroon" Water 15, no. 8: 1467. https://doi.org/10.3390/w15081467
APA StyleNya, E. L., Mwamila, T. B., Komguem-Poneabo, L., Njomou-Ngounou, E. L., Fangang-Fanseu, J., Tchoumbe, R. R., Tepong-Tsindé, R., Gwenzi, W., & Noubactep, C. (2023). Integrated Water Management in Mountain Communities: The Case of Feutap in the Municipality of Bangangté, Cameroon. Water, 15(8), 1467. https://doi.org/10.3390/w15081467