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Abstract: Reliable estimations of sediment yields are very important for investigations of river mor-

phology and water resources management. Nowadays, soft computing methods are very helpful 

and famous regarding the accurate estimation of sediment loads. The present study checked the 

applicability of the radial M5 tree (RM5Tree) model to accurately estimate sediment yields using 

daily inputs of the snow cover fraction, air temperature, evapotranspiration and effective rainfall, 

in addition to the flow, in the Gilgit River, Upper Indus Basin (UIB) tributary, Pakistan. The results 

of the RM5Tree model were compared with support vector regression (SVR), artificial neural net-

work (ANN), multivariate adaptive regression spline (MARS), M5Tree, sediment rating curve 

(SRC) and response surface method (RSM) models. The resulting accuracy of the models was as-

sessed using Pearson’s correlation coefficient (R2), the root-mean-square error (RMSE) and the mean 

absolute percentage error (MAPE). The prediction accuracy of the RM5Tree model during the test-

ing period was superior to the ANN, MARS, SVR, M5Tree, RSM and SRC models with the R2, RMSE 

and MAPE being 0.72, 0.51 tons/day and 11.99%, respectively. The RM5Tree model predicted sus-

pended sediment peaks better, with 84.10% relative accuracy, in comparison to the MARS, ANN, 

SVR, M5Tree, RSM and SRC models, with 80.62, 77.86, 81.90, 80.20, 74.58 and 62.49% relative accu-

racies, respectively. 

Keywords: Gilgit River; snowmelts; suspended sediment yields; M5Tree; RM5Tree; Upper Indus 

Basin (UIB); Hindukush 

 

1. Introduction 

Erosion phenomena in nature transport sediments as suspended and bed loads from 

cold drainage basins as a result of the hydrological processes of snow and ice melting and 

rainfall [1–4]. The sediment particles with different shapes and sizes are transported to 

rivers as bed loads [5]. This suspended particle load within a river body is transported by 

fluids in a suspension state due to the turbulence of eddies, which enables the sediment 

particles to outweigh its particle settling and cause the particles to be in a suspension state 

[6]. Global warming is increasing runoff, depleting snow covers and increasing glacier 
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ablation, which, in turn, is increasing suspended sediments [6,7]. The deposition of these 

suspended solids affects the environment of the river ecosystem, water storage, agricul-

ture activities, hydropower operations and normal hydrological systems [8–10]. 

Sediment deposition in water storage reservoirs, rivers and lakes is a serious concern 

throughout the world. Siltation of reservoirs due to sedimentation affects water supplies 

for irrigation, drinking and hydropower generation purposes in water infrastructure 

[11,12]. Due to the higher rate of sedimentation, reservoir storage in Asia has decreased 

by up to 65% [13]. During the past three decades, Tarbela and Mangla reservoirs in Paki-

stan significantly lost their live storage due to high variance in sediment yields and their 

incorrect estimations [14,15]. The deposition of suspended sediments in a river also re-

duces the cross-section of the river and changes the river planform, resulting in the reduc-

tion of the river habitat of aquatic life [16]. 

In Pakistan, the Indus River is 2880 km long and provides the cheapest source of 

energy generation from hydropower, with its total share of up to 29% of the country’s 

total power generation capacity [17–19]. Currently, new hydropower projects of above 

30,000 MW capacities are planned for future constructions in the Upper Indus Basin (UIB). 

Therefore, an accurate estimation of sediment loads in its river streams is important for 

the sustainability of future investments in the water infrastructure of the UIB. 

The generation of sediment and its transport is a highly non-linear phenomenon in 

nature. Due to the complexity of the physical processes of sediment yield generation, var-

ious factors, such as the amount of runoff, supply of sediments, sources of sediment, catch-

ment erosion, river bed resistance and its slope, and the type of its sediment particles, 

control the amount of sediment loads in a river [20,21]. Therefore, it is very difficult to 

precisely estimate sediments due to the reasons discussed above. The accurate estimation 

of sediments is crucial for the design and operation of hydraulic structures, such as hy-

dropower dams, as well as for the conservation of river health, agriculture and human 

activities [4,5,9]. 

To overcome these challenges regarding the accurate estimation of sediment yields, 

soft computing (SC) models were developed in recent decades. The SC methods have high 

computational power and are capable enough to capture highly non-linear processes of 

erosions for better estimations of the sediment load in comparison to traditional sediment 

rating curves (SRCs). 

Literature Review 

Researchers used many sediment load prediction models for different basins and riv-

ers in the last three decades. Artificial neural network (ANN), genetic programming (GP), 

support vector regression (SVR) and artificial neuro-fuzzy logic inference system (ANFIS) 

models are widely adopted and reported for their accuracy in sediment load prediction 

techniques. Studies [22–26] compared the accuracy of multiple linear regression (MLR), 

sediment rating curve (SRC) and ANN models to predict sediment load, and the results 

showed that better sediment load predictions were made by the ANN as compared with 

other practiced techniques. Studies [27–29] compared sediment load predictions using the 

ANFIS model, ANN model and SRC model, and the results predicted by an ANFIS were 

more accurate than those of the ANN and SRC models. The input variables used in these 

studies were different combinations of discharge flows and precipitations. Studies [30,31] 

used the ANN model, ANFIS model and gene expression programming model for sedi-

ment load prediction. The results of these studies provided better prediction results with 

the gene expression programming model than the ANN model and ANFIS model. Studies 

[32,33] compared sediment prediction results using ANFIS, SVR and ANN models, and 

their results were better predicted by the SVM as compared with the ANFIS model and 

ANN model using different input combinations of flows and sediments. A study [34] used 

a combination of flows and rainfall as input parameters in an SVR model and an ANN 

model. The results of this study found better sediment prediction results using the ANN 

model as compared with SVR. The researchers [35] used modified multiple linear 
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regressions (MLR) and modified support vector regression (SVR) with principal compo-

nent analysis (PCA) for the estimation of sediments. They found that the overall SVR 

model modified by PCA showed a better performance than an empirical model for the 

estimations of sediment loads. Studies [36,37] made sediment load predictions through 

the SRC model, ANN model, MLR model and wavelet-ANN (WANN) model. The results 

of these studies provided better sediment prediction results with the WANN as compared 

with other selected prediction models. Study [38] also used deep learning algorithms that 

consisted of conventional neural networks (CNNs), recurrent neural networks (RNNs) 

and long short-term memory (LSTM) for soil water erosion assessment on spatial scales. 

It was found that the performance of the RNN was slightly superior to the other deep 

learning models. Study [39] compared the sediment prediction results of the WANN 

model with a wavelet-based least-squares SVM (WLSSVM) model and found better sedi-

ment prediction results with the WLSSVM as compared with the WANN model. Studies 

[40,41] used hybrid random vector functional link (RVFL) and hybrid ANFIS models in 

comparison of standalone models for the investigations of evapotranspiration. In these 

investigations, hybrid RVFL and ANFIS models were found to be robust approaches for 

evaluating the evapotranspiration process. Similarly, another study [42] used advanced 

hybrid long short-term memory (LSTM) and a conventional neural network (CNN) for 

the prediction of water temperatures. The authors found that the hybrid models are effi-

cient alternatives compared with standalone deep learning models in the prediction of 

water temperature. 

Studies conducted by [43,44] used regression models for sediment load prediction, 

including multiple adaptive regression splines (MARS), M5 tree and SVR models. These 

studies conducted modeling of non-linear processes, such as flows and sediment yield 

predictions, within the last decade. To capture the non-linear behavior of sediment yields 

and flows, polynomial regressions were introduced and MARS was developed [43,44]. 

Studies [45,46] also used the M5′ decision tree model with its broad applications to check 

a robust and appropriate model to solve complex natural problems. It was found that the 

M5′ decision tree model is a robust and suitable modeling approach, both in the fields of 

downscaling of climate models and prediction of the ocean wave run-up, due to its highly 

precise model results with various model applications 

The newly developed MARS, M5 tree and SVR models were adopted to predict river 

flows and sediment load in studies conducted by [47–49] in the water resources manage-

ment field. A study undertaken by [50] used a dynamic evolving neural fuzzy interference 

system (DENIFS) model, MARS model and ANFIS model in combination with fuzzy c-

mean clustering. A study conducted by [51] used a MARS model and an artificial bee 

colony (ABC) model and found better-predicted results with the MARS model as com-

pared with the ABC model for the Coruh River basin area. 

A study conducted by [52] predicted the sediment load using a fuzzy least-absolute 

regression model (FLAR), fuzzy least-squares regression model (FLSR) and hybrid MARS 

fuzzy regression model (HMARS-FR) and the results demonstrated better prediction 

through the HMARS-FR model in comparison to the two other selected models in this 

study. 

In different studies [53,54], researchers used the algorithms of the M5 tree model 

along with GEP, wavelet regression (WR), ANN, MLR and SRC for the prediction of sed-

iments and concluded that the performance of the M5 tree model was superior to the other 

models. Senthil et al. [55] used hydroclimatic inputs using methods of ANN embedded 

with Levenberg–Marquardt, scaled conjugate gradient, REPTree, SVR and M5 tree models 

and found that the ANN-LM performance was better than the other models. Toa et al. [56] 

used radial basis M5 tree (RM5Ttree) along with classical M5 tree, response surface 

method (RSM) and an ANN to model sediments of the Delaware River at Trenton gauging 

station in the United States. They used lagged discharge and sediment data as inputs for 

the models and found that the RM5Tree enhanced the prediction accuracy. The RM5Tree 

showed better performance compared with the classical M5 tree and other models. 
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The present study had the challenges of data scarcity in a highly glacierized area of 

the Gilgit catchment in the UIB. Therefore, the main purpose of this study was to check 

the applicability of the RM5Tree model for accurate sediment load predictions in the cold 

region of the Upper Indus Basin (UIB) using the inputs of snow cover and hydroclimatic 

datasets, including remote sensing data. To the best of the author’s knowledge, no study 

previously checked the applicability of the robust RM5Tree model for the prediction of 

sediment yields using input parameters of rainfall, flows, snow cover area, temperature 

and evapotranspiration with the non-random sampling of training datasets. The out-

comes of the RM5Tree were compared with ANN, MARS, SVR, M5Tree and traditional 

SRC models. The abovementioned studies generally used only rainfall, discharge and sed-

iment data as inputs to the soft computing models. In the present study, stream discharge, 

snow cover, gridded rainfall, gridded temperature and gridded evapotranspiration were 

used as inputs for the models when predicting sediment yields. 

2. Materials and Methods 

2.1. Study Area 

The Gilgit River basin, which is a sub-basin of the Upper Indus Basin, lies in the eastern 

areas of the Hindukush mountains; its latitude is 35°55′35” N–36°52′20″ N, its longitude is 

72°26′04″ E–74°18′25” E and its elevations are between 1454 and 7048 meter a.s.l. The Gilgit 

River basin has a 12,095 km2 drainage area at the Gilgit gauging station. The river originates 

from the Shandoor Plains in the North of Gilgit Baltistan, Pakistan, with a right tributary of 

Baha Lake and small tributaries of Ghizar, Ishkoman, Yasin and Phandar. 

The catchment of Gilgit above 5000 m elevation is approximately 10% of its drainage 

area. This is covered with permanent snow and glaciers. About 87% of the catchment area 

of the Gilgit basin is covered with winter snow, which is reduced by up to 11% in summers 

during the ablation period. From 1981 to 2010, the Gilgit River had an annual flow discharge 

of 291 m3/sec, with a sediment load of 448 mg/L. The snow starts to accumulate at the end 

of October, whereas the ablation period starts after the snow-melting process in July. About 

75% of basin rainfall is received during April–October. The recorded mean annual is 670 

mm in the basin. Similarly, the monthly basin mean temperature varies from −19.8 to 7.20 

°C. The geographical features and hydrological characteristics of the Gilgit River catchment 

are also shown in Figure 1 and Figure 2. 

The Water and Power Development Authority (WAPDA) installed stream gauging sta-

tions in the Gilgit River to monitor the stream flow and suspended sediment concentrations 

(SSCs). The Pakistan Metrological Department also installed monitoring stations to record 

long-term climate parameters in the catchment area. The WAPDA also installed meteoro-

logical stations at Shendure, Ushkore and Yasin and have recorded data since 1996. The data 

of stream discharge suspended sediments and climatic variables have been collected for 

thirty years (1981–2010) for the Gilgit Basin. Most of the climatic stations are installed in the 

valley and data from these stations are scarce (see Figure 1 and Figure 2). To make better 

prediction results, data was collected for the Gilgit River basin from 1981 to 2010 as shown 

in Table 1. This data included climate information, snow cover, evapotranspiration and 

gridded climate. A Shuttler Radar Topography Missions (STRM) model and a digital eval-

uation model (DEM) with a 30 m resolution were used to extract catchment grid datasets. 

The rainfall data, river flow data and basin temperature data were recorded regularly, while 

suspended sediment concentration (SSC) data were recorded with fixed intervals in the or-

der of days. 
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The Moderate Resolution Imaging Spectroradiometer (MODIS) MOD10A2 product of 

resolution (500 × 500 m) was collected weekly for 10 years (from 2000 to 2010) from the 

online available data server of the National Snow and Ice Data Center Pakistan (NSIDC). 

These data were used in the estimation of the snow cover area and snowmelt impacts on 

runoff [4,57,58]. A linear interpolation method was applied for the estimation of daily snow 

cover fractions during a specified period. Finally, after the validation and calibration of the 

snow model with MODIS, the data were analyzed using a temperature index snow (TIS) 

model for snow cover fraction estimations during a specific time (1981–2010). 

The relationships between input and output variables are shown in Table 2. The 

methods of cross-correlation, auto-correlation and partial auto-correlation are commonly 

used in the literature when deciding the input combinations of the soft computing models. 

The present study also used various input combinations, which were identified based on 

a correlation analysis. 

To capture the physics of the catchment in soft computing models for sediment yield 

estimations, the stream discharge inputs were used for capturing the channel erosion. The 

snow cover fraction, rainfall and temperature inputs were also used to capture the 

snow/glacier erosion and hill slope erosion. Similarly, inputs of evapotranspiration were 

used, which had an indirect relationship with the generation of sediment yields due to 

vegetative cover in the basin catchment area. 

Table 1. Data collected for the prediction of suspended sediment yields for the Gilgit River basin. 

Variable Data Source Interval  Period Source 

Q * Mean daily discharge (m3/s) Daily 1981–2010 
Water and Power Development Authority 

(WAPDA), Pakistan 

SSC * 
Suspended sediment concentration 

(mg/L) 

Intermittent 

weekdays 
1981–2010 

Water and Power Development Authority 

(WAPDA), Pakistan 

SCF 

Snow cover fractions calculated from 

MODIS satellite data ranging from 0 

to 1 

Weekly 2000–2010 
https://nsidc.org/data/MOD10A2 

accessed on 24 April 2020 

T 

Daily maximum, minimum and 

mean basin air temperature for a grid 

of 5 × 5 km in size (°C) 

Daily 1981–2010 [59,60] 

P. 
Daily mean rainfall (mm/day) on a 

grid of 5 × 5 km in size 
Daily 1981–2010 [59,60] 

Evap 

Daily mean evapotranspiration 

(mm/day) on a grid of 5 × 5 km in 

size 

Daily 1981–2010 [59,60] 

* Variables Q and SSC were recorded at the Gilgit gauging station while SCF, T, P and Evap are 

averages of the basin grid datasets. 
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Figure 1. Map of the Gilgit River study area [4]. 
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Figure 2. (a) Mean temperature (Tmean), discharge (Q) and SSC at the Gilgit gauge; (b) snow-covered 

area (SCA), mean rainfall (Rmean) and mean evapotranspiration (Evapmean) for the Gilgit Basin during 

1981–2010. 

Prior to the training and testing of soft computing models, a log transformation was 

applied to the flows and suspended sediments to reduce biases of higher values. The da-

tasets were split into training (70%) and testing (30%) periods [61]. The daily measured 

SSC was not continuously available. 

The sediment rating curves (SRCs) were developed for training and testing for flows 

and SSC values for the 1981–2003 (1–537 days) and 2003–2010 (538–767 days) periods. In 

the present study, non-random sampling for the training and testing periods was con-

ducted in MATLAB for the sediment yield predictions by using various input combina-

tions in the black box ANN, MARS, SVR, M5Tree and RM5Tree models during the train-

ing and testing periods in MATLAB to find the best performance of the models for sedi-

ment yield prediction. 

Table 2. Relationship between different input variables using Pearson’s correlation coefficient. 

Input 

Variable 

Description 

(Basin Average) 

Log Q  

(m3/Day) 

log SSY  

(tons/Day) 

SCA 

(Fractions) 

Tavg 

(°C) 

P 

(mm) 

Evap 

(mm/Day) 

log Q  Logarithm of discharge 1.000      

log SSY 
Logarithm of sediment 

yields 
0.870 1.000     

SCA  Snow cover area −0.850 −0.740 1.000    

Tavg.  Temperature 0.870 0.790 −0.880 1.000   

P  Effective rainfall 0.160 0.150 0.090 0.100 1.000  

Evap. Evapotranspiration 0.860 0.810 −0.820 0.930 0.060 1.000 

2.2. Snow Cover Estimation Using the Temperature Index Snow Model 

The Gilgit River basin has a scarcity of climatic data for longer periods. Previous re-

searchers [62–64] found that rainfall amounts above 5000 m of elevation are 5–10 times 

higher than the valley-recorded rainfalls. To cater to these data gaps, grid data of temper-

ature and rainfalls of the Himalayan Adaptation, Water and Resilience (HI-AWARE) pro-

ject [59,60] was used. 

For long-term estimation of the snowmelt and snow cover area, a spatially distrib-

uted temperature index model was selected in the study. The selected model was cali-

brated for ten years (2000–2010) using Moderate Resolution Imaging Spectroradiometer 

(MODIS) snow cover fractions. Daily precipitation was split into liquid rainfall and snow 

in the temperature index snowmelt model [4,65,66]. 

The daily maximum, minimum and threshold (TRS) temperature data were used to 

separate the amount of snow and liquid rainfall using the following equations: 
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�
Rain = R = C�P 

Snow = S =  (1 − C�)P
                                                    (1)

where Cp is the precipitation factor, which is proportionate to temperature difference and 

is calculated using the following system of equations: 

�

C� = 1 if T��� > T�� 

C� = 0 if T��� ≤ T�� 

C� =
��������

���������
 if T��� ≤ T�� < T���

  (2)

TRS (°C) was used to group precipitation into the rain or snow categories, while TSM 

was used to calculate the snow-melting process. The snow-melting process depends on 

several environmental factors, such as the river basin boundary conditions of temperature 

and air relative humidity. 

The daily snow-melting rate (Msnow (mm/day)) was estimated as follows: 

�
M���� = K����(T���� − T��) if T���� > T�� 

M���� = 0 if T���� > T�� 
              (3)

where Ksnow is the snow-melting day degree factor (mm/day °C), �mean is the daily mean/av-

erage air temperature (°C) and �SM is the threshold temperature (°C). 

Later, the snow depth (mm) for each grid point (i) was simulated using the following 

equation: 

SD�(t) =  SD�(t − 1) + S�(t) − M�����
(t)  (4)

Then, the snow cover fraction (SCF) for a number of grids (i = 1, 2, 3, 4,…, N) in the 

complete basin area was estimated for validation and calibration using the MODIS snow 

cover fractions as follows: 

SCF (t) =  
�

�
∑ H [SD�(t)]  �

���                                 (5)

where H is the unit step function (H = 0, SD = 0 and H = 1; then, SD > 0) and N represents 

the basin area under investigation, sub-basins, elevation bands, etc. 

2.3. Artificial Neural Networks 

Artificial neural networks (ANNs) are black box models consisting of a set of neurons 

and their connections of weights. The ANN architecture is basically a set of input, hidden 

and output layers. Each of the ANN layers is connected by networks of neurons. The ANN 

algorithm transfers the input to the output neurons by using neurons of a hidden layer 

with an activation function. These hidden neurons are summed to calculate the non-linear 

outputs in the output layer. The system of networks generally uses the sigmoid transfer 

functions, which are connected with multilayer neurons called a multilayer perceptron 

(MLP). Studies [4,67–73] from a literature review further explained the detailed infor-

mation about ANN models and their uses in the field of water resources. 

Figure 3 shows the multilayer perceptron neural networks (MLPNNs) with networks 

of input neurons connected to the output neuron using several hidden neurons of the 

hidden layer. In this study, a robust MLPNN with the Levenberg–Marquardt algorithm 

of the feedforward backpropagation approach was used. In feedforward backpropaga-

tions, output errors between actual and model outputs are calculated. These output errors 

are then backpropagated through connected networks to hidden layers to correct the neu-

ron weights. An MLPNN with the Levenberg–Marquardt algorithm is a fast and powerful 

data convergence tool; its relationship between the N input variables (xi: I = 1, 2, …, N) 

and M hidden neurons with one output node (Y) is as follows: 
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Figure 3. MLPNN model structure with N input, M hidden and 1 output neurons [74]. 

2.4. Multivariate Adaptive Regression Splines (MARS) 

MARS is an adaptive non-linear fitting procedure developed in 1991 [75]. The MARS 

model uses a deterministic modeling approach to form a final regression model using the 

interactions between specified input variables. Various studies [51,76,77] used the MARS 

model as a prediction model in different non-linear processes. The MARS model can easily 

interpret the input–output relationships compared with other modeling approaches [78–

80]. Figure 4 shows the schematic diagram of the MARS model with an independent var-

iable X and its dependent variable Y. In the MARS model, the space of the X variable 

divides the series of segments with different slopes fitted with a linear basis function to 

describe the input–output relationships between the X and Y variables. 

 

Figure 4. A schematic sketch for the illustration of sub-regions of the MARS method. 

The segments of X–Y relationships are divided into break values known as knots. 

This relationship produces piecewise regression lines of basic functions (BFs) [81] accord-

ing to 

i
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i
i BFY 




1

0)(ˆ x   (7)
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where �� is a constant value, ��� is the number of basis functions and �� represents the 

coefficient for the BFs. A basis function (BF) using a piecewise relationship is calculated 

[82] as follows: 

[max (0, x − C�)]  OR [max (0, C� − x)]   (8)

In Equation (8), the variable x is a predictor variable with C knots. In this way, more 

equations using BFs are added up in a final regression expression with their independent 

variables. The MARS model consists of two phases called forward step and backward step 

phases. The forward step phase generates the location of all knots and their possible BFs 

by using the generalized cross-validation criterion (GCV). In the backward step, MARS 

reduces the number of BFs to improve its model prediction. More details about MARS can 

be obtained from the literature [75,77]. 

2.5. Support Vector Regression 

Support vector regression (SVR) is a machine learning model proposed by Vanpik et 

al. [83] to predict the outputs of non-linear processes. In SVR modeling, the regressed 

function provides small residual values between the actual and predicted output values 

[84]. SVR conveys non-linear mapping of input variables into the targeted values. In SVR, 

the evolved model �(�, �) increases the prediction accuracy, resulting in insignificant 

errors defined [85] as 

e[O − y(X, w)] = max{0, |S − f(X, w)| − ε ∣ ε > 0}  (9)

where �, � and � are known as the input variable, observed output and unknown co-

efficient vector, respectively. � is an insensitive loss function in Equation (9), which is 

used to ignore any error |� − �(�, �)| less than �. The non-linear relationship between 

the input and output datasets in SVR is expressed [86] as 

y = b + ∑  �
��� w�K(x, x�)  (10)

where b is the bias, �(�, ��) is the Kernel function for N feature spaces and � is the 

weight vector that connects the Kernel function with the observed response [85,87]. The 

Gaussian kernel function in SVR used for non-linear mapping is given [88] as 

K(x, x�) = exp �−0.5∥∥x − x�∥∥
�/σ��  (11)

where � is the kernel parameter used to smooth the kernel mapping function for the 

value of � > 0. 

Figure 5 shows the schematic diagram of the support vector regression model to pre-

dict non-linear processes with y target values of the output layer using the input datasets 

(x1, x2, x3, …, xn) of the input layer, along with the kernel functions, i.e., �(�, ��) of the 

hidden layer. 

In the current study, the support vector regression (SVR) model used an optimization 

model [83] given as 

Min 
∥�∥�

�
+ C ∑  �

���  (ξ� + ξ�
∗)

 S.t. �

y�−< w ⋅ K(x, x�) > −b ≤ ε + ξ�

< w ⋅ K(x, x�) > +b − y� ≤ ε + ξ�
∗

ξ�, ξ�
∗ ≥ 0

  (12)

In this equation, ε, σ and C are the model parameters of the SVR used for its model 

optimization using a trial and error procedure. 
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Figure 5. The SVR model: (a) structure; (b) predicted model [89]. 

2.6. Response Surface Method (RSM) 

The RSM involves a non-linear relationship of a second-order polynomial basis func-

tion given as [90–92] 
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where Y is the predicted output, M is the number of input datasets, 0a  is the bias, ia  

and ���  are unknown coefficients, ix  and ��  are weight constants of polynomial ele-

ments. The RSM algorithm is highly dependent upon the values of the bias and model 

constant weights. Therefore, the RSM model is calibrated using the least-squares estima-

tor [93,94] given as 
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where P(X) is the polynomial vector of input datasets during the training phase for N data 

points and is calculated as follows: 
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Finally, after substituting Equation (16) into Equation (15), the predicted output val-

ues of Y [95–97] can be calculated as follows: 

YPPPPY TTT
ii )([)]()([)()( 1 XXXXX   (17)

and T
iXP )(  is given as 

,....,,,...,,,,,...,,,1[)( 1,3,2,
2
2,3,1,2,1,

2
1,2,1 MiiiiiiiiiiMii

T
i xxxxxxxxxxxxxXP  (18)
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2.7. M5Tree Model 

The M5 tree model is a machine learning method. It is applicable for data mining and 

prediction purposes by using its tree-based structure to capture the relationship between 

the input and output datasets [98,99]. The M5 tree model works with tree-based decision 

and dominance-based approaches to substitute linear regression equations at each node. 

The substitution of linear regression equations into the model is used to predict the nu-

merical variables. 

Figure 6 shows the structure of an M5 tree model with tree-like roots, leaves, nodes 

and branches for database splitting and prediction. The algorithm first splits the datasets 

into a decision tree using a data split criterion. The M5 tree model using the split criterion 

reduces the standard deviations (SDs) at the model offspring node. Thereafter, the parent 

node does not split further and the model end node or leaf is attained using the following 

standard deviation formula: 

   Ssd
S

S
SsdSD i

N

i

i



1

 (19)

where S is the sample set of each node; Si is the samples subset with the ith potential test 

result; and sd is the standard deviation, which is given below as 
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where M is the number of datasets and xi is the numerical targeted value of the ith attribute 

sample. 

During the M5 tree model classification process, offspring nodes have better accuracy 

and homogeneity with lower standard deviations compared with their parent nodes. At 

the end of the classification process, M5 tree models undertake an examination of all the 

possible classifications and choose the one classification that has the lowest errors. In the 

second step, the M5 tree model further shrinks the overgrown and overfitted branches of 

the model tree by replacing them with a linear regression function [100]. 

 

Figure 6. M5 tree model: (a) splitting the input datasets; (b) M5 tree model structure [101]. 

2.8. Radial M5Tree Model 

In this research, the radial basis M5 tree approach was introduced to enhance the 

accuracy of sediment predictions. The radial basis function (RBF) is used for the input 

datasets to transfer the original values of input variables into radial map base feature 

space [74,102] according to 

nRF1,...,jNV1,...,i)CNεexp(ε),CNφ(K
2

jijiij   (21)

where nRF is the number of radial basis sets;   is the shape factor; C is the center of the 

radial basis function (RBF); and N is the normalized map [103], which can be calculated 

as follows: 
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where µ� is the mean of the input datasets x and �� is the standard deviation of the da-

taset x.  

Figure 7 shows the radial basis function transformation (K) using Equation (21) for 

non-linear processes. In this way, new training phase datasets of the RM5 tree model are 

used to transfer actual datasets from the x-space to nRF radial basis sets (using a radial 

basis map). In the RBF, two parameters, i.e., the location of the center   = 0.5 and the 

shape of the center points C = [Xmin Xmax], are randomly selected based on the domain of 

datasets. 

 

Figure 7. Schematic diagram of a radial basis function transformation (K) for C = 0 and  = 0.5. 

Figure 8 represents the schematic diagram of an RM5 tree model with three layers, 

namely, input, transfer and calibration. In the input layer, input datasets are normalized 

using Equation (21). The following steps are involved in transferring RBF datasets to the 

second layer: 

a. Creation of a randomly selected center point of RBF datasets. 

b. Transformation of input datasets of layer 1 into a radial space using Equation (21) 

on the basis of the RBF center point as follows: 
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where N is the no. of training datasets; in ���, � =  1, 2, … , � and � =  1, 2, … , �� represent 

the number of input variables and the number of radial input datasets, respectively. In 

M5 tree models, radial input datasets are used in the training of datasets. However, M5 

tree models improve the prediction accuracy by using several center points with a Gauss-

ian function applied in non-linear mapping [104]. 
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Figure 8. Schematic diagram of a radial basis RM5 tree model [74]. 

2.9. Sediment Rating Curve (SRC) 

The SRC provides an empirical relationship between the sediment load and water 

flows through the following relationship: 

SSL(�) = a × Q�
(�)  (24)

where SSL (tons/day) is the sediment load and Q is the river/water discharge (m3/day), 

where both are log-transformed, and a and b are constants that depend on the river and 

catchment characteristics. 

2.10. Performance Metrics for Model Evaluation 

The models’ performances were assessed using the following statistical metrics:  

Root-mean-square error (RMSE):  

RMSE =  �
�

�
 ∑ ((S��) − (S��)) ��

���    (25)

Pearson’s correlation coefficient (R2): 

R� = �
∑ (������������)(�����������)�

���

�∑ (������������)��
��� ∑ (�����������)��

���

�

�

                                 (26)

Mean absolute percentage error (MAPE): 

MAPE (%age) =  
�

�
∑ �

�������

���
��

��� × 100   (27)

where N is the number of data points, Sio is the actual sediment load, Sis is the model-

predicted sediment and ���
���� is the average estimated sediment load. 

Relative accuracy (%): 

The relative accuracy or percentage accuracy was calculated using the following ex-

pression: 

R. A =  �1 − �
�������

���
�� × 100  (28)

where Spo is the actual peak SSY value and Sps is the model-simulated peak SSY value. 

2.11. Application of the ANN, MARS, SVR, M5Tree, RM5Tree and RSM Models 

For the application of the ANN, MARS, SVR, M5Tree, RM5Tree and RSM models, 

many input variable combinations with daily lag times were analyzed by testing the 
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model accuracy through the highest R2 and minimum RMSE and MAPE values as perfor-

mance criteria. Out of various input combinations, the following best input scenarios (S1–

S8) developed for predictions of sediment yields in this study are listed below: 

(a) Flows: 

S1 = SSCt = f (β1, β2, β3, β4, β5, Qt, Qt−1, Qt−2, Qt−3, Qt−4,) + ei  

(b) Snow cover area and flows: 

S2 = SSCt = f (β1, β6, β7, β8, SCAt, SCAt−1, SCAt−2, Qt,) + ei  

(c) Flow, snow cover area and effective rainfall: 

S3 = SSCt = f (β1, β9, β6, β10, Rt−1, SCAt, SCAt−4, Qt,) + ei  

(d) Flow, snow cover area, temperature and evapotranspiration: 

S4 = SSCt = f (β1, β11, β12, β6, β10, Tt−1, Evapt−1, SCAt, SCAt−4, Qt) + ei  

S5 = SSCt = f (β1, β2, β11, β12, β6, Tt−1, Evapt−1, SCAt, Qt, Qt−1) + ei  

(e) Mean basin air temperature: 

S6 = SSCt = f (β13, β11, β14, β15, β16, Tt, Tt−1, Tt−2, Tt−3, Tt−4) + ei  

(f) Flow, snow cover area, temperature, rainfall and evapotranspiration: 

S7 = SSCt = f (β1, β13, β12, β6, β9, Tt, Evapt−1, SCAt, Rt−1, Qt) + ei  

S8 = SSCt = f (Tt−1, Evapt−1, SCAt, Rt−1, β1, β11, β12, β6, β9, Qt,) + ei  

In the combinations above, β1–β16 represent the membership functions of layers in 

the ANN, MARS, SVR, M5Tree, RM5Tree and RSM models. 

3. Results and Discussions 

3.1. Simulation Results of Snow Melting and Snow Cover Area 

Table 3 shows the results of the temperature index snowmelt model during the train-

ing (2000–2007) and testing (2008–2010) periods. The model simulated the snow cover us-

ing the degree day factor ksnow = 4.2 mm/day/°C [4] of the snowmelt model for the Gilgit 

Basin. The previous case studies in the regions of the Upper Indus Basin (UIB) [57,58,105–

108] found that the value of Ksnow ranged from 3 to 7 mm/day/°C. Thus, the value of ksnow 

= 4.2 mm/day/°C of the current study lay within the range of past studies carried out for 

the calibrations and validations of the snowmelt runoff model. The difference between the 

Ksnow values found during different case studies was due to the use of different periods 

and grid resolutions of input and output datasets, threshold temperatures for separation 

of rainfall and snowmelts, and Gilgit River basin characteristics. 

Table 3. Statistical measurements for the accuracy of the temperature index snow model’s results 

that predicted snowmelt and snow fractions during the calibration (2000–2007) and validation 

(2008) periods. 

ksnow = 4.2 mm/Day/°C 

 Calibration Period (2000–2007) Validation Period (2008–2010) 

R2 0.90 0.90 

MAPE 0.12 0.10 

RMSE 0.15 0.15 

Performance measurement statistics during the training and testing periods of the 

snowmelt model are shown in Table 3. Table 3 shows an R2 value of 0.90 between the 

MODIS-extracted snow cover fraction and simulated snow cover fraction during 
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calibrations and testing. A greater than 70% goodness of fit for the snowmelt model was 

obtained using three performance criteria of R2, MAPE and RMSE for satisfactory estima-

tions of the snow cover area and snowmelt. The time series plot between MODIS-observed 

snow cover and snow-model-simulated snow cover area during model calibration (2000–

2007) and validation (2008–2010) period is shown in the Figure 9. 

 

Figure 9. Time series plot. 

3.2. Comparison of the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SRC Models 

Tables 4–9 show the results of the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and 

SRC models for the prediction of sediment yields of the Gilgit Basin during the training 

and testing periods by using different input scenarios. Table 4 shows that the ANN model 

performed the best using input scenario S2 (SCAt − SCAt−2, Qt). The ANN model with input 

combination S2 had the lowest RMSE value of 0.40 and the highest R2 value of 0.67 during 

the testing period compared with the other input combinations for sediment load predic-

tions. Similarly, Table 5 shows the results of different input scenarios when using the 

MARS algorithm for the Gilgit Basin during the training and testing phases. The MARS 

model performed the best using input scenario S3 (SCAt, SCAt−4, Qt, Rt−1). During the testing 

period, the best MARS model with scenario S3 produced the lowest RMSE value of 0.53 and the 

highest R2 value of 0.68. 

Table 6 shows that the SVR model performed the best with its input combination of 

S4 (SCAt, SCAt−4, Qt, Evapt−1, Tt−1). The best SVR algorithm with the S4 scenario had the lowest 

value of RMSE (0.51) and the highest R2 (0.70) during the testing period. As is apparent 

from Table 7, the input scenario of S2 (SCAt , SCAt−2, Qt) gave the best performance of the 

M5Tree model for the prediction of sediment yields. The best M5Tree model provided the 

lowest RMSE value of 0.59 and the highest R2 value of 0.63 during the testing period. 

The results of the RM5Tree algorithm are shown in Table 8. The input combinations 

of S8 (SCAt, Qt, Evapt−1, Rt−1, Tt−1) performed the best compared with the other input scenarios 

during the testing period for the RM5Tree algorithm for predictions of suspended sedi-

ments for the Gilgit River basin. The RM5Tree model provided the lowest RMSE value of 

0.44 and the highest R2 value of 0.72. 

Table 9 shows the results of the RSM models for the prediction of sediment loads in 

the Gilgit River basin by using various input combinations. As seen from Table 9, the RSM 

model also performed the best with the input scenario of S8 (SCAt, Qt, Evapt−1, Rt−1, Tt−1) com-

pared with the other input scenarios for the estimation of sediments. The best RSM model 

had the lowest RMSE value of 0.51 and the highest R2 value of 0.68 during the testing 

phase. 

The SRC model was also selected to predict the sediment load in the Gilgit River in 

this study. Initially, the flow and sediment yield datasets were converted to logarithm 



Water 2023, 15, 1437 17 of 29 
 

 

datasets for the twenty-three-year (1981–2003) training period (1–537 days) and seven-

year (2003–2010) testing period (538–6767 days). Figure 10 showns the plotting of sedi-

ment rating curve. A power law function was selected and used for the SRC training. After 

the SRC training with 70% of the dataset containing twenty-three years (1981–2003) of 

data, the remaining 30% of the dataset with seven years (2003–2010) of data was used for 

testing of the model. 

 

Figure 10. Sediment rating curve plot. 

The results presented in Table 8 show that the RM5Tree model increased the accuracy 

of the SSY model for the sediment load prediction of the Gilgit River basin. The selected 

inputs for the prediction model included the flow, area under snow cover, effective rain-

fall in the basin, mean air temperature in the basin area and mean evapotranspiration in 

the basin area. The sediment load prediction accuracy of the RM5Tree model was im-

proved (R2 = 0.72) after the introduction of snow cover and effective mean rainfall combi-

nation; additional input parameters included the flows, mean evapotranspiration and av-

erage air temperature of the Gilgit River basin. 

The entire model’s performance with the inputs scenarios of the mean basin average 

temperature T alone was worse than the input scenarios consisting of discharges, effective 

rainfalls, snow cover and evapotranspiration. Moreover, the performance of all the algo-

rithms with the input scenarios consisting of the average basin temperature T was also 

worse than the traditional SRC model. 

Table 4. Training and testing statistics of the ANN algorithm using various input combinations for 

the Gilgit River basin. 

Scenarios Model Inputs 
R2 RMSE MAPE (%) 

Training Testing Training Testing Training Testing 

S1 Qt, Qt−1 − Qt−4 0.86 0.62 0.40 0.61 9.89 12.90 

S2 SCAt , SCAt−2, Qt 0.86 0.67 0.40 0.54 9.94 12.45 

S3 SCAt, SCAt−4, Qt, Rt−1  0.86 0.64 0.40 0.58 9.83 12.74 

S4 SCAt, SCAt−4, Qt, Evapt−1, Tt−1 0.85 0.64 0.40 0.57 9.93 13.17 

S5 SCAt, Qt, Qt−1, Tt−1, Evapt−1,  0.86 0.64 0.40 0.60 9.68 14.21 

S6 Tt − Tt−4 0.81 0.60 0.46 0.61 11.49 14.14 

S7 SCAt, Evapt−1, Qt, Rt−1, Tt,  0.86 0.64 0.40 0.60 13.17 9.83 

S8 SCAt, Qt, Evapt−1, Rt−1, Tt−1 0.86 0.65 0.40 0.57 9.80 12.71 
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Table 5. Training and testing statistics of the MARS algorithm using various input combinations for 

the Gilgit River basin. 

Scenarios Model Inputs 
R2 RMSE MAPE (%) 

Training Testing Training Testing Training Testing 

S1 Qt, Qt−1 − Qt−4 0.84 0.64 0.42 0.58 10.69 12.97 

S2 SCAt , SCAt−2, Qt 0.82 0.67 0.44 0.54 10.65 12.03 

S3 SCAt, SCAt−4, Qt, Rt−1, 0.83 0.68 0.44 0.53 10.79 11.71 

S4 SCAt, SCAt−4, Qt, Evapt−1, Tt−1 0.85 0.64 0.40 0.55 10.03 12.21 

S5 SCAt, Qt, Qt−1, Tt−1, Evapt−1,  0.84 0.66 0.42 0.55 10.38 12.24 

S6 Tt − Tt−4 0.77 0.56 0.51 0.60 12.64 13.74 

S7 SCAt, Evapt−1, Qt, Rt−1, Tt,  0.86 0.64 0.40 0.57 9.91 12.49 

S8 SCAt, Qt, Evapt−1, Rt−1, Tt−1 0.84 0.65 0.42 0.54 10.33 12.04 

Table 6. Training and testing statistics of the SVR algorithm using various input combinations for 

the Gilgit River basin. 

Scenarios Model Inputs 
R2 RMSE MAPE (%) 

Training Testing Training Testing Training Testing 

S1 Qt, Qt−1 − Qt−4 0.82 0.69 0.45 0.53 10.79 11.94 

S2 SCAt, SCAt−2, Qt 0.86 0.69 0.40 0.57 9.37 11.80 

S3 SCAt, SCAt−4, Qt, Rt−1, 0.83 0.69 0.43 0.51 10.35 11.30 

S4 SCAt, SCAt−4, Qt, Evapt−1, Tt−1 0.84 0.70 0.42 0.51 9.81 10.92 

S5 SCAt, Qt, Qt−1, Tt−1, Evapt−1,  0.85 0.62 0.41 0.60 9.76` 12.38 

S6 Tt − Tt-4 0.84 0.53 0.42 0.67 8.93 13.54 

S7 SCAt, Evapt−1, Qt, Rt−1, Tt,  0.85 0.69 0.41 0.55 9.81 11.93 

S8 SCAt, Qt, Evapt−1, Rt−1, Tt−1 0.85 0.68 0.41 0.53 9.72 11.16 

Table 7. Training and testing statistics of the M5Tree algorithm using various input combinations 

for the Gilgit River basin. 

Scenarios Model Inputs 
R2 RMSE MAPE (%) 

Training Testing Training Testing Training Testing 

S1 Qt, Qt−1 − Qt−4 0.94 0.62 0.25 0.64 5.02 15.13 

S2 SCAt ,SCAt−2, Qt 0.95 0.63 0.24 0.59 4.71 14.07 

S3 SCAt, SCAt−4, Qt, Rt−1, 0.95 0.52 0.24 0.72 5.08 16.06 

S4 SCAt, SCAt−4, Qt, Evapt−1, Tt−1 0.95 0.56 0.23 0.65 5.11 15.64 

S5 SCAt, Qt, Qt−1, Tt−1, Evapt−1,  0.96 0.59 0.21 0.63 4.66 15.14 

S6 Tt − Tt−4 0.96 0.50 0.21 0.72 4.73 17.16 

S7 SCAt, Evapt−1, Qt, Rt−1, Tt,  0.95 0.57 0.23 0.67 4.90 16.36 

S8 SCAt,Qt, Evapt−1, Rt−1, Tt−1 0.95 0.59 0.22 0.65 4.81 15.08 

Table 8. Training and testing statistics of the RM5Tree algorithm using various input combinations 

for the Gilgit River basin. 

Scenarios Model Inputs 
R2 RMSE MAPE (%) 

Training Testing Training Testing Training Testing 

S1 Qt, Qt−1 − Qt−4 0.81 0.71 0.46 0.53 11.08 11.85 

S2 SCAt, SCAt−2, Qt 0.83 0.70 0.44 0.52 10.73 11.70 

S3 SCAt, SCAt−4, Qt, Rt−1, 0.81 0.70 0.47 0.52 11.47 12.00 

S4 SCAt, SCAt−4, Qt, Evapt−1, Tt−1 0.83 0.71 0.44 0.51 10.75 11.76 

S5 SCAt, Qt, Qt−1, Tt−1, Evapt−1,  0.82 0.72 0.44 0.52 10.69 12.03 

S6 Tt − Tt−4 0.76 0.60 0.51 0.58 12.92 13.67 

S7 SCAt, Evapt−1, Qt, Rt−1, Tt,  0.83 0.71 0.44 0.54 10.66 12.36 

S8 SCAt, Qt, Evapt−1, Rt−1, Tt−1 0.83 0.72 0.44 0.51 10.76 11.99 
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Table 9. Training and testing statistics of the RSM algorithm using various input combinations for 

the Gilgit River basin. 

Scenarios Model Inputs 
R2 RMSE MAPE (%) 

Training Testing Training Testing Training Testing 

S1 Qt, Qt-1 − Qt-4 0.82 0.66 0.45 0.59 10.90 13.07 

S2 SCAt , SCAt−2, Qt 0.83 0.66 0.43 0.55 10.56 12.36 

S3 SCAt, SCAt−4, Qt, Rt−1, 0.83 0.65 0.44 0.55 10.68 12.10 

S4 SCAt, SCAt−4, Qt, Evapt−1, Tt−1 0.83 0.66 0.43 0.54 10.46 12.22 

S5 SCAt, Qt, Qt−1, Tt−1, Evapt−1,  0.84 0.67 0.42 0.53 10.46 11.75 

S6 Tt − Tt−4 0.77 0.58 0.50 0.60 12.54 14.08 

S7 SCAt, Evapt−1, Qt, Rt−1, Tt,  0.84 0.68 0.42 0.53 10.38 12.00 

S8 SCAt, Qt, Evapt−1, Rt−1, Tt−1 0.84 0.68 0.42 0.51 10.42 11.72 

Table 10 presents an overall comparison of the performance measurements of the 

SRC, MARS, ANN, SVR, M5Tree, RM5Tree and RSM models for the Gilgit River basin for 

the sediment yield estimation. Table 10 shows that the RM5Tree algorithm performed bet-

ter than all the other algorithms, with the least RMSE value of 0.51 and the highest R2 

value of 0.72 when testing the calibrated models. 

Table 10. Performance accuracy comparison between the SRC, ANN, MARS, SVR, M5Tree, 

RM5Tree, RSM and SVR model results in the predictions of sediment yields in the Gilgit River basin. 

Models 
Results for Training Period  Results for Testing Period 

R2 RMSE MAPE (%) R2 RMSE MAPE (%) 

SRC 0.80 0.49 13.29 0.71 0.60 13.82 

ANN 0.86 0.40 9.94 0.67 0.54 12.45 

MARS 0.83 0.44 10.79 0.68 0.53 11.71 

SVR 0.84 0.42 9.81 0.70 0.51 10.92 

M5Tree 0.95 0.24 4.71 0.63 0.59 14.07 

RM5Tree 0.83 0.44 10.76 0.72 0.51 11.99 

RSM 0.84 0.42 10.42 0.68 0.51 11.72 

The data in scatter plots between the noted and model-predicted suspended sedi-

ment yields (SSYs) during the testing period that were found using the ANN, MARS, SVR, 

SVR, M5Tree, RM5Tree, RSM and SRC models are shown in Figure 11. It can be clearly 

observed that the RM5Tree model had the highest R2 value of 0.72 during testing, while 

M5Tree seemed to have the most scattered estimates. 

Similarly, Figure 12 shows the comparison between observed and estimated SSYs 

found using the best models via annual time series plotting. It is clear from the figure that 

the RM5Tree model offered better accuracy when predicting the annual observed sedi-

ment yields than the ANN, MARS, SVR, M5Tree, RSM and SRC models, while the results 

of SVR models were the second best in terms of prediction accuracy. 

Figure 13 shows the detailed graphs of the peak annual sediment yields. For the flood 

period of the year 2005, the predictions of the RM5Tree and SVR were relatively closer to 

the annual measured sediment yields in comparison to the ANN, MARS, M5Tee and RSM 

models. However, sediment yields were highly overestimated by the SRC and underesti-

mated by the MARS and RSM models. The ANN and M5Tree models significantly under-

estimated the annual sediment loads. 

Similarly, from Figure 13, it is also seen that the ANN and M5Tree models predicted 

better results for the annual measured SSY during the low flow period of the year 1984 

compared with the RM5Tree, MARS and RSM models. Moreover, the SRC again overes-

timated the sediment yields relative to the ANN, MARS, SVR, M5Tree, RM5Tree and RSM 

models. 
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Figure 11. Scatter plots of the observed and predicted SSYs that were found using the ANN, MARS, 

SVR, M5Tree, RM5Tree, RSM and SRC models. 
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Figure 12. Time series plots of the observed and predicted SSYs that were found using the ANN, 

MARS, SVR, M5Tree, RM5Tree, RSM and SRC models. 
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Figure 13. Time series plots of the best performance measures for the predictions of SSYs during 

high and low flow periods that were found using the ANN, MARS, SVR, M5Tree, RM5Tree, RSM 

and SRC models in predictions of sediment yields for the Gilgit Rive basin. 
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Table 11 shows a comparison between the mean SSY result values of the Gilgit River 

basin using the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SRC models. The data 

shows that the RM5Tree model predicted the mean peak sediment fluxes of 6613 

(tons/day) as 6177 (tons/day), whereas the ANN, MARS, SVR, M5Tree, RSM and SRC 

models produced smaller predicted values than RM5Tree. The table data also shows that 

the RM5Tree model results were more accurate (84.10%) as compared with the ANN 

(80.62%), MARS (77.86%), SVR (81.90%), M5Tree (80.20%), RSM (74.58%), and SRC 

(62.49%) models in predicting the peak values of the sediment load in the Gilgit River 

basin. 

Table 11. Comparison of the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SRC models’ absolute 

sediment fluxes and relative accuracies (%) for the peak estimations of the SSY for the Gilgit gauging 

station. 

Year 

Peaks > 

3200 

[tons/Day] 

ANN 

[tons/Day] 

MARS 

[tons/Day] 

SVR 

[tons/Day] 

M5Tree 

[tons/Day] 

RM5Tree 

[tons/Day] 

RSM 

[tons/Day] 

SRC 

[tons/Day] 

1983 3901 
4092 

(95.09) 

3603 

(89.81) 

4376 

(93.07) 

3432 

(87.99) 

3861 

(98.99) 

4163 

(93.28) 

5008 

(71.62) 

1984 4955 
3945 

(79.61) 

3960 

(79.93) 

2937 

(74.46) 

4410 

(89.01) 

3135 

(63.28) 

3428 

(69.19) 

4704 

(94.93) 

1991 3256 
3013 

(92.52) 

2917 

(89.57) 

2916 

(96.80) 

3140 

(96.43) 

3024 

(92.87) 

3022 

(92.80) 

4806 

(52.40) 

2003 4057 
3085 

(76.03) 

2741 

(67.57) 

2516 

(81.56) 

3332 

(82.12) 

2904 

(71.57) 

2568 

(63.29) 

4732 

(83.38) 

2005 16,898 
10,113 

(59.85) 

10,585 

(62.4) 

13,794 

(63.60) 

7678 

(45.44) 

17,961 

(93.71) 

9184 

(54.35) 

35,507 

(10.12) 

Mean 

(Relative 

Accuracy %) 

6613 
4849 

(80.62) 

4741 

(77.86) 

5308 

(81.90) 

4398 

(80.20) 

6177 

(84.10) 

4473 

(74.58) 

10951 

(62.49) 

3.3. Discussions 

The main aim of the present research work was to present a new modeling strategy 

using the new soft computing models, such as RM5Tree, with inputs of flow, snow cover, 

effective rainfall, temperature and evapotranspiration datasets to estimate the SSY. Based 

on the performance of the evaluation criteria and graphical presentations, it was found 

that the RM5Tree model had superior capability compared with the ANN, MARS, SVR, 

M5Tree, RSM and SRC models to predict the SSY. The scatter plot results during the test-

ing phase revealed that the performance of the M5Tree model was the worst due to the 

fact that the model structure was linear in nature and unable to capture the complex sea-

sonal flow processes, such as snowmelts, glacier melts, rainfall, snow cover depletions, 

and erosion of sediments and its transports in the Gilgit Basin to estimate the SSY. 

The RM5Tree model had an advantage over the rest of the models because its model 

capability was based on its use of the radial basis function, which may capture non-linear 

phenomena of sediment erosions and the flow process of nature using a black box mod-

eling approach. In the present study, the previous SSY values were not considered as in-

puts even though this was the case in most of the studies in the literature. The measure-

ment of SSY is very difficult in practice, especially in the case of extreme events. The other 

important issue is that SSY data are not continuously available in developing countries 

and the use of lagged SSY data as inputs is not possible in such cases [109]. 

Ul Hussan et al. [4] used an artificial neural network (ANN), artificial neuro-fuzzy 

logic inference system (ANFIS), multiple adaptive regression splines (MARS) and sedi-

ment rating curve (SRC) for the prediction of sediments using random data sampling in 
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MATLAB. They found that the value of R2 ranged from 0.78 to 0.82 during the testing 

period. The accuracy of the ANN model was superior to the other models. Moreover, for 

the prediction of the peak sediment, the relative accuracy of models ranged from 66.33 to 

81.31%. 

Kisi et al. [110] also used the RM5Tree, M5Tree, ANN, MARS and SVR models to 

predict non-linear processes, such as daily flows in cold regions of Ljungan River, Swe-

den. They found that RM5Tree offers superior accuracy compared with the M5Tree, ANN 

and MARS algorithms. In the present study, the values of R2 ranges from 0.68 to 0.72 dur-

ing the testing period using the ANN, MARS, SVR, M5 Tree, RM5 Tree, RSM and SRC 

models with a non-random sampling of the datasets. Moreover, during the prediction of 

the peak sediment, the relative accuracies also ranged from 62.49 to 84.10%. It was also 

found that the RM5Tree model performed superior compared with the M5Tree, ANN, 

MARS, SVR, RSM and SRC models for the prediction of sediment yields in the complex 

sediment generation processes in cold regions. Therefore, this suggests that soft compu-

ting models can be successfully used for the prediction of non-linear processes, such as 

sediment yields. 

4. Conclusions 

In this study, the capability of the RM5Tree model was checked regarding the pre-

diction of the SSY using inputs of flow, snow cover, air temperature, effective rainfall and 

evapotranspiration datasets. The results of the RM5Tree model were compared with 

ANN, MARS, SVR, M5Tree, SRM and SRC models for the accurate estimation of the SSY 

in the Gilgit River. The objective of the applicability of this new black box modeling ap-

proach for predictions of the SSY was checked by knowing the background of physical 

processes of hydrology involved in snow and glacier melts, which are triggered by air 

temperature and snow cover depletion as the dominant factors. The channel erosion starts 

when the channel flow starts. With an increase in basin air temperature, the process of 

snow melting increases abruptly, which directly affects hill slope erosion. Rainfall causes 

mass wastage, rill and sheet erosion. Evapotranspiration indirectly affects the catchment 

erosion phenomenon due to basin vegetative cover. 

After data analysis through different sediment load prediction models, this study 

reached the conclusion that the performance of the RM5Tree model was satisfactory and 

superior compared with other models regarding the prediction of the SSY in the catch-

ment of the Gilgit River. The model results helped to conclude that the study scenarios 

consisting of temperature, effective rainfall, evapotranspiration and snow cover in com-

bination with river flows improved the sediment load prediction accuracy of the RM5Tree 

model in the Gilgit Basin due to the influence of complex catchment processes of snow 

glacier melting, land cover, gully and sheet erosions, etc. 

It was also concluded that the predictions of the RM5Tree and SVR models for the 

flood year of 2005 were closer to the measured one compared with the ANN, MARS, 

M5Tree, RSM and SRC models. The RM5Tree and SVR models predicted the peak SSY 

with relative accuracies of 84.10% and 81.10%, respectively. The SRC model highly over-

estimated the annual sediment yields due to its sole relationship between the river dis-

charges. 

Overall, the RM5Tree model was superior and more successful at predicting sus-

pended sediment loads in the Gilgit Basin, with values of R2, RMSE and MAPE of 0.72, 

0.51 tons/day and 11.99%, respectively. The limitation of the present research was the 

availability of scarce datasets, especially the lower frequency of sediment measurements. 

However, soft computing models can also help to bridge these data gaps with the selec-

tion of a suitable soft computing modeling approach. In future studies, predictions of 

flows should also be carried out using input parameters of the hydroclimate, snow cover 

and evapotranspiration to check the applicability of the RM5Tree model. 
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