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Abstract: The FAO 56 Penman–Monteith equation (PM) is considered the most accurate method
for estimating reference evapotranspiration (ETo). However, PM requires a large amount of data
that is not always available. Thus, the objective of this study is to improve the Hargreaves–Samani
(HS) reference evapotranspiration estimates in the Peruvian Altiplano (PA) by calibrating the radi-
ation coefficient KRS. The results show modified HS (HSM) ETo estimates at validation after KRS

calibration, revealing evident improvements in accuracy with Nash–Sutcliffe efficiency (NSE) be-
tween 0.58 and 0.93, percentage bias (PBIAS) between −0.58 and 1.34%, mean absolute error (MAE)
between −0.02 and 0.05 mm/d, and root mean square error (RMSE) between 0.14 and 0.25 mm/d.
Consequently, the multiple linear regression (MLR) model was used to regionalize the KRS for the PA.
It is concluded that, in the absence of meteorological data, the HSM equation can be used with the
new values of KRS instead of HS for the PA.
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1. Introduction

Reference evapotranspiration (ETo) is one of the most useful and necessary indicators
for efficient irrigation management [1]. The ETo plays an important role in estimating the
water requirements of crops and irrigation programming, irrigation and drainage design,
as well as drought management and studies related to climate change and variation [2–5].
Crop coefficients, which depend on crop characteristics and local conditions, are used to
convert ETo into actual crop evapotranspiration ETr [6], with accurate estimation of ETo
being of great importance.

In situ measurement of ETo is expensive and time consuming, and is subject to
significant uncertainties. Due to the limitation of in situ measurements of ETo, several
empirical models have been developed for its estimation [7]. The empirical models for
ETo estimation available in the scientific literature are classified as (1) combination models
completely based on physics that explain the principles of conservation of mass and energy;
(2) semi-physical models that deal with the conservation of mass or energy; and (3) black
box models based on artificial neural networks, empirical relationships, and fuzzy and
genetic algorithms [8–11].

The method recommended to estimate ETo by the Food and Agriculture Organization
of the United Nations (FAO) is the FAO Penman–Monteith equation 56 (PM) [6,12,13]. ETo
is defined as the evapotranspiration rate of a hypothetical reference crop with an assumed
crop height of 0.12 m, a surface resistance of 70 s/m and an albedo of 0.23, very similar to
the evapotranspiration of a large area. green grass of uniform height, actively growing,
completely shading the ground and not lacking in water [13]. Therefore, the PM equation
is written as:

ETO,PM =
0.408∆(Rn − G) + γ 900 U2/(Tmean + 273)(es − ea)

∆ + γ(1 + 0.34 U2)
(1)
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where ETO,PM is the reference evapotranspiration (mm/d), ∆ is the slope of the vapor
pressure curve (Kpa/◦C), Rn is the net radiation on the crop surface (MJ/m2/d), G is the
soil heat flux density (MJ/m2/d), Tmean is the mean air temperature (◦C), U2 is the mean
wind speed at a height 2 m (m/s), es is the saturation vapor pressure (kPa), ea is the actual
vapor pressure (kPa), es − ea is the vapor pressure deficit (kPa) and γ is the psychrometric
constant (kPa/◦C).

The PM equation was classified as the best to estimate ETo in all types of weather,
it can be used globally without any local calibration, since it incorporates physiological
and aerodynamic parameters, and has been tested using a variety of lysimeters [1,13].
PM works well in different regions of the world with data on air temperature, relative
humidity, solar radiation, and wind speed [14]. However, in places with low availability
of meteorological data, its application becomes limited, being the main impediment for
the widespread use of the PM equation, therefore, alternative approaches are required to
calculate the ETo.

Data limitations motivated Hargreaves and Samani [15] to develop an alternative
approach to estimate ETo using only air temperature and extraterrestrial solar radiation data.
For this reason, when the necessary meteorological data are not available for the calculation
of ETo by the PM method, the Hargreaves–Samani (HS) method is recommended. Due to
its simple application for the calculation of ETo with temperature data alone, the focus of
research has been the use of the Hargreaves–Samani (HS) equation [15]. This equation can
be written as:

ETO,HS = 0.0135× KRS × (Tmean + 17.8)(Tmax − Tmin)
0.5 × Ra (2)

where, ETO,HS corresponds to the reference evapotranspiration of the grass (mm/d), Ra
is the extraterrestrial radiation (mm/d), Tmax, Tmin y Tmean is the maximum, minimum
and average temperature (◦C), 0.0135 is a conversion factor of units from the American
System to the International System, KRS is the adjustment coefficient of the empirical
radiation (◦C−0.5), and 17.8 is an empirical factor related to the temperature units used in
the original formulations.

The empirical KRS coefficient was initially set at 0.17 ◦C−0.5 for arid and semi-arid
regions [16]. According to Allen et al. [13], the KRS adjustment coefficient differs for inland
or coastal regions, thus, for inland locations where land mass dominates or next to it and
where air masses are influenced by a nearby water mass, KRS = 0.16 ◦C−0.5, while for coastal
locations with or adjacent to a large land mass where air masses are influenced by a nearby
water mass, KRS = 0, 19 ◦C−0.5. With Ra in mm/day and the empirical coefficient KRS is
normally considered as 0.17 ◦C−0.5.

Studies carried out under different climatic conditions reported that the calibration of
the equations based on air temperature and radiation improved performance [17–19]. In
effect, in the scientific literature, various studies worldwide adjusted the coefficients of the
original HS equation to improve performance, they also included monthly precipitation [2],
for different climatic zones [16], in specific geographic regions regional and local calibra-
tion [1,6,17,20–25], others included the altitude of the sites as a variable [26,27], related to
the calibration of the radiation coefficient (KRS) [5,28–30]. Therefore, it is very important to
investigate the coefficient of radiation (KRS) to reduce the estimation error of the original
HS equation, at high altitude and under conditions of the Peruvian Altiplano (PA).

Since the calibration of the KRS of the HS equation can improve the estimates of ETo,
we focus this investigation on the main question: Is it possible to improve the reference
evapotranspiration estimates of HS in the Peruvian Altiplano? To provide reasonable
answers, this article focuses on the principal objective of improving the reference evap-
otranspiration estimates in the PA through a calibration of the radiation coefficient KRS
of the HS equation, under environmental conditions of the PA, and as specific objectives
(1) evaluate the original HS equation, (2) calibrate and validate the radiation coefficient KRS
of the HS equation, and (3) regionalize the radiation coefficient KRS for the PA based on the
geographic characteristics.
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2. Materials and Method
2.1. Study Area

The study area is located in the Peruvian Lake Titicaca basin (PLTB). It is characterized
as an endorheic basin system surrounded by the eastern and western mountain ranges. It
limits to the north with the Amazon hydrographic region, to the south-west with the Pacific
hydrographic region and to the east with the PLT of the Republic of Bolivia, with an altitude
(Figure 1a) that varies from 3804 to 5781 m.a.s.l. According to the climatic classification of
Peru, the PLT has a predominantly rainy climate type, with dry autumn and winter [31].
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The study area has an average annual rainfall that varies from 624.9 mm to 948.3 mm.
The maximum and minimum air temperatures for all seasons range between 10.5 and
17.8 ◦C, and −2.2 and 3.5 ◦C, respectively. The relative humidity varies between 55% and
80.6%, while the wind speed oscillates between 1.5 and 5.5 m/s. The sun hours are between
6.3 and 8.4 h, and the altitudes of the stations are between 3812 and 4660 m.a.s.l. On the
other hand, the aridity index (AI) for the meteorological station sites varies between 0.54
and 0.78 (mean 0.64). The AI is defined as the relationship between the annual precipitation
(P) and the annual reference evapotranspiration (ETo) [32]. Then, the weather station sites
are climatically classified as dry sub-humid (SH-s) to humid sub-humid (SH-h) (Table 1)
according to the AI levels defined for Peru by Huerta and Lavado [32].

According to GlobeLand30 version 2010, the dominant land cover type for the PA is
grassland, followed by cultivated land, forest, shrubland, bare land, wetland, water bodies,
snow and ice, and artificial surfaces. GlobeLand30 is a 30 m spatial resolution global land
cover data product developed by China [33], with versions available for 2000, 2010 and
2020 (http://www.globallandcover.com: accessed on 16 February 2023). Most weather
stations are located on grassland (PTN, JLC and PNO), cultivated land (CHQ, HNE and
JUL) and Artificial surfaces (ANA and DES) (Figure 1b).

http://www.globallandcover.com


Water 2023, 15, 1410 4 of 16

Table 1. Coordinates of the weather stations used, average of the meteorological variables, aridity
index and climatic classification.

Station Lat. Long. Alt. Tmax Tmin Rh U2 Sh ETo P AI CC

Ananea (ANA) −14.676 −69.534 4660 10.5 −1.9 80.6 2.0 6.3 2.7 658.4 0.67 SH-h
Lampa (LAM) −15.361 −70.374 3866 17.1 −0.3 55.0 2.4 8.1 3.6 757.1 0.60 SH-d

Chuquibambilla
(CHQ) −14.788 −70.728 3918 16.3 −2.2 61.3 2.1 7.2 3.2 787.0 0.67 SH-h

Putina (PTN) −14.921 −69.876 3861 17.3 0.1 70.1 2.6 6.9 3.1 643.9 0.56 SH-d
Huancané (HNE) −15.207 −69.758 3840 15.7 0.3 58.9 2.9 7.7 3.4 650.5 0.52 SH-d

Juliaca (JLC) −15.444 −70.208 3838 17.8 −0.5 75.0 1.5 7.8 3.2 624.9 0.53 SH-d
Puno (PNO) −15.826 −70.012 3812 16.3 3.5 61.1 1.8 8.1 3.5 750.6 0.59 SH-d

Juli (JUL) −16.204 −69.460 3830 14.1 3.0 58.3 2.4 8.4 3.5 948.3 0.78 SH-h
Desaguadero (DES) −16.563 −69.037 3833 15.2 1.7 65.7 5.5 7.4 3.4 736.9 0.60 SH-d

2.2. Climatic and Terrain Data

The data used for this study are monthly values of maximum (Tmax, ◦C) and min-
imum (Tmin, ◦C) air temperature, relative humidity (RH, %), sun hours (SH, h), wind
speed (U10, m/s) at a height of 10 m and precipitation (P, mm) from nine weather stations
distributed in the PA (Figure 1a). The selected stations have data records from 2000 to
2019 (information provided by the National Meteorology and Hydrology Service of Peru
(SENAMHI)). The stations considered include the representative stations of the PA, defined
on the basis of the aridity index suggested by Huerta and Lavado [32].

A quality control process of the rain gauge measurements was carried out, which
consisted of the verification of specific physical limits for the Peruvian territory, internal
consistency, and spatial consistency [34]. The homogeneity of the climatic variables Rh,
U10, Sh, Tmax, Tmin and P were analyzed by means of a visual inspection, and the absolute
method. For the absolute method, the nonparametric test of Distribution-free cumulative
sum (CUSUM) and rank-sum (RS) were applied independently to the data from each
weather station using the TREND program (https://toolkit.ewater.org.au/Tools/TREND:
accessed on 10 August 2022). CUSUM, is a nonparametric test of step jump in the mean,
while RS is a nonparametric test of difference in the mean of two periods [35]. The null
hypothesis for CUSUM and RS suggests that there is no step jump in the mean in the data
series, and there is no difference in the mean between two data periods, which accepts the
null hypothesis if the maximum deviation for CUSUM and the statistic z for calculated RS
are less than the critical value of the statistical table at the 5% significance level and rejects it
otherwise. Thus, the doubtful periods of the Rh, U10, Sh, Tmax, Tmin and P data series that
did not meet the assumption of homogeneity were not considered in subsequent analyses.

In effect, the missing values were filled in using the random forest (RF) machine learn-
ing algorithm incorporated in the MICE (Generates Multivariate Imputations by Chained
Equations) package for the R project [36]. It should be noted that the homogeneity of the
data was checked with monthly data after filling in the missing data [37,38]. Homogeneity
tests are generally more robust when used with monthly data [37]. The wind speed at a
height of 2 m (U2, m/s) was calculated from U10.

Lat south latitude; Long west longitude; Alt altitude (m.a.s.l.); Rh relative humidity (%);
U2 wind speed (m/s) at a height of 2 m; Sh sun hours (h); ETo reference evapotranspiration
estimated by the PM method (mm/d); P annual precipitation (mm/year); AI aridity index;
CC climatic classification; SH-h subhumid-humid; SH-d subhumid-dry.

To regionalize the KRS radiation coefficient calibrated from the HS equation, the NASA
Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) was obtained
from the Google Earth Engine (GEE) platform available at https://earthengine.google.com/
(accessed on 15 July 2022), ID de la imagen CGIAR/SRTM90_V4 [39], with a spatial
resolution of ~90 m.

Figure 2 shows that the climatic and geographical variables that affect the ETo. As the
altitude increases, precipitation, reference evapotranspiration, minimum and maximum

https://toolkit.ewater.org.au/Tools/TREND
https://earthengine.google.com/
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temperature, sun hours and wind speed decrease, on the contrary, relative humidity
increases, for the weather stations under study.
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2.3. Evaluation of the Original Hargreaves-Samani Equation for Use in the Peruvian Altiplano

In this study, the PM method has been used as a substitute for reference evapotran-
spiration measured data, being the standard procedure when no lysimeter measured
data is available [20]. Due to the lack of experimental reference evapotranspiration (ETo)
measurements, the numbers given by the PM equation have been accepted as the true
values. Moreover, this equation has been used to calibrate the modified versions of the
Hargreaves–Samani (HS) equations [13,16].

The calculation of all the data required for the estimation of the ETo followed the
recommendations given in the manual 56 of Irrigation and Drainage of the FAO [6].

Rs =
(

as + bs
n
N

)
Ra (3)

where Ra is the extraterrestrial radiation (MJ/m2/d), n is the actual duration of sunlight (h),
N is the maximum possible duration of sunlight or hours of sunlight (h), as is the regression
constant which expresses the fraction of extraterrestrial radiation that reaches the earth
on cloudy days (n = 0) and as + bs is the fraction of extraterrestrial radiation that reaches
the earth on clear days (n = N). In the absence of real measurements and calibration
of solar radiation (Rs), values suggested by Allen et al. [13] are as = 0.25 and bs = 0.50.
However, these default values should not be applied to high altitude sites, where proper
calibration is required [40]. In this regard, values of as = 0.23 and bs = 0.60 suggested by
Chipana et al. [3], were used for high altitude areas (3820 to 3950 m.a.s.l.) estimated for
the Bolivian altiplano and for altitudes above the 4660 m.a.s.l was considered with slight
modifications of as = 0.29 and bs = 0.55.

Extraterrestrial radiation (Ra) was estimated using the equation recommended by
Allen et al. [13]. The values of Ra for each day of the year and for different latitudes can be
estimated from the solar constant, the solar declination and the time of the year and then
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selecting the Ra for the 15th day of each month converted to monthly values, using the
following equation:

Ra =
24(60)

π
GSCdr[ωs sin(∅) sin(δ) + cos(∅) cos(δ) sin(ωs)] (4)

where GSC is the solar constant = 0.0820 MJ/m2/min, dr is the inverse relative distance
to the sun, ωs is the hour angle of sunset (rad), ∅ is the latitude (rad), and δ is the solar
declination (rad).

The net radiation (Rn) was calculated as the difference between the incoming net
shortwave radiation (Rns) and the outgoing net longwave radiation (Rnl).

Rn = Rns − Rnl (5)

To calculate the net incoming shortwave radiation (Rns), the value used for albedo was
0.23, while the net longwave radiation (Rnl), was estimated using the expression postulated
by the modified Stefan-Boltzmann law due to absorption and downward radiation from
the sky [13].

Rnl = σ

[
T4

max,K + T4
min,K

2

]
(0.34− 0.14

√
ea)×

(
1.35

Rs

Rso
− 0.35

)
(6)

where Rnl is the net longwave radiation (MJ/m2/d), σ is the Stefan-Boltzmann constant
(4.903 × 10−9 MJ/K−4/m2/d), T4

max,K is the maximum absolute temperature during the
24 h period (K = ◦C + 273), T4

min,K is the minimum absolute temperature during the 24 h
period (K = ◦C + 273), ea is the actual vapor pressure (kPa), Rs/Rso is the relative shortwave
radiation (limited a ≤ 1.0), Rs is the calculated solar radiation (MJ/m2/d) and Rso is the
calculated clear-sky radiation (MJ/m2/d).

The vapor pressure deficit is calculated as the difference between the saturation vapor
pressure (es) and the actual vapor pressure (ea). es is calculated as the average of the
saturation vapor pressure at Tmax and Tmin. Approximations can be used to estimate ea
depending on the available data. When only daily mean relative humidity (RHmean) data
is available, ea is calculated as [13]:

ea =
RHmean

100

[
eo(Tmax) + eo(Tmin)

2

]
(7)

2.4. Statistical Performance Metrics

To evaluate the performance between the original HS and the PM method for the
nine weather stations, statistical performance metrics were used (Table 2), including the
correlation coefficient (R), the Nash–Sutcliffe efficiency coefficient (NSE) used by Almorox
and Grieser [16] and Todorovic et al. [4], percent bias (PBIAS), and root mean square error
(RMSE) and mean absolute error (MAE), both used by Cobaner et al. [25].

The R denotes the degree of correlation between the observed and calculated values
of ETo, with values ranging from −1.0 to 1.0, where values closer to ±1 indicate a better
association between them. Legates and McCabe [41] suggest using the NSE coefficient to
assess goodness of fit. [42] defined the coefficient of efficiency ranging from minus infinity
to 1.0, where higher values indicate a better relationship. The NSE indicates that when the
residual variance is equal to the variance of the observed data, the result is NSE = 1.0. On the
contrary, when the NSE is equal to zero or is negative, it indicates that the observed mean
is as good or a better predictor than the model. [43] classified the performance of a model
as very good if NSE > 0.75, good if 0.65 < NSE ≤ 0.75, satisfactory if 0.50 < NSE ≤ 0.65 and
poor if NSE ≤ 0.50.
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Table 2. List of statistical performance metrics used for the calibration and validation of the KRS of
the HS equation for the estimation of ETo.

Statistical Performance Equation 1 Unit Optimal Value

Correlation coefficient (R) R =
∑N

i=1(ETO,PM−ETO,PM)(ETO,HS−ETO,HS)√
∑N

i=1(ETO,PM−ETO,PM)
2
√

∑N
i=1(ETO,HS−ETO,HS)

2
- ±1

Nash–Sutcliffe efficiency (NSE) ENS = 1.0− ∑N
i=1(ETO,PM−ETO,HS)

2

∑N
i=1(ETO,PM−ETO,PM)

2
- 1

Percent bias (PBIAS) PBIAS = ∑N
i=1(ETO,HS−ETO,PM)

∑n
i=1 ETO,PM

× 100 % 0

Mean absolute error (MAE) MAE = 1
N ∑N

i=1|ETO,HS − ETO,PM| mm 0
Root mean square error (RMSE) RMSE =

√
1
N ∑N

i=1(ETO,HS − ETO,PM)2 mm 0

Notes: 1 Variables: ETO,PM is the estimated value with PM, ETO,HS is the calculated value, ETO,PM is the average
of the estimated value with PM, ETO,HS is the average of the calculated value, and N is the total number of data.

Instead, PBIAS indicates the average trend of simulated data based on larger or smaller
observed data, with the best value being 0 and negative (positive) values indicating an
underestimation (overestimation) [44]. According to the criteria of Moriasi et al. [45], the
statistical performance of models can be considered ‘very good’ when PBIAS < ±5, ‘good’
when ±5 ≤ PBIAS < ±10, ‘satisfactory’ when ±10 ≤ PBIAS < ±25 and ‘not satisfactory’
when PBIAS ≥ ±25.

On the other hand, [46] indicate that the MAE is the most natural measure of the
magnitude of the average error of the absolute differences between what is observed and
calculated. A low MAE value implies a high performance of the model. Meanwhile, the
RMSE is one of the commonly used error rates [16], and it follows that a smaller RMSE
indicates a better approximation of the model.

2.5. Calibration and Validation of the Radiation Coefficient KRS of the HS Equation

Todorovic et al. [4] reported that it is preferable to adjust the values of KRS than to
change the coefficient of 0.0023. Under this perspective, the HS equation was modified by
means of calibrating the KRS expressed as:

ETO,HSM = 0.0135× K̂RS × Ra × (Tmed + 17.8)(Tmax − Tmin)
0.5 (8)

The K̂RS of the HS equation was adjusted using the ETo data determined by the PM
method, K̂RS and was calibrated using the generalized reduced gradient (GRG) non-linear
resolution method of the Microsoft Excel Solver tool. To define the objective function,
the maximization of the ENS function (Nash–Sutcliffe coefficient of efficiency) and the
minimization of the RMSE function (root mean square error) were established as the
optimization objective in the Solver tool.

Shiri et al. [47] report that testing the calibrated version using the same calibration
data could lead to partially valid results. Therefore, the observed data corresponding
to the period from 2000 to 2019 were separated into two groups, being considered for
calibration (70%) and validation (30%). However, using historical data to calibrate the
HS model directly ignores the continuity of climate change over time, which can lead to
good performance of the calibrated HS model in the calibrated years; however, instability
may appear when the HS model is an extended data set [48]. To reduce this instability,
the calibration and validation period was selected randomly. Consequently, to verify the
validity of the new K̂RS obtained from the HS equation, they were evaluated through
performance metrics, which that include the ENS, PBIAS, MAE and RMSE (Table 2).

2.6. Regionalization of the Radiation Coefficient K̂RS

A geographic information system (GIS) was used to spatially interpolate the point
values of K̂RS at a spatial resolution of ~90 m. The multiple linear regression (MLR) method
was used with K̂RS as the dependent variable, while the longitude, latitude and altitude
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were used as independent variables followed by residual values. The longitude and latitude
maps were interpolated using the inverse distance weighted (IDW) method based on the
pixel centroids of the altitude map, while the residue map was interpolated using the IDW
method based on point location values of each weather station. Next, K̂RS was obtained
using map algebra (raster calculator tool) in ArcGIS. The value of K̂RS(x) at the unmeasured
points is obtained according to the following equation:

K̂RS(x) = b0 + b1 × X + b2 ×Y + b3 × Z + residue (9)

where: K̂RS(x) is the predicted value at point x, b0, b1, b2 and b3 are the MRL coefficients,
the values of X, Y and Z are the independent variables at point x, X is the longitude, Y is
the latitude, Z is the altitude, and the residue.

The flow diagram of Figure 3 summarizes the analysis procedure for the improvement
of the Hargreaves–Samani reference evapotranspiration estimates.
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3. Results and Discussion
3.1. Evaluation of the Original Hargreaves-Samani Equation

Figure 4 illustrates the comparison of ETo estimates by the original HS method versus
the PM method. The value of KRS considered for the HS equation was 0.17 ◦C−0.5 for
all weather stations. The precision of the ETo values of the original HS equation had
significant variations in the SH-h and SH-d climatic zones identified in the study area
(Table 1). The scatter diagrams reveal that the values of the correlation coefficient (R) within
the two climatic zones oscillated between 0.84 and 0.97, presenting lower values in the
ANA and PTN stations and higher values in the PNO and JLC stations. On the other hand,
in relation to the values of the NSE vary between −0.57 and 0.87, NSE values lower than
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0.50 were presented in the PTN, JUL, JLC and ANA stations, indicating poor performance.
Meanwhile, values higher than 0.75 were presented in the of HNE and LAM stations,
indicating very good performance according to the discretion of Moriasi et al. [43].
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Figure 4. Scatter diagrams between values of ETo by the PM method versus original HS at the
weather stations.

The PBIAS oscillates values between −18.60% and 12.70%, deducing that the HS equa-
tion tends to underestimate the ETo in the JUL, PNO, DES, ANA. HNE and LAM stations
with values of −18.60%, −8.80%, −8.30%, −5.20%, −4.90% and −1.90%, respectively. On
the other hand, it tends to overestimate the ETo in the PTN, JLC and CHQ stations whit
values of 12.70%, 11.80%, and 7.30% respectively. The ETo underestimations occurred in
the JUL, PNO, DES y HNE stations that are close to Lake Titicaca (LT), it was also observed
in the LAM and ANA stations that are far from the LT, while the overestimations the ETo
observed in the stations that are far from the LT. For the CHQ station that is in the SH-h
climate classification, and the JLC and PTN stations with SH-d climate, the results are in
accordance with that determined by Trajkovic [6], where the HS model generally overesti-
mates the ETo in humid climate areas. However, the ANA and JUL station with the SH-h
climate and DES, HNE, LAM and PNO stations with the SH-d climate, underestimated the
ETo, therefore, the use of the HS equation is not very efficient.

Meanwhile, for Allen et al. [13], the HS equation tends to underestimate the ETo values
under strong wind conditions and to overestimate the ETo under high relative humidity
conditions. In this study, only the DES station reports a high wind speed, which tends to
underestimate the ETo, while the other stations that registered lower wind speeds tended to
underestimate and overestimate the ETo. On the other hand, in relation to relative humidity,
the results do not agree with the ANA weather station, which tends to underestimate ETo.
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On the other hand, the values of the MAE oscillate between 0.16 and 0.65 mm/d,
presenting the lowest values in the LAM, ANA, HNE, CHQ and DES stations (0.16, 0.19,
0.23, 0.25 and 0.29 mm/d) and the high values in the PNO, JLC, PTN and JUL stations (0.31,
0.38, 0.41 and 0.65 mm/d). Likewise, the RMSE values vary between 0.20 and 0.67 mm/d,
presenting low values occurred in the LAM, ANA, HNE, CHQ, DES and PUN stations (0,
20, 0.22, 0.28, 0.31, 0.33 and 0.33 mm/d) and high values in the JLC, PTN and JUL stations
(0.41, 0.49 and 0.67 mm/d).

3.2. Calibration and Validation of the Radiation Coefficient KRS of the HS Equation

The results show that using a single value of KRS can lead to less precise estimates of
ETo in the PA, thus, the calibrated values of the K̂RS range from 0.150 ◦C−0.5 to 0.199 ◦C−0.5.
For most of the stations, the values of K̂RS differ from the coefficient suggested by Har-
greaves and Samani [15], except that of the LAM station where a very close value was
obtained (K̂RS = 0.173 ◦C−0.5). High values of K̂RS were obtained at the DES, JUL, PNO
and HNE stations close to LT, with values of 0.184 ◦C−0.5, 0.209 ◦C−0.5, 0.186 ◦C−0.5 and
0.179 ◦C−0.5, respectively, while low K̂RS values were obtained at the CHQ, JLC and PTN
stations with values of 0.158 ◦C−0.5, 0.152 ◦C−0.5 and 0.150 ◦C−0.5 respectively, which are the
same ones that are far from the LT. The ANA station located at high altitude (4660 m.a.s.l.)
and far from the LT registered a high value of K̂RS = 0.179 ◦C−0.5. Ref. [30] showed that KRS
values do not decrease with distance from the sea. At the same time, the standard values of
0.16 ◦C−0.5 and 0.19 ◦C−0.5 should not be assumed. In this regard, the precision of the ETo
estimate improved for each weather station by adopting the calibrated and validated K̂RS
values in the HS equation.

Figure 5 shows the spatial distribution of the NSE, PBIAS, MAE and RMSE of the ETo
estimates from the HS and modified HS equation (HSM) for the nine stations. The perfor-
mance indicators significantly improved the NSE values that oscillate between 0.64 and
0.94 for the calibration phase, while for the validation phase the NSE values oscillate be-
tween 0.58 to 0.93. The lowest values were presented in the ANA and PTN stations with
0.64 and 0.65 in the calibration phase, and values of 0.58 and 0.64 in the validation phase.

On the other hand, the PBIAS values oscillate between −0.52% and −0.01% in the
calibration phase, presenting slight underestimations in all weather stations; however, in
the validation phase the values oscillate between −0.58% and 1.34%, presenting under-
estimations in the CHQ and DES stations at −0.21% and −0.58% respectively, according
to the discretion of Moriasi et al. [43] the PBIAS values are below ±5%, being considered
‘very good’.

Regarding the MAE, the HSM equation with calibrated and validated K̂RS values
presents low values for all weather stations, ranging between 0.02 and 0.00 mm/d, for the
calibration phase. Meanwhile, for the validation phase, the MAE values oscillate between
−0.02 and 0.05 mm/d, respectively. Likewise, for the calibration phase, the RMSE values
are between 0.13 and 0.25 mm/d, while for the validation phase, the RSME values are
between 0.14 and 0.25 mm/d. The precision indicators used agree with those found in
studies conducted by Rodrigues and Braga [30], Paredes et al. [29] and Raziei and Pereira [5],
where, after calibrating the value of the KRS, the ETo led to very good results, being able to
use the simplified equations (Table 3) for the estimation of the ETo locally.

3.3. Regionalisation of the Radiation Coefficient K̂RS

Considering the scarcity of climatic data, the regionalization of the K̂RS for the PA is
proposed. The RLM model was used to build the regionalization model of the K̂RS based
on geographic characteristics. The results of the correlation analysis between K̂RS and the
geographical characteristics of longitude, latitude and altitude resulted in a correlation
equal to 0.59, −0.62 and 0.04 respectively. The latitude feature obtained the highest correla-
tion compared with the longitude and altitude features. Consequently, the geographical
characteristics (longitude, latitude and altitude) explained the variability of K̂RS by 55.7%
(R2 = 0.557) (Figure 6b). This study found that the regional equation of K̂RS(x) could better
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estimate ETo for regions with limited data within the PA, with the magnitude of R2 being
acceptable for estimating K̂RS in the PA from geographic characteristics.

K̂RS(x) = −0.271560 + 0.000879× X− 0.024670×Y + 0.000032× Z + residue (10)Water 2023, 14, x FOR PEER REVIEW 12 of 17 
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in gray outline.
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Table 3. Modified HS equations for each weather station.

Station Recommended Equations

Ananea (ANA) ETO,HSM(ANA) = 0.0135× 0.179× Ra × (Tmed + 17.8)(Tmax − Tmin)
0.5

Lampa (LAM) ETO,HSM(LAM) = 0.0135× 0.173× Ra × (Tmed + 17.8)(Tmax − Tmin)
0.5

Chuquibambilla (CHQ) ETO,HSM(CHQ) = 0.0135× 0.158× Ra × (Tmed + 17.8)(Tmax − Tmin)
0.5

Putina (PTN) ETO,HSM(PTN) = 0.0135× 0.150× Ra × (Tmed + 17.8)(Tmax − Tmin)
0.5

Huancané (HNE) ETO,HSM(HNE) = 0.0135× 0.179× Ra × (Tmed + 17.8)(Tmax − Tmin)
0.5

Juliaca (JLC) ETO,HSM(JLC) = 0.0135× 0.152× Ra × (Tmed + 17.8)(Tmax − Tmin)
0.5

Puno (PNO) ETO,HSM(PNO) = 0.0135× 0.186× Ra × (Tmed + 17.8)(Tmax − Tmin)
0.5

Juli (JUL) ETO,HSM(JUL) = 0.0135× 0.209× Ra × (Tmed + 17.8)(Tmax − Tmin)
0.5

Desaguadero (DES) ETO,HSM(DES) = 0.0135× 0.184× Ra × (Tmed + 17.8)(Tmax − Tmin)
0.5
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Figure 6. Regionalization of the calibrated radiation coefficient K̂RS of the HS equation as a function
of longitude, latitude and altitude: (a) variation of the original KRS, K̂RS calibrated, K̂RS(x) − residue
and residuals; (b) scatterplot between K̂RS and K̂RS(x) − residue interpolated without addition of
the residual.

The standard error for K̂RS was 0.016. The confidence interval for the b0 model param-
eter varies between −4.25303 and 3.70991, that for b1 varies between −0.04514 and 0.04690,
that for b2 varies between −0.06647 and 0.01713 and that for b3 varies between −0.00005
and 0.00012, with a confidence level of 95%. The residuals of K̂RS for the station points,
vary between −0.019 and 0.019 respectively (Figure 6a), being the applicable equation for
the PA.

The K̂RS(x) values for the PA vary between 0.15 and 0.27. The spatial distribution
is greater for the western, central and southern zone of the Altiplano, as it approaches
the coastal areas; while lower values are observed for the northern zone there (Figure 7),
these estimated values when regionalizing the radiation coefficient for the PA, are found
in the range of the values reported by Samani [49] which oscillates between 0.12 and
0.24 ◦C−0.5, by Raziei and Pereira [5] obtained values that oscillate between 0.14 and
0.20 ◦C−0.5, while results obtained by Paredes et al. [50] show values that oscillate between
0.14 and 0.25 ◦C−0.5, respectively.

The regional equation to estimate the ETo in the PA based on the Hargreaves–Samani
model is as follows:

ETO,HSM = 0.0135× K̂RS(x) × Ra × (Tmed + 17.8)(Tmax − Tmin)
0.5 (11)

where K̂RS(x), is the predicted value at any point in the Peruvian Altiplano.
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4. Conclusions

The main objective of the research was to improve the Hargreaves–Samani reference
evapotranspiration estimates in the PA. The main conclusions are summarized below:

The HS model based on air temperature is recommended as the simplest and most
practical method to estimate ETo. The ETo HS estimates were evaluated based on the ETo
PM estimates in the PA. The period considered was from January 2000 to December 2019
on a monthly time scale. The ETo calculated with PM and HS showed a high correlation,
but a great bias, with strong underestimations and overestimations of the ETo, requiring its
local calibration before its use.

Due to its association of the radiation coefficient KRS with solar radiation, it is prefer-
able to calibrate the values of KRS from the HS equation and thus obtain an HSM equation.
The HSM model performed better than the HS model for each weather station. Better
estimates of ETo were obtained with HSM after calibration of the radiation coefficient KRS
of the HS equation, mainly removing biases.

The new values of the radiation coefficient KRS of the HS empirical model for the
PA are presented. The MLR model was used to regionalize the radiation coefficient KRS.
The HS equation, together with the calibrated radiation coefficient KRS, can significantly
improve the estimate of ETo over data-deficient regions within the PA.

It is important to note that although the MLR model used to regionalize the KRS has
proven effective in estimating ETo in the study area, it is necessary to consider that the
lack of availability of observed climatic data could affect its reliability in areas far from
the meteorological stations used for calibration. Therefore, caution is recommended when
using the HS equation with new KRS values in areas outside the study area and away from
the meteorological stations, and further research is suggested to evaluate the applicability of
the proposed approach in other regions with different climatic and topographic conditions.
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In this regard, future research lines could be explored, such as (1) examining the influence
of other factors, such as soil moisture and vegetation cover, on the accuracy of ETo estimates
using the HS model, (2) expanding the research to other regions with different climatic
and topographic conditions to evaluate the applicability of the proposed methodology,
and (3) exploring the regionalization of KRS based on additional climatic factors. These
research lines could improve the accuracy of ETo estimates and, therefore, have a positive
impact on the management and planning of water resources in different regions.
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