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Abstract: We analysed a 24 cm long sediment sequence (past ~200 years) from an alpine lake (Tatra
Mts., Slovakia) for chironomids, cladocerans, and diatoms to reconstruct the effects of a historically
documented fish introduction. Our results indicate that fish introduction predated the age of the
sequence, and thus, we did not cover the lake’s fishless period. The individual proxies coincide in
showing two main lake development stages. The first stage lasted until ~1950 CE and was interpreted
as the stage when brown trout and alpine bullhead co-occurred. The extremely low concentration
of cladocerans, the dominance of small-bodied chydorids, and the low share of daphnids, together
with the low proportion/absence of large-bodied tanypod chironomids, suggest a strong effect of
both species. The beginning of the next stage is probably related to the ban on fish manipulations
and grazing in the catchment. A significant increase in the total abundance of cladocerans and of
daphnids may indicate the extirpation of trout. The steep increase in thermally plastic chironomid
taxa since the end of the 20th century indicates climate warming. Generally, while cladocerans
primarily indicate fish manipulations, chironomids and diatoms mainly reflect other local and global
environmental stressors.

Keywords: Chironomidae; Cladocera; Bacillariophyceae; alpine bullhead; brown trout; paleolimnology;
Tatra Mountains; Western Carpathians

1. Introduction

Mountain areas are among the most sensitive environments worldwide. Although
human pressure (grazing, agriculture, and forestry) in European mountains began several
millennia ago [1], mountains have been increasingly affected by human activities since the
industrial revolution [2]. Towards the end of the last century, anthropogenic pressure has
become increasingly evident. The alpine zone above the local tree line has been recognized
as a particularly fragile environment [3]. Recently, the remote and seemingly pristine
alpine ecosystems have been affected by climate change, long-distance atmospherically
transported pollution (acid deposition, persistent organic pollutants, and heavy metals),
nutrients, dust, and the increasing exposure to exotic and invasive species [4–6].
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Although lakes represent only a small part of the high mountain landscape, they may
support unique biodiversity and provide numerous ecosystem services [7]; hence, they
have tremendous ecological and environmental value [8]. Moreover, we can consider them
as important sentinels of global changes. Due to the extreme environmental conditions,
they have a relatively simple community structure and react more rapidly and sensitively to
environmental changes than lakes in the lowlands [9]. Even minor impacts can significantly
affect the physical and chemical properties of lake water and induce qualitative and
quantitative changes in their communities [10,11].

The high mountain lakes in the Tatra Mountains (Tatra Mts., Western Carpathians)
are among the most intensively studied in the European lake district [12]. A number
of studies have detected the very strong effects of acid atmospheric pollutants in the
second half of the 20th century; these effects have led to major changes in the planktic and
benthic communities [13–15], which were followed by a rapid reversal in the lake water
chemistry to levels similar to those of the pre-acidification conditions in the early 1990s [16].
More recent studies based on instrumental and paleolimnological data have revealed the
complexity of the biological recovery and water chemistry due to climate change [17–20].

Amongst several anthropogenic stressors that have been identified worldwide, biolog-
ical invasions are now considered a major environmental problem of public concern [21].
Fish belong to the most introduced groups of aquatic animals [22], with a high number
of invasive species in Europe [23]. The successful integration of fish species into a new
environment is associated with a high probability of detrimental interactions with native
species or even with changes in ecosystem functioning [21].

Fish stocking (usually with salmonids) into originally fishless high mountain lakes
affects the fragile local biodiversity in many direct and indirect ways. As they are usually
top predators, fish reduce the distribution and abundance of large zooplankton and produce
indirect top-down and cascading effects that alter the structure and biomass of small
zooplankton and phytoplankton species. Predation changes the structure of nektic and
benthic macroinvertebrate fauna and causes the local extinction of some species [24–28].
Further negative impacts include the reduction in or elimination of amphibians [29] and
the depletion of the aquatic biomass entering the terrestrial environment, which indirectly
affects terrestrial vertebrate and invertebrate predators [30,31].

In addition to global stressors, regional and local disturbances may influence the biota of
mountain lakes. The introduction of fish into previously fishless lakes in the European high
mountains is a major anthropogenic factor leading to profound ecological changes [29]. Re-
cently, fish have been introduced into high-altitude lakes in the Alps, Pyrenees, and Carpathi-
ans (e.g., Tatra and Retezat Mts.), mainly for the purpose of recreational fishing [32,33].

The lakes of the Tatra Mts. were (with two exceptions out of more than 220) originally
fishless due to the presence of natural barriers (steep slopes, the high current velocity
of the outlets, waterfalls, or the frequent complete isolation of lakes without outlets and
inlets) that have prevented the natural colonization of fish species from streams situated
lower down.

The published data on the native and introduced fish populations in the Tatra lakes are
usually qualitative; some are decades old and largely scattered in grey literature [34], which
makes compiling a coherent history of the stocking process difficult. The first mentions
of the occurrence of brown trout (Salmo trutta) in the lakes, where its natural occurrence
was impossible, date back to as early as the beginning and the second half of the 18th
century [35]. While these activities were most likely to have been occasional and not
thoroughly planned, an extensive program of fish stocking took place at the end of the 19th
century when brown trout (and non-native brook trout, Salvelinus fontinalis, in Poland) was
introduced into a great number of originally fishless Tatra lakes [36]. Another so-called
“planned” stocking of the lakes began in the 1930s and continued during the first half of the
20th century. However, some introductions occurred later, even after the establishment of
the Tatra National Park on the Slovak and Polish border, i.e., after 1950–1955 [34,37], when
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such activities were officially forbidden. The main stages of fish introduction in the Tatra
Mts. are roughly consistent with the situation in other European mountain ranges [33].

Overall, the lakes were stocked with three salmonid species: brown trout, brook trout,
and rainbow trout (Oncorhynchus mykiss), as well as with alpine bullhead (Cottus poecilopus).
An exception is Štrbské pleso lake located in the centre of tourism on the Slovak side of the
Tatra Mts.; the lake was stocked with many other non-native fish species [38] as a result
of both fish management and the collateral introductions of species used as live bait or
released illegally.

The extent of the past stockings of the Tatra lakes remains unknown to this day. The
introductions failed in many cases, but populations of brown trout and brook trout have
remained in eight lakes (not including Štrbské pleso lake) to the present day [14]. In some
lakes of the western part of the Tatra Mts., the population of alpine bullhead survived
as a remnant of the common introduction with brown trout. Both species are native
to the Tatra Mts. and coexist in sub-mountain and mountain brooks and rivers [39,40].
However, the intentional introduction of these two species with the aim of making alpine
bullhead a natural prey for brown trout [34] is an exceptional and unprecedented case of
fish introduction in European high mountain lakes [33]. Thus, we took this unique chance
to study the lake ecosystem changes under the combined pressure of these two predatory
fish species.

The overall aim of this paper is to provide a reconstruction of the development of a
small alpine lake as a response to fish introduction using subfossil diatoms, cladocerans,
and chironomids from sediments spanning the last ~200 years. Specifically, the study
addresses the following questions: (1) What is the timing of the fish introduction to the
lake? (2) Is it possible to distinguish periods with and without fish populations and to
identify the influence of a single species and the intertwined ecological impact of both
species? (3) Is there a synchronicity between the proxy records?

Surprisingly, little attention has been paid to the biology of fish and their ecological
impact on the Tatra lakes. Recent research has focused on the somatic growth of the
introduced brown trout and brook trout populations [41] and the effect of brook trout on
planktic copepods [37,42]. However, only two studies used a paleolimnological approach
to reconstruct the impact of fish introductions on the Tatra lakes [43,44].

Studies with a historical perspective are necessary to understand the impact of species
introduction; in turn, these studies are the basis for the establishment of more appropriate
management policies. Unfortunately, the historical (long-term) data are often missing, in
which case a paleolimnological approach can be used [45].

2. Material and Methods
2.1. Study Lake

Vyšné Račkovo pleso (VRP, 49◦11′59′ ′ N, 19◦48′06′ ′ E) is a small (0.7 ha) subalpine
lake of glacial origin with a maximum depth of 12.3 m. It is the uppermost lake (1697 m
a.s.l.) in a chain of seven small lakes in the Račkova dolina valley in the Western Tatra Mts.
(Figure 1). The lake has an inlet and an outlet, and its size slightly varies depending on
climatic conditions. In the spring, increased water runoff due to snowmelt can cause the
water level to rise and the lake can be connected with the two neighbouring lakes via its
extensive outlet. The catchment is mostly made up of alpine meadows with dwarf pines
and rocks. Due to the presence of metamorphic rocks in its catchment, VRP lake, such
as the other lakes in the Western Tatra Mts., has a higher concentration of base cations,
resulting in higher alkalinity. Thus, it did not undergo acidification in the past, in contrast
with many other Tatra lakes located in the granitic central part [13]. For the basic physical
properties and catchment of the lake, see Table 1.

2.2. Sediment Sampling

In October 2018, two short sediment cores (VRP-I 24 cm and VRP-2 21 cm long) were
taken from the deepest part of the lake (12.3 m) using a Kajak gravity corer. The longer
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core, VRP-I, was sectioned into 0.5 cm thick layers on site, and the sediment samples were
stored in plastic zip bags at approximately 4 ◦C in a refrigerator for later analysis.
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Figure 1. The location of the study lake, Vyšné Račkovo pleso (VRP), within Europe (A) and Slovakia
(B); the photograph shows the study lake and part of itsded catchment (C). Data source: Database of
Global Administrative Areas (GADM) and Digital Chart of the World (DCW). Photo: Opioła Jerzy,
license: Creative Commons Attribution-Share Alike 3.0 Unported.

2.3. Chronology

The age of each layer was calculated with the 210Pb method using the constant rate
of supply (CRS) model. The method uses the law of radioactive decay and changes in the
concentration of the so-called unsupported lead 210Pbunsup, which is washed out of the
atmosphere and incorporated into lake sediments. Its amount decreases over time. The
radioactivity of 210Pbunsup was calculated from the total 210Pb (210Pbtotal) and the supported
210Pb (210Pbsup) radioactivity. The concentrations of the radionuclides were calculated using
gamma spectrometry. The measurements of 210Pb via line 46.5 keV give the radioactivity
of 210Pbtotal. The concentration of 210Pbsup was determined via the measurement of 226Ra.
The supported lead is formed in situ in a sediment through the decay of 222Rn, whose
source is 226Ra, which is contained in the sediment. To calculate the 226Ra radioactivity, five
energy lines were used, specifically 1764.5 keV, 1120.3 keV, 609.3 keV (214Bi), 351.9 keV, and
295.2 keV (214Pb). By subtracting the value of 210Pbsup from (210Pbtotal), the values of
210Pbunsup and the age were calculated [47,48].

All the gamma measurements were conducted on the Broad Energy Germanium
Detector using Canberra Packard (BE 3830) with 34% relative efficiency. The results were
validated using reference material from the International Atomic Energy Agency (IAEA).
Before analysis, the containers were stored for at least four weeks to allow 226Ra and its
short-lived decay products to reach secular equilibrium. Finally, each sample was measured
for at least 72 h. Additionally, the chosen sediment samples, especially the upper layer with
the smallest weight (below 1.5 g), were measured on an alpha spectrometer with a PIPS
detector (34% efficiency), according to the procedure described previously [49].
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Table 1. Hydromorphological and physicochemical characteristics of the study lake, Vyšné Račkovo
pleso, and its catchment [16,46]. Abbreviations: R—rocks, S—sand, O—organic matter. Conductivity
was measured at 20 ◦C.

Variable/Site Name Unit Value

Coordinates 49◦11′59′ ′ N
19◦48′06′ ′ E

Altitude m 1697
Max. depth m 12.3
Area ha 0.74
Littoral habitat description (R:S:O) % 75:15:10

Catchment characteristics

Maximum altitude m 2137
Catchment area ha 56
Rock % 20
Moraine % 20
Meadow, dwarf pines % 60
Forest % 0

Water chemistry

pH 7.49
Alkalinity µeq L−1 219.15
Conductivity µS cm L−1 29.11
ANC µmol L−1 254
TON µmol L−1 7.7
TP µmol L−1 0.094
TOC µmol L−1 100
Cl¯ µmol L−1 4.9
SO2−

4 µmol L−1 32
NO−3 µmol L−1 13
NH+

4 µmol L−1 0.7
Na+ µmol L−1 21
K+ µmol L−1 2.5
Ca2+ µmol L−1 81
Mg2+ µmol L−1 69

The 210Pb method is mainly used to date within a period of 100–150 years in the
past. At most, it can be used to determine an age of 200 years. The estimated age of the
sediment core was confirmed using the 137Cs method. The 137Cs radionuclide is a fission
product. It is determined using gamma spectrometry via 661.6 keV. In sediment cores,
two maxima of 137Cs radioactivity should be visible. A large amount of this radionuclide
was introduced into the atmosphere during nuclear tests (1945–1963) and the Chernobyl
accident of 1986 [47,50].

2.4. Chironomid Analysis

To remove coarse organic and inorganic particles, we used sieves with mesh sizes of
90 µm and 200 µm. Head capsules were manually picked from the fractions on both sieves
at 40×magnification. At least 50 head capsules were collected from each layer. Chironomid
head capsules were mounted ventral side up in Berlese mounting medium on microscopic
slides. Taxonomic identification was performed under a compound microscope at up to
400×magnification in accordance with the standard identification guides [51,52]. Water
flow preferences, larval body size, and the feeding groups of individual taxa were assigned
to chironomid taxa [53,54].

2.5. Cladocera Analysis

Subfossil Cladocera analyses were carried out according to the standard method-
ology [55]. Fresh sediment samples (ca. 2 cm3) were treated with 10% HCl to remove
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carbonate and then heated in a 10% KOH solution. Later, the residue was put into a
magnetic stirrer for 20 min to eliminate the humic matter. Finally, the samples were sieved
through a 38 µm sieve and transferred into test tubes, which were then filled with up to
5 cc of distilled water. Each sample was stained with safranin. Depending on the amount
of remains, three to five slides (0.1 cm3 liquid suspension) were examined for each sample.
The taxonomic identification followed the standard literature [56].

2.6. Diatom Analysis

In total, 48 samples were used for the diatom analyses. The diatoms (Bacillariophyceae)
were mounted in Naphrax resin after the standard cleaning procedure, which used 30%
H2O2 as the oxidizing reagent for the elimination of the organic material, followed by a
10% HCl treatment to remove the carbonates [57]. A minimum of 400 valves was counted
in a sample across randomly selected transects using a 1000× oil immersion objective and
a Nikon Eclipse Ni-U microscope. The diatom identification was mainly based on [58–64].
The nomenclature was checked and updated according to AlgaeBase [65]. Only diatoms
with total abundances >5% were included in the stratigraphic diagram.

2.7. Data Analysis

Biological data were compiled and graphed using C2 software version 1.7.7 [66].
Stratigraphically constrained sum-of-squares cluster analysis (CONISS) was applied in
Tilia version 1.7.16 [67] to objectively divide the downcore changes in the assemblage
composition and abundance into zones. To show the changes on a community level, all
the biological proxies were analysed using DCA (detrended correspondence analysis) in
Canoco for Windows version 5.01 [68], using untransformed relative abundance data. The
results were shown as the DCA first axis scores plotted against age.

3. Results
3.1. Chronology

The 24 cm long sediment core was estimated to have been deposited in the last
195 years (Figure 2). The sedimentation rate varied over time. The top 10 cm layers
(1952–the present) were settled within 3 years on average. The fastest sedimentation
was observed from 15 to 10.5 cm (1938–1950). From 21 to 15.5 cm (1895–1936) a slower
sedimentation rate was observed, and the oldest sequence (1823–1889) had the slowest
sedimentation rate. The results of the 137Cs radionuclide method confirmed the accuracy
of the lead dating. Indeed, elevated levels of 137Cs concentrations were identified around
the 1980s and 1960s, corresponding to the Chernobyl accident and nuclear weapon tests.
However, due to the organic nature of the sediments, this radionuclide migrates down
the profile, and there is no possibility to determine the visible maximum of the 137Cs
radioactivity. This is also the reason why it is measurable in the lower layers [48,69]. The
presence of caesium between 9.5 and 8.5 cm can be attributed to the global fallout after the
nuclear weapon testing. According to the 210Pb method, at a depth of 6 cm, the sediment
was dated to 1986; in addition, the radioactivity of the 137Cs at this depth reached one of
the highest values. However, because of its migration, the expected peak was blurred.

3.2. Chironomid Assemblages

A total of 3474 chironomid head capsules, representing 30 taxa of five subfamilies, were
identified. The subfamily Orthocladiinae, followed by the tribe Tanytarsini (Chironominae),
dominated the entire sequence, with the most common taxa being Paratanytarsus austriacus-
type, Heterotrissocladius marcidus-type, Eukiefferiella fittkaui-type, Tanytarsus lugens-type, and
Diamesa spp. Rheophilic and rheobiontic taxa, such as Diamesa spp. and Eukiefferiella fittkaui-
type, constituted a substantial proportion of the assemblages, ranging from 5 to more than
25% in the individual samples (Figure 3). Regarding the feeding strategy, grazers/scrapers
and collectors dominated the whole sediment sequence and did not show considerable
changes over time. The proportion of predators, on the other hand, showed marked
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dynamics ranging from 0 to 10% (Figure 4). Two Chironomidae assemblage zones (CHAZ I,
II) and two sub-zones (CHAZ IA and IB) were identified based on community composition.
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CHAZ IA (24.0–12.0 cm, ~1823–1946 CE)

The most abundant taxa for the zone CHAZ I were Tanytarsus lugens-type (29% on
average), Paratanytarsus austriacus-type (21%), and Heterotrissocladius marcidus-type (18%).
The tribe Tanytarsini slightly predominated over Orthocladiinae, while the proportion of
Tanypodinae was negligible. In general, this zone had both the lowest taxonomic richness
and the lowest proportion of rheophilic taxa compared to the other parts of the sequence.

In the sub-zone, Heterotrissocladius marcidus-type became dominant, while the propor-
tion of Tanytarsus lugens-type slightly decreased. This trend is mirrored in the decline in
Tanytarsini and in the increase in Orthocladiinae. Tanypodinae are almost entirely missing
until the end of the sub-zone. The proportion of Diamesinae remained relatively high in the
sub-zone and reached its maximum (~20%) at a depth of around 13 cm. The number of taxa
and the proportion of rheophilic taxa varied significantly, especially between 15 and 12 cm.

CHAZ IB (12.0–4.5 cm, ~1946–1996 CE)

While the dominating taxa remained the same, a considerable increase in taxonomic
richness and head capsule counts marked the beginning of this sub-zone. The dominating
subfamilies remained the same, but tanypod predators became stable, although not an
abundant part of the assemblage. The proportion of taxa with large-sized larvae increased
in this sub-zone.

CHAZ II (4.5–0.0 cm, ~1996–2018 CE)

The decline in the proportion of Tanytarsus lugens-type and the decreasing trend
of Heterotrissocladius marcidus-type, combined with the appearance of new thermophilic
taxa (e.g., Macropelopia sp., Tanytarsus mendax-type), were characteristic for the last zone.
Tanytarsini increased rapidly at the expense of Orthocladiinae, and Tanypodinae reached
their maximum relative abundance in this zone. The proportion of large-bodied taxa also
increased significantly. From the beginning of the zone, the proportion of grazers/scrapers
showed an increasing trend, while that of the collectors decreased.
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3.3. Cladocera Assemblages

In total, six Cladocera taxa belonging to two families were identified: Daphniidae and
Chydoridae. The littoral taxa of the family Chydoridae dominated the species composition
through the entire core. Based on assemblage composition and relative abundance, the
cluster analysis distinguished two main Cladocera assemblage zones (CAZ I and CAZ II)
and two sub-zones (CAZ IIA and CAZ IIB) (Figure 5).
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CAZ I (24.0–21.5 cm, ~1823–1889 CE)

The Cladocera assemblages were dominated by Chydorus sphaericus, with an average
abundance of 56%, followed by another cold-tolerant species, Alona affinis (32% on average).
The average share of pelagic taxa represented by the Daphnia longispina group constituted
less than 7%. Camptocercus rectirostris and Pleuroxus trigonellus were also sporadically
present. In general, the Cladocera concentration of the zone was extremely low, with a
maximum of 551 individuals per g of dry sediment (d.s.) at a depth of 22 cm.

CAZ IIA (21.5–10.5 cm, ~1889–1950 CE)

In this sub-zone, the ratio of Chydorus sphaericus gradually decreased (Figure 5), while
that of Alona affinis increased (38% and 51% on average, respectively). At a depth of 15 cm,
Alona affinis took over and became the dominating species of the sequence. Camptocercus
rectirostris and Pleuroxus trigonellus were sporadically noted in the zone. The total Cladocera
sum was still low, corresponding to an average of 641 ind/g d.s.

CAZ IIB (10.5–0.0 cm, ~1950–2018 CE)

The most significant feature of the sub-zone was the dramatic increase in the total number
of cladocerans to ca. 8800 ind/g d.s at a depth of 8 cm, while the average Cladocera abundance
equalled 2433 ind/g d.s. From 4.5 cm to the top, Alona affinis constituted more than 75% (from
695 to 4657 ind/g d.s) of the total Cladocera abundance. During this period, the absolute
abundance of the Daphnia longispina group increased, but its proportion within the assemblage
did not change significantly since the abundance of Alona affinis (and to a lesser extent Chydorus
sphaericus) also increased considerably. Camptocercus rectirostris and Pleuroxus trigonellus were
sporadically observed, although both in higher numbers than previously. Alona quadrangularis
was found in the sediment record (0–0.5 cm) for the first time.
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3.4. Diatom Assemblages

A total of 110 diatom taxa were found in the sediment sequence. The relative abun-
dance of 15 species was higher than 5% in at least one sample. Disregarding Orthoseira
roeseana (a centric species, from which only two valves were recorded), the diatom com-
position consisted exclusively of pennate species, which were present through the sedi-
mentation core. The most common and abundant diatoms in the assemblages were small
fragilarioid forms, namely Staurosira pseudoconstruens, S. venter, Staurosirella pinnata, and
Pseudostaurosira parasitoides. Two significant diatom assemblage zones were identified, with
two sub-zones in each (Figure 6).
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DAZ IA (24.0–22.0 cm, ~1823–1885 CE)

The Achnanthidium minutissimum complex (14%), together with small fragilarioid
taxa, such as Staurosirella pinnata (up to 15%), Staurosira venter (up to 9%), and Staurosira
pseudoconstrues (8%), dominated in this sub-zone. Species such as Tryblionella angustata,
Sellaphora mutatoides, Psammothidium subatomoides, Encyonema minutum, Karayevia suchlandtii,
Psammothidium lacus-vulcani, and Skabitschewskia oestrupii were present in very low amounts
and together accounted for 0.8% of the total abundance.

DAZ IB (22.0–10.0 cm, ~1885–1952 CE)

As with the previous sub-zone, the assemblage was dominated by the Achnanthidium
minutissimum complex (representing 11 to 16% of the total abundance). Small taxa such
as Staurosirella pinnata (12%), Staurosira venter (9%), Staurosira pseudoconstruens (8%), and
Pseudostaurosira parasitoides (8%) were also important components of the diatom assem-
blage. At the end of this zone, the proportion of the benthic monoraphid species Karayevia
suchlandtii started to increase gradually (from 2 to 13%). Encyonema ventricosum, Psam-
mothidium lacus-vulcani, and Amphora pediculus were also recorded (together comprising up
to approximately 6% of the total abundance). Tryblionella angustata, Encyonema minutum,
Fragilaria pararumpens, Skabitschewskia oestrupii, Psammothidium subatomoides, and Sellaphora
mutatoides occurred as minor components of the diatom flora (with a less than 5% share in
the samples).
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DAZ IIA (10.0–6.0 cm, ~1952–1986 CE)

This zone represents the period of the greatest change in the diatom assemblage and
is delineated by the marked increase in the proportion of benthic monoraphiod species
such as Karayevia suchlandii (max. relative abundance 19%) and Skabitschewskia oestrupii
(11%). At the same time, the proportion of Staurosirella pinnata and Staurosira parasitoides
started to decline gradually. The Achnanthidium minutissimum complex and Staurosira
pseudoconstruens remained a stable part of the assemblage.

DAZ IIB (6.0–0.0 cm, ~1986–2018 CE)

In this sub-zone, Karayevia suchladtii and Skabitschewskia oestrupii became the domi-
nant species (with up to 19% each), together with the Achnanthidium minutissimum com-
plex (16%), which slightly declined at the end of the sequence to 9%. In the uppermost
5 cm of the sediment, the share of Staurosira pseudoconstruens increased significantly. In
contrast, the relative abundances of Pseudostaurosira parasitoides and Staurosirella pinnata
were considerably lower compared to the bottom part of the sediment sequence.

4. Discussion

The timings of the pronounced changes documented in the biological proxies coincide
throughout the sedimentary record, showing two main lake-development stages over
the last 200 years (Figure 7), with the main borderline at 10.0–12.0 cm, corresponding
with ~1950 CE.

Water 2023, 15, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 7. Comparison of the full community response of ■ cladocerans, ■ diatoms, and ■ chirono-
mids, expressed as DCA 1st axis scores. 

The significant effects of fish on the structure and dynamics of zooplankton commu-
nities are well known [74–77] and include, among others, the decrease in density and body 
size of individuals [75,78] and, consequently, the increase in the proportion of small-sized 
species [79]. The extremely low concentration of cladocerans, the dominance of small-
bodied chydorids, and the low share of the Daphnia longispina group suggest a strong ef-
fect of brown trout. Chydorus sphaericus and Alona affinis are the most common and abun-
dant littoral cladocerans in the Tatra Mts. Both species enter the pelagic zone regularly 
[80,81], where they can be exposed to the predation pressure of brown trout. The few 
studies on the trout diet in the Tatra Mts. showed that the species mainly utilised zoo-
plankton, especially Cyclops abyssorum, and emerging chironomid pupae were the second 
most important food item [41]. The alpine bullhead is a poor swimmer; therefore, its abil-
ity to catch zooplankton in the water column is limited [82]. However, it can prey on small 
zooplankton species living on or among sediment particles [83]. 

Figure 7. Comparison of the full community response of � cladocerans, � diatoms, and � chirono-
mids, expressed as DCA 1st axis scores.

Even though the first well-documented, large-scale historical fish stocking in the
Slovak Tatra Mts. took place at the end of the 19th century [36], the assemblage composition
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of chironomids and cladocerans does not indicate significant change at that time, suggesting
that fish could have been released into VRP lake earlier. The first mention of the common
introduction of brown trout and alpine bullhead into the lakes in the valley adjacent to
Račkova dolina valley comes from the end of the 18th century [35]. It is likely that VRP lake,
together with the other lakes in the Western Tatra Mts., was subject to fish introduction at
the same time; hence, the analysed sedimentary record (starting with 1823 CE) does not
capture the period with fishless conditions. Thus, we assume that the composition of the
chironomid and cladoceran assemblages in the older part of the sediment sequence already
reflects the combined predatory pressure of brown trout and alpine bullhead. Overall, the
two mentioned species have similar diets with respect to benthic prey, both being visual
predators [70,71], which select the larger and heavier prey items. However, the brown trout
is more opportunistic and feeds on zooplankton, drifting invertebrates, chironomid pupae
in the water column, and insects that have fallen onto the water surface [72,73].

The significant effects of fish on the structure and dynamics of zooplankton communi-
ties are well known [74–77] and include, among others, the decrease in density and body
size of individuals [75,78] and, consequently, the increase in the proportion of small-sized
species [79]. The extremely low concentration of cladocerans, the dominance of small-
bodied chydorids, and the low share of the Daphnia longispina group suggest a strong effect
of brown trout. Chydorus sphaericus and Alona affinis are the most common and abundant
littoral cladocerans in the Tatra Mts. Both species enter the pelagic zone regularly [80,81],
where they can be exposed to the predation pressure of brown trout. The few studies on the
trout diet in the Tatra Mts. showed that the species mainly utilised zooplankton, especially
Cyclops abyssorum, and emerging chironomid pupae were the second most important food
item [41]. The alpine bullhead is a poor swimmer; therefore, its ability to catch zooplankton
in the water column is limited [82]. However, it can prey on small zooplankton species
living on or among sediment particles [83].

The Daphnia longispina group has evidently survived fish predation in VRP lake, albeit
in low abundance. There is evidence of the co-existence of large-bodied species such as
Daphnia “pulicaria”, with the fish in both the lakes with a native brown trout population
and those stocked with brook trout and brown trout, respectively [14]. One explanation
could be that Daphnia can occupy a refuge in the deeper parts of lakes with low light
intensity [84] and may therefore be unavailable for the brown trout, which requires a
certain amount of light for optimal foraging and thus hunts near the surface [70]. Another
possible explanation is that the population of brook trout was never abundant enough
to eliminate its prey; in addition, the dormant eggs of Daphnia could survive the passage
through the fish digestive system [85], allowing the population to regenerate. This peculiar
survival mechanism was first described in the Tatra Mts. for Cyclops abyssorum [37].

The majority of studies on the diet of salmonids and sculpins living in sympatry have
been conducted in flowing waters [86], and only a few works deal with lakes [83]. In
streams, both species consume a number of invertebrate taxa, the most important being the
larvae of aquatic insects (above all, Chironomidae, Trichoptera, Ephemeroptera, Plecoptera,
and Simuliidae) and crustaceans (Gammarus) [72,86,87]. Even though both species are
strongly size-selective predators, preferring the largest prey available [88], chironomid
larvae can constitute a substantial part of the diet for their small (juvenile) specimens [73].

The composition of the subfossil chironomid assemblage of VRP lake corresponds to
the modern chironomid fauna of the alpine Tatra lakes situated below 2000 m a.s.l. [89],
while a relatively high proportion of rheophilic taxa (Diamesa spp. and Eukiefferiella fittkaui-
type) is most likely related to a strong inflow [90]. The subfossil chironomid assemblages
in the VRP sediment sequence do not show any compositional changes associated with
the presence of fish, with the exception of an apparently low proportion or absence of the
Tanypodinae subfamily. Tanypodinae larvae are large and free-living and as such are more
sensitive to fish predation than the larvae of tube-building or burrowing species [91,92]. We
assume that the decline in the proportion of large Tanypodinae was caused by the alpine
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bullhead, which, unlike the brown trout, selectively chooses larger and heavier food items,
also among chironomid larvae [72].

Chironomids are an important, but certainly not the only, insect group of the littoral
macroinvertebrate fauna of alpine lakes. The large larvae of Ephemeroptera, Plecoptera, and
Trichoptera, which are abundant in the oxygen-rich, stony littoral of the Tatra lakes [15], are
attractive prey for fish, and they respond to fish predation promptly. Even though historical
data on the mentioned groups are scarce, studies from 1981 to 1985 and 2000 [15,93] show
a destructive effect on benthic macroinvertebrates in all the Tatra lakes populated with
alpine bullhead. The littoral communities of those lakes consist only of oligochaetes and
chironomids, in contrast to the comparatively fishless Tatra lakes with littoral communities
rich in Trichoptera, Plecoptera, and Ephemeroptera. Thus, chironomid remains preserved
in the sediment sequence provide only partial information on the overall fish impact on the
benthic fauna.

The establishment of the Tatra National Park in 1948 led gradually to the limitation
of human activities in the Tatra Mts., particularly those of livestock grazing, logging,
and mineral raw material exploitation, and at the same time, the protection of species and
ecosystems became stricter [36]. By the 1950s, all the above activities ceased, and we assume
that the same thing happened with fish stocking, which is confirmed by the changes in the
cladoceran assemblages (and partially in chironomids) that indicate lower fish predation
pressure at that time. A sudden and significant increase in the total number of cladocerans
and the absolute abundance of the Daphnia longispina group indicate the extirpation of trout.
Although adapted to harsh conditions of the mountain streams, the population of brown
trout suffered from extreme lake conditions (low temperature, long ice-cover periods, low
ionic concentrations, and low productivity) at the edge of its ecological limits. The rare
studies on the native and introduced trout population in the Tatra lakes [41,94] reported
slow growth and starvation as a result of a lack of food in an unproductive environment
and intraspecific competition.

Moreover, interspecific competition has to be taken into account. Alpine bullhead
and brown trout have similar requirements for space and food, and living in sympatry,
they can be potential competitors [73]. Previous studies have shown variable outcomes
of the competitive interactions between sculpins and salmonids [73,86]. The extinction of
brown trout in all the Tatra lakes where it was stocked together with alpine bullhead (not
only in VRP lake) indicates that brown trout could suffer from competition with alpine
bullhead as a superior competitor. It can be assumed that after brown trout went extinct,
alpine bullhead expanded its diet with other benthic organisms and therefore reduced the
predation pressure on large Tanypodinae larvae, whose proportion increased.

We assume that both fish populations were maintained in the lake by repeated stock-
ings. In this context, the occurrence of two cladoceran species is worth noticing. Camp-
tocercus rectirostris and Pleuroxus trigonellus mainly occupy water bodies situated up to
500 m a.s.l. [95] and are not common in the Tatra lakes [81]. We assume that these two
species were released unintentionally into VRP lake together with the introduced fish. In
an alpine lake such as VRP, they existed under suboptimal conditions, and after some time,
their populations declined and even disappeared, as we have seen in the sediment record.

We are aware that, in addition to fish introduction, the lake was under the influence
of the complex interactions of different environmental stressors operating on regional or
global levels. While changes in the assemblage composition of cladocerans and partly
in that of chironomids could be ascribed to fish manipulations in VRP lake, that of di-
atoms, owing to their complex and mainly indirect response to fish, may reflect other
environmental stressors.

The diatom assemblages of VRP lake were composed mainly of small benthic forms
during the whole studied period, which can be connected to the requirement of planktic
species for stratification of the water column to maintain their position in the photic
zone [96]. VRP lake has a strong inlet influence that induces water currents and, in turn,
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weakens stratification. The significant effect of the inlet in the past was confirmed by the
high proportion of rheobiontic/rheophilic chironomid taxa.

The most remarkable change in the assemblage structure appeared in the 1950s,
simultaneously with the subfossil cladocerans and chironomids, when Skabitschewskia
oestrupii and Karayevia suchlandtii became dominant at the expense of the fragilarioid
species, mainly Staurosira spp., Staurosirella sp., Pseudostaurosira parasitoides, and Fragilaria
pararumpens, which declined. Small fragilarioids are considered r-strategists, with the
ability to tolerate and proliferate in cold environmental conditions and to resist changes in
the littoral habitats [97]. We assume that their predominance could also be related to low
light requirements and thus their ability to compete well in lakes with low light penetration,
such as those associated with ice cover and minerogenic turbidity [96–98]. For example,
P. parasitoides in lake Rappensee apparently increased in abundance under conditions of
enriched nutrient supply and turbidity [98].

The supply of allogenic material with nutrient loads leading to a decrease in water
transparency could be related to former livestock grazing that enhanced soil erosion in
the lake basin and caused the erosion of its banks. The valley of VRP lake was intensively
used as pastureland since the Middle Ages [99], and its alpine zone still bears visible traces
of grazing (removed dwarf pine and the presence of nitrophilous plants, see (Table 1)).
The definitive cessation of grazing in the second half of the 1950s could have resulted
in an improvement in the light conditions in the lake. This assumption is supported by
an increase in the proportion of Karayevia suchlandtii after ~1950. The species requires
a sunlit lake floor [100], and it was restricted during the period of lower water trans-
parency [101]. The better light penetration could also lead to higher benthic production,
resulting in the higher proportion of benthic cladocerans. However, we acknowledge that
the same effect could have been caused by additional climate-related factors, e.g., a shorter
ice-cover period.

The sudden steep increase in the small lightly silicified species Skabitschewskia oestrupii
in the 1950s, which is associated with a lower nutrient content [102], indicates oligo-
mesotrophic conditions. In general, the taxonomic composition of this younger sediment
section with the domination of low-profile life forms [103] compared to the bottom section
points to the decreasing nutrient level of the lake. Lower nutrient input and decreased
turbidity may be related to the decline in fish population and the termination of grazing
in the catchment. However, this relationship may not be straightforward. Diatom trends
observed in the sedimentary record from the remote mountain lakes of the Northern
Hemisphere [9,104–107] seem to reflect general changes in the thermal stratification of lakes
as well as atmospheric deposition (mainly reactive nitrogen) [105]. However, admittedly,
these changes can be clearly followed in planktic or planktic/benthic ratio alterations rather
than the species compositions in benthic diatom assemblages. Skabitschewskia oestrupii
is a good example in that some algal changes began ca. 1900 but shifts in most of the
sedimentary proxies accelerated ca. 1950, corresponding to many human-caused changes
in the Earth’s system. A very similar abundance pattern of Skabitschewskia oestrupii to that
of VRP lake was observed in Svalbard, where it shows higher percentages from ~1950
onwards and profoundly increases from ~1995 onwards [102]. Climate-driven ecological
change has occurred in recent years, regardless of the exact locality or the remoteness of
the records or the depth of the lakes.

Indeed, temperature is one of the key variables directly controlling the life histories
of aquatic organisms, such as chironomids, and indirectly affecting the abiotic properties
of water bodies [108]. Lakes have responded rapidly to the abrupt climate warming in
the late 1980s [109], triggered by anthropogenic and natural forces [110]. Warming was
especially relevant in the alpine regions where the temperature rose to an unprecedented
level [111]. In the Tatra Mts., a particularly steep rise in air temperature, which was evident
from 1980 onwards, had a dominating effect on the chironomid communities of the alpine
lakes [20]. In the VRP sediment record, the onset of this warming is indicated by the
decline in the proportion of cold-stenothermal taxa, such as Tanytarus lugens-type and
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Heterotrissocladius marcidus in the 1980s and later by the appearance of the thermally less
restricted Macropelopia sp. and Tanytarsus mendax-type. In the Tatra training-set, Tanytarus
lugens-type and Heterotrissocladius marcidus belong to the cold end of the gradient while
Tanytarsus mendax-type and Macropelopia sp. have higher temperature optima of 0.5–0.8 ◦C,
respectively (own unpublished data). The appearance of Macropelopia at the beginning of
the 21st century in alpine lakes, where it had not been recorded in the past (unpublished
data), can be considered an upward shift of the distribution ranges induced by climate
warming, which has been frequently reported in the terrestrial environment [112] and less
often in aquatic ecosystems [20].

As mentioned earlier, the influence of temperature on the chironomid assemblage
structure may be indirect, through climate-induced changes in the physical and chemical
properties of lakes. Over the last decades, the proportion of Orthocladiinae has decreased
(this has been especially visible with regard to Heterotrissocladius marcidus), while that
of Tanytarsini has increased. According to [113], the driving force behind chironomid
community changes in the Holarctic lakes is the interplay between mineral sediment
accumulation and the availability of organic food resources rather than direct temperature
change. The decline in Hetrerotrissocladius marcidus (and orthoclads in general) may have
been the result of the change of mineral habitats into soft sediments. While soft sediments
with a high amount of organic matter suit Chironominae, hard substrates are favoured by
orthoclads, e.g., H. marcidus [114]. As the amount of organic matter in substrates increases,
the larvae of Heterotrissocladius can no longer compete and are replaced by species that
require soft bottom sediments and readily accessible food resources [113].
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41. Dočkalová, K.; Holubcová, J.; Bacardit, M.; Bartrons, M.; Camarero, L.; Gallego, E.; Grimalt, J.O.; Hardekopf, D.; Hořická, Z.;
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47. Szarlowicz, K.; Reczyński, W.; Misiak, R.; Kubica, B. Radionuclides and heavy metal concentrations as complementary tools for
studying the impact of industrialization on the environment. J. Radioanal. Nucl. Chem. 2013, 298, 1323–1333. [CrossRef] [PubMed]
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