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Abstract: Ultraviolet advanced oxidation processes (UV-AOPs) were compared using sodium perbo-
rate (UV/NaBO3 AOP) or hydrogen peroxide (UV/H2O2 AOP) for 1,4-dioxane removal from tertiary
wastewater effluent. Both UV-AOPs were also tested with the addition of acetic acid. Results re-
vealed that sodium perborate performed similarly to hydrogen peroxide. The UV/NaBO3 AOP
with 6 milligrams per liter (mg/L) as H2O2 resulted in 43.9 percent 1,4-dioxane removal, while an
equivalent UV/H2O2 AOP showed 42.8 percent removal. Despite their similar performance, NaBO3

is approximately 3.3 times more expensive than H2O2. However, the solid form of NaBO3 can provide
a major benefit to remote and mobile operations. Unlike H2O2 solution, which degrades over time
and requires repeated costly shipments, NaBO3 is a convenient source of H2O2, and a long-term
supply can be shipped at once and mixed into solution as needed. The addition of acetic acid to
a UV/H2O2 AOP was found to enhance 1,4-dioxane removal, increasing treatment effectiveness
by 5.7%.

Keywords: 1,4-dioxane; ultraviolet; advanced oxidation; perborate; peroxide; acetic acid; cost;
wastewater; water reuse

1. Introduction

Use of reclaimed water is becoming increasingly common in the United States of
America (USA) as communities realize the pertinence of conserving and protecting water
supplies. Water reclamation and reuse are currently not regulated on a federal level in
the USA. Thus, existing reclaimed water regulations and guidelines vary by each state,
intended reclaimed water use, and impacts on potable water supplies. With the likelihood of
reclaimed water having potable quality equivalent criteria under certain circumstances, the
need for research on enhanced wastewater treatment for reclamation purposes is important.

One parameter of emerging concern in reclaimed water use is 1,4-dioxane. 1,4-Dioxane is
a heterocyclic organic used as an industrial stabilizer for chlorinated solvents and can be found
in textiles, cosmetics, adhesives, spray polyurethane foam, and dyes [1–3]. 1,4-Dioxane can
also be found in groundwater, surface waters, and wastewaters [4]. Detection of 1,4-dioxane
in wastewater is not well documented, but published values range from undetected to
97 µg/L [1,4–6]. The United States’ Environmental Protection Agency (USEPA) classifies
1,4-dioxane as “likely to be carcinogenic to humans by all routes of exposure” and although is
unregulated on a national level, some guidelines have been established [7]. While the USEPA
has a health advisory level of 0.35 µg/L for potable water, some states have lower guidelines:
for example, the state of California has a notification level of 1 ng/L issued for 1,4-dioxane in
potable reuse applications [8,9]. The state of California also lists 0.5-log removal of 1,4-dioxane
as a performance metric for potable reuse treatment trains, including groundwater recharge
with reclaimed water [10].
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Treatment techniques considered for 1,4-dioxane removal from municipal water and
wastewater streams generally includes adsorption onto granular activated carbon media,
advanced oxidation processes, and in some cases, bioremediation through metabolic and
co-metabolic pathways [6,11,12]. Membrane treatment using nanofiltration and reverse
osmosis membranes has also been explored and met with moderate success [11,13], how-
ever, issues related to concentrate disposal persist. Advanced oxidation processes can
break down 1,4-dioxane; if 1,4-dioxane is fully degraded, the end products are carbon
dioxide and water. Therefore, advanced oxidation processes that degrade 1,4-dioxane are
of particular interest.

Ultraviolet and hydrogen peroxide (UV/H2O2) based advanced oxidation processes
(AOPs) have been extensively studied in literature for water reclamation and reuse ap-
plications [14–16]. UV/H2O2 can effectively degrade a variety of trace organic contam-
inants [14,17] and natural organic matter (NOM) [18], with effectiveness depending on
water quality, UV strength, and hydrogen peroxide dose. Despite benefits of UV/H2O2
processes for water reclamation and reuse, alternative sources of hydrogen peroxide have
not been thoroughly investigated. Two such chemicals that have been cited in literature for
alternative use in AOPs are sodium percarbonate and far less commonly, sodium perborate.
Both sodium percarbonate and sodium perborate are crystalline solids that form hydrogen
peroxide when added to water. While sodium percarbonate has been documented in
literature to provide benefit to UV-AOPs, sodium perborate offers a unique advantage with
intermediate peroxoborate species adding to the reactivity in some cases [19,20]. Sodium
perborate’s documented uses range from laundry stain and tooth bleaching to use in
membrane-less fuel cells [19,21,22]. Its wide range of applications can be attributed to the
chemical’s release of H2O2 upon reacting with water, ease of availability, non-toxic nature,
and convenient option for transporting and storing H2O2 sources [19,20].

Use of sodium perborate in an ultraviolet advanced oxidation process (UV/NaBO3
AOP) for water or wastewater treatment is rarely found in literature. Sindelar, Brown
and Boyer [18] showed that it is feasible to reduce NOM concentrations in surface/storm
water using UV-AOP with hydrogen peroxide, sodium perborate, or sodium percarbonate.
Despite successful reduction of dissolved organic carbon (DOC) and UV absorbance at
254 nm (UV254), Sindelar, Brown and Boyer [18] found that the three chemical UV-AOP
options were not economically feasible for surface water treatment due to the high NOM
content (DOC of 26.4 to 36.2 mg/L), and a high UV fluence (21.8–26.1 J/cm2) and oxidant
dose (100 mg/L as H2O2) required for degradation. Yuan, et al. [23] similarly studied a
UV/NaBO3 advanced oxidation process for its impacts on organic matter. Yuan, Zhai,
Zhu, Liu, Jiao and Tang [23] reported 88.8% removal of humic acids from synthetic water
at pH 3 using 1 mmol/L sodium perborate (100 mg/L) with 60 min of exposure time to
a UV lamp with fluence of 35.2 mJ/cm2. An analogous experiment with an equivalent
molecular weight of hydrogen peroxide in place of the sodium perborate resulted in 40.2%
removal of humic acids. Overall, literature agrees that the UV/NaBO3 AOP can degrade
organic compounds.

Acetic acid is another potential chemical of interest for use in UV-AOP applications.
Acetic acid (CH3C(=O)OH, or C2H4O2) is typically present in discussions of advanced
oxidation studies in one of two contexts: (1) as a compound used to react with hydrogen
peroxide to generate peracetic acid (CH3C(=O)O2H) for use in the AOP, or (2) as an organic
byproduct of AOPs, generally discussed along with other byproducts such as formic and
oxalic acids. In the case of peracetic acid use in AOPs, the radicals most prevalent are
the hydroxyl radical (•OH), the acetoxyl radical CH3C(=O)O•, and the acetyl peroxyl
radical CH3C(=O)OO• [24]. Each of the three radicals have been shown to contribute to
the oxidation of contaminants of emerging concern [24]. This includes the acetoxyl radical,
which can be formed from acetic acid. However, the specific impact of the acetic acid
concentration in the peracetic acid mixture is not clear [24]. It appears that acetic acid
additions to UV-AOPs without the pre-formation of peracetic acid has not been explored.
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Another appearance of acetic acid in advanced oxidation literature is as an intermedi-
ate or byproduct. The generation of acetic acid as a byproduct of the UV/H2O2 AOP was
discovered by Stefan and Bolton [25] while investigating the mechanisms of 1,4-dioxane
degradation. Final intermediates of the hydrogen peroxide degradation of 1,4-dioxane
include glycolic, acetic, and oxalic acids. The degradation mechanisms of acetic acid in a
UV/H2O2 AOP have been proposed in literature [25,26]. Acetic acid is often seen as an
unwanted byproduct of UV/H2O2 AOPs [27]. Contrarily, acetic acid as a supplement to
some UV-AOPs may offer benefits that have not yet been probed.

The use of acetic acid in combination with sodium perborate is also not commonly
studied. The synthesis of peracetic acid with NaBO3 as a hydrogen peroxide source has been
evaluated but with regards to simple oxidation rather than for advanced oxidation [28,29].
McKillop and Sanderson [19] discussed the use of acetic acid with sodium perborate and
sodium percarbonate as alternative hydrogen peroxide sources in non-aqueous chemistry
but did not delve into advanced oxidation applications. However, Karunakaran and
Kamalam [28] noted that sodium percarbonate does not form peracetic acid when mixed
with acetic acid, thus furthering interest in sodium perborate. Burgess and Hubbard [20]
explained that the mixture of sodium perborate and acetic acid results in species with
greater oxidative power than either sodium perborate or acetic acid alone. Furthermore,
Burgess and Hubbard [20] point out that sodium perborate and acetic acid chemistry is
complex and involves intermediates that can react with organic substrates. Non-aqueous
chemistry applications with sodium perborate and acetic acid has been explored, such
as by Gupton, et al. [30], yet UV-AOPs with the aforementioned chemicals remain to
be investigated.

In this research, an advanced oxidation process with sodium perborate with ultraviolet
light, which has rarely been documented in literature, was assessed and compared to the
advanced oxidation process with hydrogen peroxide and ultraviolet light. Both UV/H2O2
and UV/NaBO3 AOPs were tested with and without the addition of acetic acid, which is
also not well-documented in literature. The UV-AOPs were investigated for 1,4-dioxane
removal from a tertiary wastewater effluent to address the three main research questions:

1. UV/NaBO3 vs. UV/H2O2 AOP for 1,4-dioxane breakdown—Does a UV/NaBO3
AOP perform equivalent to or better than the UV/H2O2 AOP for the removal of
1,4-dioxane from tertiary wastewater effluent?

2. Acetic acid impacts of UV-AOPs on 1,4-dioxane—Does acetic acid improve perfor-
mance of UV/H2O2 or UV/NaBO3 AOPs for the removal of 1,4-dioxane from tertiary
wastewater effluent?

3. UV/NaBO3 vs. UV/H2O2 AOP conceptual economic consideration—How do sodium
perborate tetrahydrate and hydrogen peroxide compare in a conceptual economic
evaluation?

2. Materials and Methods
2.1. Source Water

The source water for the AOP investigation was collected from the tertiary effluent
from the City of Sarasota’s (Sarasota, FL, USA) municipal wastewater treatment plant
(WWTP). The City of Sarasota (CITY) owns and operates an advanced wastewater treatment
plant that utilizes a five-stage Bardenpho® process to produce high-quality reclaimed water.
The wastewater passes through headworks to remove large debris, then flows into an
equalization basin prior to the five-stage Bardenpho® process. After treatment with the
Bardenpho® process, wastewater effluent enters a rapid mix integrated flocculation basin
followed by automatic backwash cloth filters prior to final chlorination. Air stripping and
dechlorination are also employed depending on the disposal method. The high-quality
effluent produced after final chlorination is referred to as final reuse or reclaimed water.
Reclaimed water is used for residential and agricultural irrigation, otherwise sent to a deep
injection well or surface water discharge as needed for back-up. For the work presented
herein, high-quality tertiary wastewater effluent was sampled from downstream of the
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cloth filters, prior to final chlorination. Tertiary wastewater effluent was transported to the
University of Central Florida (UCF) environmental engineering laboratories in 15-gallon
drums; tertiary effluent water quality is summarized in Table 1.

Table 1. Tertiary Effluent Water Quality.

Parameter 95% Confidence Interval

pH 7.72 ± 0.076
Temperature (◦C) 19.7 ± 0.61

Conductivity (µS/cm) 1330 ± 32
ORP (mV) 223 ± 21

Turbidity (NTU) 0.69 ± 0.03
Total Chlorine (mg/L) 0.040 ± 0.0084

Monochloramine (mg/L) 0.090 ± 0.0083
Free Ammonia (mg/L) 0.040 ± 0.014

Dissolved Oxygen (mg/L) 8.05 ± 0.41
TOC (mg/L) 4.16 ± 0.33

UVA at 254 nm (cm−1) 0.249 ± 0.014
UVT at 254 nm (%) 54.7 ± 1.9

Alkalinity (mg/L as CaCO3) 159 ± 6.8
TDS (mg/L) 781 ± 27
TSS (mg/L) 0.73 ± 0.21

Calcium (mg/L) 59.4 ± 3.1
Magnesium (mg/L) 23.8 ± 0.41

Sodium (mg/L) 158 ± 6.8
Potassium (mg/L) 14.9 ± 0.69
Strontium (mg/L) 3.17 ± 0.14

Silica (mg/L) 13.1 ± 1.0
Iron (mg/L) 0.030 ± 0.0022

Manganese (mg/L) 0.020 ± 0.0025
Boron (mg/L) 0.250 ± 0.011

Chloride (mg/L) 188 ± 8.2
Bromide (mg/L) 0.340 ± 0.039
Sulfate (mg/L) 187 ± 6.3
Nitrate (mg/L) 1.58 ± 0.60

Phosphate (mg/L) <0.30

2.2. Reagent Preparation

Prior to each experiment, solutions were prepared for 1,4-dioxane, hydrogen peroxide,
sodium perborate tetrahydrate, and acetic acid. 1,4-Dioxane was prepared using serial
dilutions: 99.8% 1,4-dioxane (Sigma Aldrich, St. Louis, MO, USA) was first diluted to a
1% solution, then further diluted to 0.04%. 1,4-Dioxane was diluted and spiked one day
prior to each experiment. For the acetic acid solution, 0.4 mL of glacial acetic acid (Fisher
Scientific, Hampton, NH, USA) was added to a 100 mL volumetric flask with deionized
water to approximately a 3980 mg/L solution. The stock solution was created the day before
each experiment and was stored in a sealed glass bottle in the dark until use. Calculations
for acetic acid strengths are based on the conservative assumption that the glacial acetic
acid purity by weight was 95%, though reported by the manufacturer as >95%.

For the hydrogen peroxide solution, 35% hydrogen peroxide (Brenntag Mid-South,
Inc., West Henderson, KY, USA) was diluted into an approximately 1000 mg/L solution
with deionized water and stored in a sealed amber glass bottle covered with aluminum
foil to prevent impacts from light. Sodium perborate tetrahydrate (Acros Organics, now
part of Thermo Fisher Scientific, Pittsburgh, PA, USA) was used to make NaBO3 solu-
tions. The sodium perborate tetrahydrate granules were dissolved in deionized water in
a 250 mL volumetric flask for a solution of 5 g/L. A magnetic stir bar and stir plate set
to a medium-low heat setting were utilized to aid in the dissolving process. The solution
temperature remained below 60 ◦C. The perborate solution was made within the week prior
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to experimentation and was stored in a sealed amber glass bottle covered with aluminum
foil to prevent impacts from light.

The hydrogen peroxide content of both the diluted hydrogen peroxide solution and the
sodium perborate solution was by acidifying and titrating with potassium permanganate
solution until a faint pink color remained in the peroxide solution [31]. Hydrogen peroxide
and sodium perborate solution strengths were also checked with the Hach Company
Hydrogen Peroxide Test Kit, Model HYP-1 (Hach Company, Loveland, CO, USA). Average
values from both solution strength tests were used for experimental dose calculations. It
was determined that each 1.0 mg/L sodium perborate solution offered 0.23 mg/L H2O2.

2.3. Equipment Description

The bench-scale UV pilot that was assembled for this work is shown in Figure 1a.
The UV pilot consisted of a 5-gallon high density polyethylene storage tank, magnetic
drive pump, flowmeter, pressure gauge, and ultraviolet irradiation system. The UV-AOP
treatment process utilized three low-pressure high output amalgam UV lamps operated in
series at constant output. The first UV lamp in series was a Vitapur VUV-S375B (Vitapur,
El Paso, TX, USA), which is a 17 watt (W) lamp that can provide 30,000 µW·sec/cm2

exposure at a flow rate of 7 gallons per minute (gpm). The second and third UV lamps in
series were Pur PUV15H (Pur, El Paso, TX, USA) units, which are 40 W lamps that deliver
approximately twice the UV dose as the Vitapur VUV-S375B. With the combined three
lamps using 2.5 gallons at a flow rate of 2.5 gpm with a water with UV transmittance of
approximately 60%, a UV dose of 1800 mJ/cm2 was achieved in approximately 7.2 min. The
UV exposure time required was estimated using the manufacturer value provided by their
technical division [32]. The relatively short recirculation time through the UV pilot to meet
the desired UV dose allowed the study to provide more realistic results compared to bench-
scale systems that require longer contact times. For example, the graph in Figure 1b suggests
that the use of the single Vitapur lamp would require recirculation for approximately 36 min
to achieve the same UV dose, water quality, and experimental conditions.
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The UV lamp quartz sleeves were inspected periodically and cleaned with either
deionized water and Kimwipes or, if needed, with dilute hydrochloric acid followed by a
DI rinse. Quartz sleeves were allowed to dry prior to re-installing in the UV system.

2.4. 1,4-Dioxane Removal Screening and Experimentation

Wastewater plants typically see 50 µg/L or less of 1,4-dioxane, and more commonly
10 µg/L or less [1,4–6]. As such, initial spikes of 10 µg/L were tested in an initial screening
with UV/H2O2, UV/NaBO3, or UV/NaBO3 with acetic acid AOPs. Two UV doses were
tested (900 and 1800 mJ/cm2) along with 2 or 6 mg/L of hydrogen peroxide or an equivalent
dose of sodium perborate. A small amount (0.02 or 0.06 mg/L acetic acid) was added to
the UV/NaBO3 AOPs to screen for impacts of acetic acid on UV-AOPs. The two UV doses
were also tested as standalone UV treatment.

Further experimentation was conducted with initial 1,4-dioxane spikes between 50 and
170 µg/L. Experimental 1,4-dioxane concentrations in the drum varied from 50 to 170 µg/L
to (1) represent a high-level contamination event, and (2) to aim for statistical significance
in percent removal evaluations and comparisons. The higher-level 1,4-dioxane experimen-
tation tested at a UV dose of 1800 mJ/cm2 with 2 or 6 mg/L of H2O2 or an equivalent dose
of NaBO3. UV/H2O2 and UV/NaBO3 AOPs were tested with acetic acid supplementation
at a low level (up to 0.06 mg/L) and a higher level comparable to H2O2 and NaBO3 doses
(up to 6 mg/L). The same acetic acid doses were tested with UV instead of as a supplement
to another UV-AOP, and UV was tested as a standalone treatment at 1800 mJ/cm2. An
experimental outline is included in the supplementary materials. UV/H2O2, UV/NaBO3,
and standalone UV treatment were evaluated in triplicate. Experiments involving acetic
acid at the higher level (up to 6.0 mg/L) were evaluated in duplicate. Select 1,4-dioxane
samples were also evaluated in replicate.

Tertiary effluent was collected from the post-filter sampling point and stored in 15-gallon
low-density polyethylene (LDPE), opaque drums at 0 ◦C until use in the 1,4-dioxane removal
experiments. The day before each experiment day, the drum was removed from cold storage,
measured to a predetermined volume (generally 15 gallons plus three liters), and dosed
with 1,4-dioxane. The drum was then closed tightly, mixed well, and allowed to continue
warming up to room temperature overnight. The next morning, the drum was mixed well
again, and then samples were collected for water quality analysis. Meanwhile, the UV lamps
were allowed to warm up for 20 min prior to use and left on until the end of the experiments
conducted that day.

The UV pilot was flushed with deionized water prior to the start of experiments. Each
experiment required 2.5 gallons of sample. The drum was mixed prior to transferring
each set of 2.5 gallons of sample into the UV pilot’s storage tank. An UV dose of either
900 mJ/cm2 or 1800 mJ/cm2 was used in conjunction with the predetermined dose of
H2O2, NaBO3, C2H4O2, or a combination of the oxidants. The oxidant was dosed into the
storage tank in the UV bench-scale pilot and allowed to stir with a magnetic stir bar for
30 seconds prior to opening the valve to allow the wastewater effluent to fully enter the
UV bench-scale pilot, and subsequently starting the pump. For experiments with acetic
acid supplementing UV/H2O2 or UV/NaBO3 AOPs, acetic acid was added to the UV
pilot’s storage tank allowed to mix well for 30 seconds prior to adding H2O2 or NaBO3. To
end each experiment, the pump was stopped, the sample water was given approximately
30 seconds to accumulate in the storage tank and mix well. Samples were then collected,
and the UV bench-scale pilot was flushed with deionized water between experiments.

2.5. Water Quality Analysis and Statistics

1,4-Dioxane was analyzed at an external, National Laboratory Accreditation Confer-
ence (NELAC) certified laboratory with method SW-846 8260B with a detection limit of
1.0 µg/L. Several other parameters were monitored prior to each experiment to document
variations in wastewater effluent that may impact UV-AOP performance. This includes,
but was not limited to, general water quality (pH, temperature, conductivity, oxidative
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reduction potential (ORP), dissolved oxygen (DO), and alkalinity), select anions and cations,
turbidity, UV transmittance at 254 nm (UVT254), UV absorbance at 254 nm (UV254), to-
tal organic carbon (TOC), total dissolved solids (TDS), and total suspended solids (TSS).
Samples were analyzed at UCF laboratories in accordance with Standard Methods for
the Examination of Water and Wastewater (SM), as applicable [33]. Total organic carbon
(TOC) samples were analyzed with SM 5130C with a detection limit of 0.25 mg/L using
a Teledyne Tekmar TOC Fusion UV/Persulfate Analyzer (Teledyne Tekmar, Mason, OH,
USA). Turbidity was analyzed using SM 2130B using the Hach 2100N; TDS and TSS were
quantified with SM 2540C and 2540D, respectively; select cations were measured via SM
3120B with a Perkin Elmer Avio 200 Inductively Coupled Plasma Spectrometer (Perkin
Elmer, Waltham, MA, USA); select anions were quantified with SM 4110B with a Dioxex
ICS-1100 (Dionex, Sunnyvale, CA, USA); UV transmittance and absorbance were read with
a Hach DR6000; and total chlorine was monitored Hach Method 8167 with a Hach DR900.
Statistics tools implemented from Microsoft® Excel® include means, standard deviation,
95% confidence intervals (assuming normal distributions), analysis of variance (ANOVA)
tests, and t-tests. Further information regarding water quality analysis and statistics is
included in the supplementary materials.

3. Results and Discussion
3.1. Initial Screening

An initial screening was conducted to screen for 1,4-dioxane removal from tertiary
wastewater effluent with approximately 10 µg/L initial 1,4-dioxane at various experimental
conditions. Results of this initial screening are summarized in Table 2 and Figure 2. Results
suggest that UV-AOP performed better for 1,4-dioxane removal when H2O2 is the oxidant
rather than sodium perborate alone. However, the addition of acetic acid to the UV/NaBO3
AOP allowed for greater removal of 1,4-dioxane than the UV/H2O2 AOP could accomplish.
This data indicated that the UV/NaBO3 AOP is promising, and the addition of even a small
amount of acetic acid (≤0.06 mg/L) may improve the AOP’s ability to break down 1,4-
dioxane. Nevertheless, lower-level results such as these should be interpreted with caution.
Removal of just 1 µg/L of 1,4-dioxane indicates 10% removal from an initial concentration
of 10 µg/L. Scrutiny of quality assurance and quality control (QAQC), included in the
supplementary materials, reveals up to 4 µg/L difference between replicate 1,4-dioxane
samples. Analytical results for the 1,4-dioxane samples in this research conform to the most
current NELAC standards, where applicable. Even so, an uncertainty of up to 4 µg/L is
increasingly significant with the lower-level samples in this initial screening. Therefore,
further experimentation was performed with higher 1,4-dioxane initial concentrations.

Table 2. 1,4-Dioxane Initial Screening Results Summary (10 µg/L initial 1,4-dioxane conc.).

Oxidant and Dose

1,4-Dioxane Removal with UV
Dose (µg/L)

1,4-Dioxane Removal with UV
Dose (%)

900 (mJ/cm2) 1800 (mJ/cm2) 900 (mJ/cm2) 1800 (mJ/cm2)

UV Performance
Baseline NA 1.0 NA 8.3

2 mg/L NaBO3 as H2O2 2.0 2.0 16.7 16.7
6 mg/L NaBO3 as H2O2 3.4 3.3 28.3 27.5

2 mg/L H2O2 4.0 4.4 28.6 31.4
6 mg/L H2O2 4.9 4.8 35.0 34.3

2 mg/L NaBO3;
0.02 mg/L C2H4O2

NA 5.0 NA 38.5

6 mg/L NaBO3;
0.06 mg/L C2H4O2

NA 5.1 NA 39.2

Note: NA = Not assessed.
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3.2. Experimentation

Experimentation was conducted with higher 1,4-dioxane concentrations (50–170 µg/L)
to aim for greater significance of percent removal calculations. Results of this experimenta-
tion are summarized in Table 3 and Figure 3, and further detailed in the supplementary
materials. Experimental results involving acetic acid encompass both the lower doses
(0.01–0.06 mg/L) and higher doses (1.0–6.0 mg/L). Varying acetic acid doses are grouped
together due to comparable results. H2O2 and NaBO3 are measured in mg/L as H2O2,
while acetic acid is measured in mg/L as C2H4O2.

Table 3. 1,4-Dioxane Experimental Results Summary (≥50 µg/L initial 1,4-dioxane conc.).

Experiment ID
1,4-Dioxane Removal with 1800 mJ/cm2 UV Dose (%)

Range
(min.–max.) 95% Confidence Interval

1800 mJ/cm2 UV Baseline 22.0–28.8 24.7 ± 3.30
1 mg/L NaBO3 with C2H4O2 23.5–31.5 28.1 ± 2.39
1 mg/L H2O2 with C2H4O2 26.8–31.3 29.1 ± 2.06

2 mg/L NaBO3 23.5–37.0 30.3 ± 4.66
2 mg/L NaBO3 with C2H4O2 28.0–37.0 32.1 ± 3.49

2 mg/L H2O2 17.9–31.9 24.9 ± 6.51
2 mg/L H2O2 with C2H4O2 26.8–33.9 30.6 ± 2.00

2 mg/L C2H4O2 10.7–27.8 19.1 ± 7.89
6 mg/L NaBO3 42.5–45.2 43.9 ± 0.96
6 mg/L NaBO3 35.7–50.0 42.8 ± 5.87
6 mg/L C2H4O2 17.9–25.0 20.3 ± 3.76
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Results suggest that UV-AOP performs similarly for 1,4-dioxane removal when either
sodium perborate or H2O2 is the oxidant. A two-factor ANOVA test showed a p-value of
0.31, which suggests that there is not a statistically significant difference in 1,4-dioxane
percent removal between UV/H2O2 and UV/NaBO3 AOPs. Furthermore, two-sample
t-tests on the UV/H2O2 and UV/NaBO3 AOPs with 2 mg/L and 6 mg/L each as H2O2
resulted in two-tail p-values of 0.99 and 0.98, respectively. These two-tail p-values provide
additional support in accepting the hypothesis that there is no statistically significant
difference between the effectiveness between 1,4-dioxane percent removal of the UV/H2O2
and UV/NaBO3 AOPs. However, a comparison of the mean 1,4-dioxane percent removal
values for the aforementioned AOPs suggests that the UV/NaBO3 AOP may perform better.
Regardless of whether sodium perborate or H2O2 were more successful in removing 1,4-
dioxane, it can be concluded that sodium perborate is worth considering as an alternative
to H2O2 for 1,4-dioxane removal from wastewater effluent.

The benefit of adding acetic acid to UV-AOPs for 1,4-dioxane removal was similarly
statistically assessed. The mean 1,4-dioxane percent removal values suggest that the
addition of acetic acid to the UV/H2O2 and UV/NaBO3 AOPs improved effectiveness.
Two-sample t-tests were used to compare UV-AOPs with and without acetic acid addition
to the UV/H2O2 and UV/NaBO3 AOPs with 2 mg/L as H2O2. Two-tail p-values are 0.08
for the UV/H2O2 AOP and 0.13 for the UV/NaBO3 AOP. With an alpha value of 0.10, the
null hypothesis that acetic acid does not improve 1,4-dioxane removal can be rejected for
the UV/H2O2 AOP and accepted for the UV/NaBO3 AOP. Further details on statistical
analysis are included in the supplementary materials. Overall, results of two-sample t-tests
and two-tail p-values do not provide sufficient statistical evidence to claim that acetic acid
improves 1,4-dioxane removal in a UV/NaBO3 AOP. However, further research with larger
sample size and less variability in wastewater effluent quality would provide additional
opportunity to assess the impact of acetic acid supplementation on 1,4-dioxane removal in
an UV/NaBO3 AOP.

Contrarily, results suggest that acetic acid provides benefit to the UV/H2O2 AOP.
Mean 1,4-dioxane percent removal values for the UV/C2H4O2 processes are clearly lower
than even UV treatment alone, so it seems that the acetic acid provides benefit when
used in conjunction with an UV-AOP involving hydrogen peroxide. According to Shi,
et al. [34] and Correa-Sanchez and Penuela [24], UV irradiation of acetic acid produces
the acetoxyl radical (CH3C(=O)O•) and UV irradiation of hydrogen peroxide produces
the hydroxyl radical (•OH). Thus, results of this work lead to the conclusion that the
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two radicals cohesively degrade contaminants in a UV/H2O2 AOP with acetic acid. Due to
this interaction, the use of both hydrogen peroxide and acetic acid with UV irradiation may
be more accurately described as a UV/H2O2/C2H4O2 AOP. In short, evidence supports the
hypothesis that acetic acid improves 1,4-dioxane removal in a UV/H2O2 AOP, thus creating
an UV/H2O2/C2H4O2 AOP. This novel AOP is distinct from the UV/peracetic acid AOP
because it avoids the time-consuming and costly pre-formation of peracetic acid [24,35].

The mechanisms of 1,4-dioxane degradation were considered, however, this research
was focused on engineering performance considerations and not in research of funda-
mental mechanistic approaches. UV/H2O2 AOP mechanisms are more well-documented
in literature than those involved in the UV/NaBO3 AOP. For example, reactions in the
UV/H2O2 AOP have been summarized in literature [36,37]. Degradation of 1,4-dioxane
with various AOPs have also been proposed [11,38,39]. Organic contaminant degradation
via the UV/NaBO3 AOP is similar to that of the UV/H2O2 AOP [19]. In some cases,
however, borate is the released adduct instead of hydroxide [40]. There is also evidence
that peroxoborate species are involved when NaBO3 is used as an oxidant [19,20]. For
the acetic acid supplemented UV/NaBO3 AOP, McKillop and Sanderson [19] state that
the reaction may be more complex than the conversion of carboxylic acid to a peracid.
Instead, the intermediate peracetoxyboron species may be involved in oxidation of organic
matter [19]. Specific mechanisms for the degradation of 1,4-dioxane with the UV-AOPs
discussed herein should be evaluated for future research. In particular, mechanisms and
radical species involved in the UV/NaBO3 and UV/H2O2/C2H4O2 AOPs are worthy
of further investigation due to their relative effectiveness at 1,4-dioxane degradation, as
shown in this research.

Possible toxicity from boron compounds was also considered with regards to the
UV/NaBO3 AOP. Hadrup, et al. [41] conducted a literature review which indicated that
boron-containing compounds are not genotoxic or carcinogenic. The United States’ Envi-
ronmental Protection Agency (USEPA), however, implemented a long-term health advisory
level of 2 mg/L for boron in drinking water. Although this research did not necessary aim
for potable reuse, boron contributions from sodium perborate were quantified. In this work,
it was found that 5.00 g sodium perborate tetrahydrate contributes approximately 1.12 g
hydrogen peroxide residual. This mass ratio is equivalent to 1.0:0.23 grams of hydrogen
peroxide to grams of sodium perborate. Guhl and Berends [42] similarly noted a ratio of
1.0:0.22. Stoichiometrically, a 2 mg/L of NaBO3 as H2O2 contributes 0.64 mg/L of boron,
which is well below the USEPA health advisory level. Even in non-potable applications,
boron remains an important factor in the UV/NaBO3 AOP due to impacts on crops. Sensi-
tive crops often permit up to 1.25 mg/L boron, whereas certain tolerant crops can handle
upwards of 3.75 mg/L [43]. Stoichiometric calculations reveal that a sodium perborate dose
of 6 mg/L as H2O2 contributes 1.92 mg/L boron, which remains acceptable for irrigation
of tolerant crops. Therefore, boron addition from sodium perborate is not a limiting factor
in the use of the UV/NaBO3 AOP.

3.3. Conceptual Economic Consideration

Sodium perborate tetrahydrate was compared to 50% hydrogen peroxide on material
cost estimations and non-cost considerations, assuming that there is a consistent relation-
ship of hydrogen peroxide to sodium perborate in a solution. The cost evaluation in this
study was limited to chemical cost considerations only.

The City of Sarasota has an average daily flow of 6.2 million gallons per day (MGD)
based on data from 2014–2020. This information was used to calculate chemical costs
in $/day for hydrogen peroxide and sodium perborate tetrahydrate based on various
sources, as detailed in Table 4. Costs in Table 4 vary, but sodium perborate tetrahydrate
is generally more expensive than hydrogen peroxide. The 95% confidence values for
sodium perborate and hydrogen peroxide costs per day suggest significant variation in
cost estimates. This may be due to several factors related to the cost estimate sources. For
example, cost estimates may be lower in sources where the chemical use is more common in
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that geographical location, or if a supplier provides routine shipments to a major customer.
Therefore, cost ratios of NaBO3 to H2O2 were calculated from the sources that supplied
quotes for both chemicals. This information is included in Table 5.

Table 4. Calculated Chemical Costs for H2O2 and NaBO3 Bulk Shipments.

Oxidant Source
Cited Cost Calculated Cost for Dose as H2O2 ($/day)

Value Year 1 2 mg/L 6 mg/L

H2O2

[44] $0.35/kg 50% H2O2 2006 48.30 144.00
[45] 0.98 euros/kg 2 (assumed 3 50% H2O2) 2015 128.11 384.36
[46] $0.50/lb 50% H2O2 2022 112.92 338.74
[47] $0.1971/lb for 50% standard grade H2O2 delivered 2019 51.14 153.42
[48] $2.75/gal 50% H2O2 2018 64.86 194.59
[49] $1100/metric ton (assumed 3 50% H2O2) 2020 118.66 355.97

95% Confidence Interval: 87.33 ± 26.61 261.85 ± 79.98

NaBO3

[44] $0.42/kg 2006 129.95 389.83
[45] 1.5 euros/kg 2 2015 436.67 1310.00
[50] $0.92/lb 2022 426.88 1280.60

95% Confidence Interval: 331.17 ± 161.07 993.48 ± 483.20

Notes: 1 Source’s data acquisition year, adjusted to present day in cost calculations [51,52]; 2 Costs were con-
verted from euros to dollars using information from ExchangeRates.org.UK [53]; 3 Assumed—not specified in
literature source.

Table 5. Calculated NaBO3 to H2O2 Chemical Cost Ratio using Quotes from Single Sources.

Source
Calculated Cost for 6 mg/L Dose as H2O2

Using Different Oxidants ($/day) Cost Ratio
(NaBO3/H2O2)

NaBO3 H2O2

[44] 389.83 144.00 2.7
[45] 1310.00 384.36 3.4
[54] 7319.18 1 1919.78 1 3.8

95% confidence interval of the cost ratio of NaBO3/H2O2: 3.3 ± 0.52

Note: 1 Quotes are not for bulk shipments that a WWTP the size of the CITY’s might reasonably receive. The
quotes are for a 50 kg shipment of NaBO3 and a 200 L shipment of 50% H2O2.

Chemical stability, ease of transportation, shelf-life and degradation rate were also
taken into economic consideration. A bulk shipment of sodium perborate tetrahydrate
granules is approximately 40,000 lbs [50]. A 40,000-lb shipment of NaBO3 would last a
6.2 MGD plant approximately 28 days if the application dose was 6 mg/L as H2O2. The
same weight shipment of 50% H2O2 would last the same plant 64 days. However, the solid
state of NaBO3 provides a benefit due to its ease of storage and transportation. On a similar
note, NaBO3 takes up less space than H2O2 when comparing equivalent weights, which
provides additional benefit for shipments sent to remote locations or island environment
operations. The same 40,000-lb shipments of NaBO3 and 50% H2O2 take up 370 ft3 (10.5 m3)
and 534 ft3 (15.1 m3), respectively. For example, remote overseas location may prefer
receiving one shipment of a year’s supply of solid sodium perborate that can be used to
mix into solution as needed instead of requiring repeated costly shipments of hydrogen
peroxide. H2O2 solutions naturally degrade, thus requiring users to check the strength
and adjust feed rates accordingly. Best practice for hydrogen peroxide solutions involves
the minimization of long-term storage due to degradation over time. On the other hand,
NaBO3 can be mixed as needed, thereby minimizing strength degradation concerns.

Furthermore, the high cost of sodium perborate compared to hydrogen peroxide may
be due to a limited production capacity. In this case, the increased demand for the chemical
may increase production capacities, thus lowering cost. Despite the higher cost of sodium
perborate tetrahydrate as compared to 50% hydrogen peroxide, there are advantages related
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to storage considerations and ease of transportation. These benefits may outweigh the
higher chemical cost in certain uses, such as remote and mobile operations. The applications
of sodium perborate in water and wastewater treatment have also not been extensively
explored. Possible future research areas include but are not limited to:

• The use of sodium perborate in solutions at various pH levels. Burgess and Hub-
bard [20] found that the ratio of perborate species to hydrogen peroxide is maximum at
pH of approximately 10.1. At lower pH values, hydrogen peroxide is more prevalent
in aqueous sodium perborate solution. At the pH range from 7 to 13, perborate species
are more prevalent, and can speed up or inhibit oxidation effects depending on the wa-
ter quality and specific perborate species [20]. Yuan, Zhai, Zhu, Liu, Jiao and Tang [23]
tested the UV/NaBO3 AOP for the removal of humic acids in deionized water at
a pH of 3, 7, and 11 and found that humic acid removal increased with decreasing
pH. Similar studies at various pH levels could be conducted with different source
waters and to target different contaminants to explore UV/NaBO3 AOP treatment
effectiveness.

• The use of UV/NaBO3 perborate AOP to target other CECs. It is possible that the
chemistry of this AOP is more effective than the UV/H2O2 AOP at removing specific
contaminants that were not explored in this research study.

• A combined UV/H2O2/NaBO3 AOP could be attempted. Hydrogen peroxide and
sodium perborate are used in certain dental bleaching techniques but has not yet been
attempted with UV irradiation for water or wastewater treatment [55,56].

4. Conclusions

The results of this study demonstrated the ability of the oxidant sodium perborate to
perform similarly to hydrogen peroxide in an UV-AOP for the degradation of 1,4-dioxane
in tertiary wastewater effluent. The UV/NaBO3 AOP with 6 milligrams per liter (mg/L)
as H2O2 resulted in 43.9 percent 1,4-dioxane removal, while an equivalent UV/H2O2
AOP showed 42.8 percent removal. Furthermore, experimental data gathered in this work
suggested that acetic acid enhanced the UV/H2O2 AOP, increasing treatment effectiveness
by 5.7%. A conceptual cost evaluation indicated that the chemical supply cost of NaBO3
is approximately 3.3 times greater than 50% H2O2; however, depending on the ease of
transportation and treatment plant location, the cost of H2O2 delivery may outweigh the
cost of NaBO3, useful to remote, site-specific conditions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15071364/s1, Table S1: Initial Screening and Experimentation
Outline; Table S2: Methods and Equipment for Water Quality Analysis at UCF Laboratories; Table
S3: Initial Drum Water Quality Data; Table S4: Numerical Results for 1,4-Dioxane Removal Initial
Screening and Experimentation; Table S5: ANOVA Test Data Input; Table S6: ANOVA Test Data
Output; Table S7: Data Input for t-test 1; Table S8: Data Output for t-test 1; Table S9: Data Input for
t-test 2; Table S10: Data Output for t-test 2; Table S11: Data Input for t-test 3; Table S12: Data Output
for t-test 3; Table S13: Data Input for t-test 4; Table S14: Data Output for t-test 4; Equations (S1) and
(S2): QAQC Calculations; Table S15: 1,4-Dioxane QAQC; Equations (S3)–(S8): Example Chemical
Cost Calculations.
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A list of acronyms and abbreviations used in this work is included herein:
µg/L Micrograms per liter
ANOVA Analysis of variance
AOP Advanced oxidation process
C2H4O2 Acetic acid
CITY The City of Sarasota
cm Centimeters
DO Dissolved oxygen
DOC Dissolved organic carbon
FL Florida
gpm Gallons per minute
H2O2 Hydrogen peroxide
J Joules
mg/L milligrams per liter
NaBO3 Sodium perborate
NELAC National Laboratory Accreditation Conference
ng/L Nanograms per liter
NH New Hampshire
PA Pennsylvania
QAQC Quality assurance and quality control
SM Standard Methods for the Examination of Water and Wastewater [33]
TDS Total dissolved solids
TOC Total organic carbon
TSS Total suspended solids
UCF University of Central Florida
USA United States of America
USEPA United States’ Environmental Protection Agency
UV/H2O2 AOP Ultraviolet and hydrogen peroxide advanced oxidation process
UV/NaBO3 AOP Ultraviolet and sodium perborate advanced oxidation process
UV254 Ultraviolet absorbance at 254 nanometers
UVA Ultraviolet absorbance
UV-AOPs Ultraviolet advanced oxidation processes
UVT Ultraviolet transmittance
W Watts
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