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Abstract: Side orifices are commonly installed in the side of a main channel to spill or divert some
of the flow from the source channel to lateral channels. The aim of the present study is the accurate
estimation of the discharge coefficient for flow through triangular (∆-shaped) side orifices by applying
three data-driven models including support vector machine (SVM), least squares support vector
machine (LSSVM) and least squares support vector machine improved by gravity search algorithm
(LSSVM-GSA). The discharge coefficient was estimated by utilizing five dimensionless variables
resulted from experimental data (570 runs). Five different scenarios were applied based on the input
variables. The models were evaluated through several statistical indices and graphical charts. The
results showed that all of the models could successfully estimate the discharge coefficient of ∆-shaped
side orifices with adequate accuracy. However, the LSSVM-GSA produced the best performance for
the input combination of all variables with the highest coefficients of determination (R2) and Nash–
Sutcliffe efficiency (NSE), equal to 0.965 and 0.993, and the least root mean square error (RMSE) and
mean absolute error (MAE), equal to 0.0099 and 0.0077, respectively. The LSSVM-GSA improved the
RMSE of the SVM and LSSVM by 26% and 20% in estimating the discharge coefficient. Furthermore,
the ratio of orifice crest height to orifice height (W/H) was identified as having the highest influence
on the discharge coefficient of triangular side orifices among the various input variables.

Keywords: ∆-shaped side orifice; discharge coefficient; LSSVM; LSSVM-GSA; SVM

1. Introduction

Side orifices, sluice gates and side weirs are diverting structures in open channels and
they are used for diverting some of the main channel flow to side channels and regulating
the head of distributaries. In addition, they are commonly utilized in wastewater treatment
systems, irrigation and drainage networks, sedimentation tanks and aeration basins [1,2].
Accurate estimation of the discharge coefficient is necessary to know the volume of water
passing through the diversion structures. To date, many experiment-based and analytical
studies have been done to estimate the discharge coefficient in flow diversion structures.

Ramamurthy et al. [3,4] were the first researchers who experimentally studied the
hydraulic properties of rectangular side orifices. They provided equations for computing
the orifice discharge coefficient based on the parameters of orifice length, main channel
width and ratio of the main channel velocity to the orifice jet velocity. Gill [5] proposed
equations for predicting the discharge of circular and rectangular side orifices in the closed
conduit flow (in both gravity and pressurized flows) by analytically solving the steady
varied flow. Hussain et al. [1] performed experiments under free-flow conditions to provide
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regression equations for computing the discharge coefficient of rectangular side orifices
in small and large sizes, based on the Froude number and the ratio of orifice width to
channel width. Hussain et al. [6] obtained an equation to calculate the discharge through
rectangular side orifices using analytical relationships with ±5% accuracy. Hussain et al. [7,
8] performed experimental and analytical studies to examine the hydraulic properties
of flow in sharp-crested circular side orifices and presented equations to compute the
discharge coefficient of circular side orifices based on the ratio of the orifice diameter
to the main channel width and flow Froude number, under free- and submerged-flow
conditions. Bryant et al. [9] and Guo and Stitt [10] investigated the flow of circular orifices
for different hydraulic conditions by applying physical and analytical models and derived
analytical relationships for the discharge calculation. Vatankhah and Mirnia [2], for the
first time, experimentally and analytically investigated the flow through a sharp-crested
side triangular orifice (∆-shaped orifice) located in a rectangular channel and presented
equations for computing the discharge coefficient.

In order to estimate the discharge coefficient of side weirs, another diversion structure
in open channels, experimental studies have been performed for rectangular [11–14] and
triangular sections [15–17] in subcritical conditions.

Currently, applying soft computing has been accepted as an efficient tool for mapping
the complex and nonlinear systems and has been commonly utilized in the water sciences
to predict various hydraulic and hydrological parameters. Various data-intelligent tech-
niques including neuro-fuzzy (ANFIS), gene expression programming (GEP), multi-layer
perceptron (MLP), extreme learning machine (ELM), group method data handling (GMDH)
and support vector machine (SVM) have been utilized for predicting the discharge coef-
ficient of rectangular side weirs [18–27]. Granata et al. [28] developed two lazy machine
learning algorithms, k-Nearest Neighbor and K-Star, for predicting the Cd of a side weir in
a circular channel under a supercritical flow regime. Both of the algorithms outperformed
the empirical equations of Biggiero et al. and Hager. Li et al. [29] provided the machine
learning models ANN, SVM and extreme learning machine (ELM) for the prediction of
the discharges of rectangular sharp-crested weirs. They found that all three models were
capable of predicting the Cd with high accuracy, but the SVM exhibited somewhat better
performance.

The discharge coefficient of triangular labyrinth side weirs has also been successfully
predicted using intelligent models [30–37]. Dutta et al. [38] carried out experiments in a
rectangular flume under free-flow to investigate the discharge capacity of a multi-cycle
W-form labyrinth weir and a sharp-crested circular arc weir. They utilized the experimental
data for building predictive models using multiple linear regression (MLR), SVM and
ANN. They observed that the SVM model performed better than the rest of the models in
predicting the discharge.

A few studies have been conducted to predict the discharge coefficient of circular
and rectangular side orifices using data-driven techniques [39–41]. Roushangar et al. [42]
evaluated the potential of two different machine learning methods, namely support vector
machines combined with genetic algorithm (SVM–GA) and GEP, for predicting the Cd of
trapezoidal and rectangular sharp-crested side weirs. The results showed that the SVM–GA
model gave more accurate outputs than the GEP.

Due to the importance of accurately determining the discharge of side orifices in open
channels, in the presented work, for the first time, new and efficient data-driven models
including SVM, least squares support vector machine (LSSVM) and LSSVM with gravity
search algorithm (LSSVM-GSA) were applied for modeling the discharge coefficient of
triangular (∆-shaped) side orifices. For this purpose, laboratory data of Vatankhah and
Mirnia [2] were used. It should be noted that there are a few studies on the application
of GSA in the water resources field such as a hybrid model of an artificial neural network
with GSA (ANN–GSA) in rainfall-runoff modeling [43], an LSSVM-GSA hybrid model in
the prediction of wind power [44,45], an MLP-GSA hybrid model in the prediction of lake
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water surface [46], a GSA in water tank optimization [47] and an LSSVM–GSA in river flow
forecasting [48].

2. Materials and Methods
2.1. Discharge Equation of Triangular Side Orifice

Figure 1 demonstrates water surface profile in an equilateral ∆–shaped side orifice
with the height of H and length of L, located in a horizontal rectangular channel under
subcritical regime. In this Figure, h1 and h2 represent elevation of water from the free
surface to the orifice crest at the upstream and downstream ends of the orifice. In addition,
the flow depths at upstream and downstream ends of the orifice are shown by y1 and y2 [2].
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Figure 1. Water surface profile in an equilateral ∆-shaped side orifice located in a horizontal rectan-
gular channel under subcritical regime. (a) 3D view (b) profile view.

As can be observed, curvilinear water surface profile increases from upstream to
downstream along the side orifice. Based on the analytical consideration, the below
equation is used for obtaining the discharge through a triangular side orifice [2]:

Q = Cd
LH
2

√
2ghc (1)

where hc is the flow height above the centroid of orifice section that is calculated from:

hc = yc −W − H/3 (2)

where yc denotes flow depth from the surface of the water to the bed channel at above side
orifice (see Figure 1).

2.2. Analyzing Discharge Coefficient of a Triangular Side Orifice

There are different hydraulic and geometric parameters that affect the discharge
coefficient of ∆-shaped side orifices (Cd). These parameters include height (H) and length
(L) of the orifice, crest height of the orifice (W), upstream flow depth in the main channel
(y1), upstream velocity in the main channel (V1), width of the main channel (B), water
density (ρ), water viscosity (µ), acceleration due to gravity (g) and water surface tension
(σ). Hence, the following function can be used for expressing the discharge coefficient of
triangular side orifices:

Cd = F1(L, H, W, B, y1, V1, g, σ, µ, ρ) (3)
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The respective functional relationship can be expressed as follows using Bucking-
ham’s theory, where the dimensionless parameters with non-significant effects have been
neglected:

Cd = F2

(
W
H

,
B
L

,
B
H

,
y1

H
, Fr1 =

V1√
gy1

)
(4)

where Fr1 represents the Froude number.
In the current research, we investigate the impact of dimensionless parameters of

Equation (4) on the discharge coefficient of the triangular side orifice using data-driven
models.

2.3. Experimental Data

In the present work, the experimental data of triangular side orifices provided by
Vatankhah and Mirnia [2] were utilized for developing the models in the training and
validation stages. A set of 570 laboratory data is utilized in this work, consisting of 12
geometric configurations (i.e., two different lengths of orifice (L), three different heights of
orifice (H) and two different crest heights (W)). For the application of data-driven models,
the available laboratory data set is divided into training and testing parts. A set of 400 data
points out of 570 is used as training dataset (70%), whereas remaining 170 data points are
used as testing dataset (30%). The measured data range used in the present study have
been given in Table 1.

Table 1. Range of experimental data used in this research [2].

B (cm) H (cm) L (cm) W (cm) Qu (L/s) Qs (L/s) y1 (m) yc (m) y2 (m)

25 4, 7, 10 30, 40 5, 10 13.33–34.64 1.7–17.6 0.0941–
0.2857

0.1048–
0.2886

0.1082–
0.2880

According to this table, discharge values of the main channel (Qu) and side orifice (Qs)
are in the range of 13.33–34.64 (L/s) and 1.7–17.6 (L/s), respectively. Moreover, the changes
of the Froude number imply that all the experiments have been performed under free-flow
conditions.

2.4. Support Vector Machine (SVM)

SVM is a regression and classification approach derived from statistical learning
theory [49]. The SVM classification technique is one of the basic approaches used in
machine learning and based on structural risk minimization.

This learning system is utilized to cluster and measure the data-fitting function. Esti-
mation of the relationship of the dependent variable (y) on a set of independent variables (x)
is required for the SVM regression model. Moreover, similar to other regression problems,
it is presumed that the relationship between independent and dependent variables is given
by the function f (x) with some noise [49]:

y = f (x) + noise = [w.∅(x) + b] + c (5)

where w represents vector of coefficients, φ(x) is the kernel function and ε and b represent
bias term and the regression equation error. Thus, the ultimate goal is finding an appro-
priate form of the function f (x) that can present the proper training of the SVM model by
the use of the training data aimed at minimization of the error function. The following
optimization problem is presented [50]:

min
1
2
||w||2 + Cc

n

∑
i=1

(ξi + ξ
∗
i ) (6)

yi − b− [w.φ(Xi)] ≤ ε + ξi (7)
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Subject to [w.φ(Xi)] + b− yi ≤ ε+ ξ∗i
ξi.ξ∗i ≥

where yi represents the measured value by the model, Cc denotes the capacity parameter
and ξi and ξ∗i represent the Slack variables. The kernel functions are used in SVM model for
solving nonlinear problems. There are different kernel functions in SVM model, including
sigmoid kernel, Gaussian radial base kernel function (RBF) and polynomial kernel [44].
The equations of common kernel functions [51] have been given in Table 2. In the present
research, among various kernel functions, the radial basis function (RBF) was utilized to
model the Cd of ∆-shaped side orifices, because the superiority of this kernel over the other
two alternatives is proved by the existing literature.

Table 2. Common kernel functions [51].

Kernel Function Function

K(x, xi) = [(x, xi) + 1]q, q = 1, 2, . . . . Polynomial

K(x, xi) = tanh [ψ (x.xi) + c] Sigmoid

K(x, xi) = exp(−
∣∣∣∣x− xi

∣∣∣∣2/2σ2) Radial basis function (RBF)
In this table, σ is the noise level.

2.5. Least Squares Support Vector Machines (LSSVM)

Dual programming is utilized in SVM model for solving the equations. Hence, there
is a large computational cost to solve large-scale problems using this model. Suykens and
Vandewalle [52] solved this problem and presented the least squares of support vector
machine (LSSVM) approach. Simple linear equations are used in this model for solving the
problems, which decreases the algorithm complexity [53]. LSSVM algorithm process has
been shown in Figure 2.
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The following nonlinear regression function is employed in this model for estimating
the problems [54]:

y(x) = wTφ(x) + b (8)
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The regular function should be minimized in order to estimate function in LSSVM
approach, which is formulated as follows [54]:

minR(w, e) =
1
2

WTw +
γ

2

n

∑
i=1

e2
i (9)

It is subjected to the following constraints:

y(x) = wTφ(xi) + b + eii = 1, 2, . . . , n (10)

where γ and ei refer to the regularization parameter and error in the training phase. For
solving this optimization problem, the Lagrange function is employed for finding the w
and e solutions. The Lagrange function is presented below:

L(w, b, e, α) =
1
2

WTw +
γ

2

n

∑
i=1

e2
i −

n

∑
i=1

αi

{
WTφ(xi) + b + ei − yi

}
(11)

where ai denotes a Lagrange multiplier. Equation (8) can be solved through calculation of
the partial differential of the Lagrange function and application of the kernel function (KF)
for satisfying the Mercer’s condition. Equation (11) is solved by partial differential with
regard to b, w, ei and ai:

∂L
∂b

= 0→ w =
n

∑
i=1

αi = 0 (12a)

∂L
∂w

= 0→ w =
n

∑
i=1

αiφ(xi) (12b)

∂L
∂ei

= 0→ αi = γei (12c)

∂L
∂αi

= 0→ wTφ (xi) + b + ei − yi = 0 (12d)

After removal of ei and w, it is possible to write the following set of linear equations as
below [55]: [

0 1T

1 φ(Xi)
Tφ
(
Xj
)
+ γ−1 I

][
b
α

]
=

[
0
y

]
(13)

where α = [α1, . . . , αn] and y = [y1, . . . , yn]. Hence, LSSVM model for estimation of function
is given as follows:

y(x) =
n

∑
i=1

αiK(xi, x) + b (14)

where αi and b represent answers for Equation (9). The LSSVM has hyper-parameters
combination (γ,σ), where regularization factor γ is controlling the exchange between the
model smoothness and accuracy, and the kernel parameter σ is controlling the distance
among the training points and the model interpolation smoothness. No specific way is
available for calculating the optimal values of the hyper-parameters. Therefore, we adopted
GSA in the present research for obtaining the appropriate values of the hyper-parameters.

2.6. The Gravitational Search Algorithm (GSA)

GSA was developed by Rashedi et al. [56] as a heuristic stochastic search method. In
the mentioned algorithm, the characteristics of each mass (inertial mass, position, velocity
and gravitational mass) are important for finding the solution. The mass position is the
solution for the gravitational problem, and inertia masses lead the algorithm to the optimal
solution or the best mass position. The masses attract each other and the lighter mass
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is pulled by the heavier one depending on the Newtonian laws concerning motion and
gravity (Figure 3).
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Assume a system with n masses and the ith mass position given as [57]:

Xi =
(

x1
i , . . . , xd

i , . . . xs
i

)
, i = 1, 2, . . . , n (15)

where xd
i indicates the ith mass position in the dth dimension and s represents the dimension

of search space. Each agent’s mass is computed based on its fitness value, as follows:mi(t) =
f iti(t)−worst(t)
best(t)−worst(t) , i = 1, 2, . . . , n

Mi(t) =
mi(t)

∑N
j=1 mj(t)

, 0 ≤ Mi(t) < 1
(16)

where t denotes time and Mi(t) and fiti(t) are the mass and the fitness value of the ith agent
at time t. The best(t) and worst(t) in a minimization problem are expressed as below:

worst(t) = maxj∈{1,...n}
{

f itj(t)
}

, best(t) = minj∈{1,...n} f itj(t) (17)

We calculate the total force from a set of heavier masses acting on the mass i in the
dimension d at the time t as [57]:

Fd
i (t) =

n

∑
j=1, j 6=i

randiG(t)
Mj(t)×Mi(t)

Rij(t) + ε
(xd

j (t)− xd
i (t)) (18)

where Rij(t) represents the Euclidian distance between the two agents i and j, G(t) denotes
the gravitational constant at the time t, ε indicates a small constant and randj denotes a
random number between [0, 1].

We used the second Newtonian law of motion for calculating the total gravitational
acceleration of ith agent:

ad
i (t) =

Fd
i (t)

Mi(t)
= Fd

i (t) = G(t)
n

∑
j=1, j 6=i

randj
Mj(t)

Rij(t) + ε
(xd

j (t)− xd
i (t)) (19)

Velocity and position can be updated as:

vd
i (t + 1) = randi × vd

i (t) + ad
i (20)
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worst(t) = maxj∈{1,...n}
{

f itj(t)
}

, best(t) = minj∈{1,...n} f itj(t) (21)

where xi(t + 1) and vi(t + 1) denote the next position and next velocity of the agent and randi
represents a uniform random variable in the [0, 1] interval.

2.7. Least Squares Support Vector Machine-Gravitational Search Algorithm (LSSVM–GSA)

We used a combination of GSA and LSSVM approaches for minimizing model error
and optimizing the hyper-parameters (γ,σ). This section describes the process of con-
structing the Cd prediction model using the combination of GSA and LSSVM approaches
(LSSVM–GSA), which is also observed in Figure 4.
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This process is described below:

(i) First, all discharge coefficient data sets are divided into parts of training and testing.
(ii) Then, the proper kernel function and primary parameters for LSSVM–GSA model are

selected for making the initial LSSVM model.
(iii) The particle fitness value is calculated for each agent. In the present work, we selected

RMSE as the fitness function.
(iv) The best-fitted parameter combinations are selected via GSA for obtaining the opti-

mum values for LSSVM parameters.
(v) In the case that the stopping criterion is not met, the new hybrid of parameters is used

for reconstructing the LSSVM. The fitness is computed as long as it fits the stopping
criterion.
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(vi) The values of ideal parameters are obtained for building the optimum LSSVM model
to forecast discharge coefficient. The testing values are now utilized for the optimum
LSSVM for achievement of Cd prediction results.

3. Performance Evaluation Indicators

In this research, root mean square error (RMSE), coefficient of determination (R2),
Nash–Sutcliffe efficiency (NSE) and mean absolute error (MAE) were utilized as assessment
criteria. The computational relations and the range of these performance metrics have been
presented as follows [58]:

RMSE =

√
∑N

i=1(Pi −Oi)
2

N
[0, 1] (22)

R2 =

 ∑N
i=1(Oi −Oi)

(
Pi − Pi

)√
∑N

i=1
(
Ui −Ui

)2
∑N

i=1
(

Pi − Pi
)2

2

[0,+∞) (23)

NSE = 1− ∑N
i=1(Pi −Oi)

2

∑N
i=1
(
Oi −Oi

)2 (−∞, 1] (24)

MAE =
1
N

N

∑
I=1
|Pi −Oi| [0,+∞) (25)

where Pi and Oi are the predicted and observed ith value, respectively. In addition, Pi and
Oi are the average of predicted and observed values, respectively.

4. Application of the Models

Three data-driven methods, SVM, LSSVM and LSSVM–GSA, were employed for
predicting the discharge coefficient of a ∆-shaped side orifice with different hydraulic and
geometric conditions.

Table 3 sums up the five different input scenarios considered to predict the discharge
coefficient of ∆-shaped side orifices (Cd). Considering the highest correlation (−0.770)
between B/H and Cd, this parameter was selected as the first input combination. To
compose the other combinations, other parameters were involved in the combination one
by one at each step. The fifth combination includes all input parameters.

Table 3. Input combinations for estimating Cd.

M1
B
H

M2
B
H , B

L
M3

B
H , B

L , Fr1
M4

B
H , B

L , Fr1, W
H

M5
B
H , B

L , Fr1, W
H , H

y1

The analysis results showed that the geometrical parameters of ∆-shaped side orifices
including height (H) and length (L) had the highest correlation with Cd; therefore, they
were used as input variables in the first and second scenarios. The remaining variables
were also ranked based on the correlation coefficients and were applied in the subsequent
input scenarios.

In order to calibrate the models, firstly, various kernel functions were utilized to de-
velop the SVM model. Radial basis function (RBF) was found as the optimal kernel function
due to its better prediction accuracy. The parameter combinations of SVM (C,γ) and (γ,σ) of
LSSVM were obtained via trial and error. For each parameter (regularization factor γ and
kernel parameter σ), different numbers from 10−5–105, 10−2–102 and 10−3–103, 10−5–105
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were applied following previous literature [59–61]. In addition, GSA was employed to
get optimized hyper-parameters for the LSSVM. To optimize LSSVM hyper-parameters,
control parameter values of the GSA algorithm have a key role, i.e., gravitational constant
(G0) and constant alpha (α). Therefore, parameters of LSSVM are found optimal with the
G0 parameter in range of 108–114 and α parameter in range of 18–20.

Root mean square error (RMSE) was utilized as the fitness function in the presented
work. The optimal hyper-parameters of the LSSVM model obtained by GSA for each input
scenario are given in Table 4.

Table 4. Hyper-parameters (γ, σ) of LSSVM for each input combination.

Input Combination LSSVM LSSVM–GSA

M1 (15, 10) (147.339958, 6.200715)
M2 (100, 7) (1.136399, 0.001058)
M3 (14, 1) (703.531949, 9.883098)
M4 (100, 30) (275.137096, 0.001489)
M5 (100, 3) (0.419690, 0.001203)

5. Results and Discussion

Table 5 provides the performance metrics of the models used in the current study
for the five scenarios defined in Table 3. As can be seen, the performance of the models
is similar by considering the applied scenarios. In addition, the models’ error decreased
from M1 to M5 by adding the effective variables. Moreover, it is found that by the addition
of the W/H variable to the input combination (M4), the accuracy of the models’ results
is significantly improved; RMSE decreases from 0.0272 to 0.0156 for SVM, from 0.0227
to 0.0129 for LSSVM and from 0.0217 to 0.0108 for LSSVM-GSA. Additionally, all three
methods had the best performance for the M5 input scenario including all five variables
(B/H, B/L, Fr1, W/H, H/y1).

Table 5. Performance metrics for estimating Cd using different input combinations (Table 3) for the
testing period.

Method Input Combination R2 RMSE MAE NSE

SVM

M1 0.602 0.0352 0.0260 0.9214
M2 0.702 0.0297 0.0233 0.9189
M3 0.757 0.0272 0.0194 0.9492
M4 0.915 0.0156 0.0110 0.9651
M5 0.938 0.0134 0.0101 0.9849

LSSVM

M1 0.613 0.0333 0.0258 0.9216
M2 0.732 0.0278 0.0215 0. 9497
M3 0.829 0.0227 0.0179 0.9671
M4 0.954 0.0129 0.0100 0.9885
M5 0.958 0.0125 0.0099 0.9895

LSSVM-GSA

M1 0.613 0.0332 0.0258 0.9219
M2 0.732 0.0278 0.0215 0.9500
M3 0.837 0.0217 0.0162 0.9721
M4 0.960 0.0108 0.0085 0.9915
M5 0.965 0.0099 0.0077 0.9934

The R2, RMSE, MAE and NSE values for the optimal pattern (M5) were obtained
as 0.938, 0.0134, 0.0101 and 0.9849 for the SVM model, 0.958, 0.0125, 0.0099 and 0.9895
for the LSSVM model, and 0.965, 0.0099, 0.0077 and 0.9934 for the LSSVM-GSA model,
respectively.

It is worth noting that the NSE values of the models utilized in this research were
greater than 0.8 for all the models, indicating acceptable accuracy [62,63].



Water 2023, 15, 1341 11 of 18

The outcomes reveal that the LSSVM–GSA has superior performance in comparison
with other methods for all of the scenarios. In addition, it is clear that the aforementioned
model for the M5 pattern with the highest R2 and NSE values and the lowest values of
error has the highest power of predicting the Cd of ∆-shaped side orifices. After that,
the SVM and LSSVM models rank second and third, respectively. The superiority of the
LSSVM–GSA over the SVM and LSSVM has also been seen in the research performed by
Yuan et al. [44] and Lu et al. [45].

It should be noted that the observed Cd values were in the range of 0.3246–0.5843,
while the estimated Cd range for the best responses was 0.3412–0.5872 for the superior
model (i.e., LSSVM–GSA).

Figure 5 illustrates the variation graph of observed and predicted Cd values versus
experimental No. It is apparent from the detailed parts of the figure (see the two detailed
graphs in the lower part of the figure) that the LSSVM–GSA is more successful in catching
Cd of ∆-shaped side orifices than the SVM and LSSVM models.
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the test period.

Comparison between the measured and predicted Cd values over the test period for
the best input combination (M5) has been depicted in Figure 6. For all the models, very
good dispersion is seen around the 45◦ axis, indicating high capability of the models used
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in the current work. For 170 discharge data during the test stage for SVM, LSSVM and
LSSVM–GSA, 95%, 96% and 97% of the points were situated within the 5% confidence
band.
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Figure 7 demonstrates a boxplot showing the statistical distribution of the measured
and predicted discharge coefficients for the testing period, including the lower quartile,
upper quartile and median for the optimal SVM, LSSVM and LSSVM−GSA models. As
shown in this plot, for the lower quartile, the SVM model has better yield than the other
two approaches. Meanwhile, this range shows the over-prediction of the models. For the
median, the LSSVM−GSA model shows complete accordance with the observed values
and it is evident that the spread of this model closely resembles the observed Cd values. In
addition, the SVM and LSSVM models have some fluctuations in estimating the observed
values in the mentioned range. For the upper quartile, the SVM and LSSVM−GSA models
have similar accuracy in terms of statistical distribution and matching with the observed
values. Additionally, the LSSVM model is found to overestimate the higher Cd values.
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Figure 7. Boxplots of observed Cd compared with predicted Cd from SVM, LSSVM and LSSVM−GSA
models.

The agreement between the data-intelligent methods and observation values was
also checked using another visualization presentation (i.e., Taylor diagram). This graph
provides three important statistical indices including centered RMSE, correlation coefficient
and standard deviation [64]. Figure 8 displays the Taylor diagram of the predicted and
observed values of Cd for the test period and best input combination. As observed in
Figure 8, the representative markers of LSSVM and LSSVM−GSA have similar positions;
however, the LSSVM−GSA model shows better accuracy than the two other models in
terms of RMSE, r and SD indices.

Moreover, run times of the applied models were evaluated. The simulations were
done in the MATLAB environment (MATLAB R2017b) using a computer with an operating
system of Windows 10 (64 bit) with an Intel(R) Core(TM) i5-10500 CPU @ 3.10 GHz proces-
sor with 16 GB RAM. In MATLAB R2017b, LS−SVM lab and Libsvm toolkit were utilized
to develop the SVM and LSSVM models, respectively. Figure 9 provides the convergence
graphs of the implemented models for the best input combination (M5). For the best input
scenario, the run times of the SVM, LSSVM and LSSVM−GSA models were 1.534 s, 0.027
s and 26.2 s, respectively. Although the computational cost of the LSSVM-GSA model
was higher than the other two models, the aforementioned model had the best prediction
accuracy, and moreover, the time required to implement the model is acceptable from
an engineering point of view. Similarly, in the research performed by Lu et al. [45], the
LSSVM−GSA model was selected as the superior model, with the highest performance
and computational time among the implemented models.
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The outcomes of the methods were also assessed by one-way analysis of variance
(ANOVA) to see the robustness (the possible significant differences between the obser-
vations and model predictions) of the methods. The test was set at a significance level
of 95%. Table 6 sums up the test results. As observed from the table, the LSSVM−GSA
yielded a smaller testing value (0.00004) with a higher significance level (0.995) compared
to LSSVM and SVM, and this indicates that the LSSVM−GSA is more robust in predicting
the discharge coefficient of triangular side orifices than the other models.
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Table 6. Analysis of variance for estimating Cd in the testing period.

Method
ANOVA

F-Statistic Resultant Significance Level

SVM 0.138 0.711
LSSVM 0.993 0.320

LSSVM−GSA 0.00004 0.995

6. Conclusions

Given the importance and wide application of orifices in irrigation and drainage
networks, urban water and sewage treatment plants and hydroelectric power facilities, this
study was performed to estimate the discharge coefficient of ∆-shaped side orifices. To
this end, data-intelligent models including SVM, LSSVM and LSSVM−GSA were applied.
Geometric and hydraulic variables were considered as inputs to the models in a set of 570
experimental data. After performing sensitivity analysis, five different input combinations
were identified considering the influence of input variables on the output (Cd). According to
the statistical indices, the models generally provided satisfactory performance in estimating
Cd for all input combinations, and the models had similar sensitivity to the scenario changes
and addition of the hydraulic and geometric variables to the input combinations. However,
in all of the models, adding the ratio of orifice crest height to orifice height (W/H) into the
model input (M4) produced the best accuracy and improvement in RMSE by 42.6%, 43.2%
and 50.2% for the SVM, LSSVM and LSSVM−GSA models, respectively. The outcomes
also indicated that the LSSVM−GSA improved prediction accuracy over SVM and LSSVM.
It was found that optimization of the LSSVM model using the gravity search algorithm
(GSA) improved the RMSE by 26% and 20%, respectively, for the best input combination
(M5) compared to the SVM and LSSVM models. In addition, based on the visualization
inspection (i.e., scatter plots, boxplots and Taylor diagram), the highest correlation and the
best statistical distribution of model values belonged to the LSSVM−GSA, although the low
discharge coefficients tended to be slightly overestimated when compared to the respective
measured values. The overall results of the present study propose the LSSVM optimized
with GSA model as a new and efficient model to estimate the discharge coefficient and
other hydraulic parameters in open channels.

The present study used a set of 570 experimental data having 12 geometric config-
urations, and outcomes indicated that the models cannot well catch the low discharge
coefficients and this implies that more data is needed to be able to better calibrate the
implemented models and obtain better estimation accuracy. The main reason for overesti-
mation of the low values can be related to the convergence criterion (root mean square error
(RMSE)). The models focus on catching high values with this criterion. Another criterion
(mean absolute error (MAE)) can be tried in future studies to provide a balance in the
model estimation accuracy in catching the high and low values. The recommended model
(LSSVM−GSA) can also be compared with other improved LSSVM and SVM models with
new metaheuristic algorithms and deep learning methods.
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List of Symbols
B The main channel width (cm)
L Length of the orifice
Cd Discharge coefficient
Fr1 Upstream Froude number
g Gravitational acceleration
H Height of the triangular side orifice
Qs Discharge through the orifice
Qu Discharge through the main channel
V1 Upstream velocity
W Orifice crest height
y1 Upstream flow depth
µ Water viscosity
ρ The water density
σ water surface tension
hc flow height above centroid of orifice section
yc flow depth from the surface of the water to the bed channel at above side orifice
yi measured value by the model
Cc capacity parameter
ξi, ξ∗i Slack variables
γ regularization parameter
ei error in the train phase
Mi(t) mass value of the ith agent
fiti(t) fitness value of the ith agent
Rij(t) Euclidian distance between the two agents i and j
G(t) gravitational constant
ε small constant
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