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Abstract: Accurately identifying groundwater contamination sites is vital for groundwater protection
and restoration. This study aims to use a machine learning (ML) approach to identify groundwater
contamination sites with total petroleum hydrocarbons (TPH) as target contaminants in a case study
of gas stations in China. Firstly, six classical ML algorithms, including logistic regression, decision
tree, gradient boosting decision tree (GBDT), random forest, multi-layer perceptron, and support
vector machine, were applied to develop the identification models of TPH-contaminated groundwater
with 40 features and the performances were compared. The comparison results showed that the
GBDT model achieves the best prediction performance, with F1 score of 1 and AUC value of 1. Next,
Bayesian optimization optimized GBDT (BO-GBDT) was conducted to further decrease the training
time from 19,125 s to 513 s while maintaining the same prediction performance (F1 score = 1, AUC = 1).
Finally, Shapley additive explanations (SHAP) analysis was performed on the BO-GBDT model. The
SHAP results displayed that the critical feature variables in the BO-GBDT model include wind,
population, evaporation, total potassium in the soil, precipitation, and leakage accident. This study
demonstrated that BO-GBDT is one satisfactory model to identify groundwater TPH-contamination
at gas stations. The method proposed in this study has the potential to be applied to other types of
groundwater contamination sites.

Keywords: machine learning; groundwater contamination site; gas station; gradient boosting decision
tree; Bayesian optimization; Shapley additive explanations

1. Introduction

The identification of potentially contaminated sites is crucial for the management of
contaminated sites and the protection of public health [1]. Given the mobility of groundwa-
ter and the difficult-to-repair nature of contamination, the deterioration of groundwater
quality due to point source pollution, represented by various industrial and commercial
sites, is attracting widespread concern [2,3]. There are over 2.5 million potentially contami-
nated sites in Europe [3]. In Asia and the USA, new contamination sites are being identified
every day [4]. China is estimated to have over 500,000 contaminated sites [5]. Therefore,
identifying groundwater contamination sites has become a research hotspot [6].

Current methods for identifying groundwater contamination sites include site history
review, field survey and sampling analysis, and interviews [6]. Site history review refers
to the search for documents relating to original buildings on the site from environmental
and health agencies, associations, unions, and so on [7]. However, historical documents
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are not always available, especially for sites with long histories. In addition, this method
is time-consuming for a large number of sites. Field surveys and sampling analysis have
the advantage of maximizing the accuracy of the findings. However, each site requires
multiple samples to be collected for laboratory analysis and therefore requires a significant
investment of workforce, money, and time [8]. In the interview method, information about
the site is obtained by interviewing the site manager, owner, government personnel, and
residents around the site to judge the site’s contamination. The drawback of this method is
its subjectivity, which may be related to the gender, age, profession, and standpoint of the
interviewees, and has a high degree of uncertainty [9–11].

Data science methods, represented by machine learning, have attracted significant
attention in recent years. The primary purpose of machine learning is to evaluate or
predict objectives after training a model with data in specific conditions. The advantage of
machine learning is that hidden associations in the data can be learned through automatic
mathematical analysis [12]. Currently, many machine learning algorithms are applied to
solve groundwater-related problems. Six of these algorithms have been reported to be
widely applied, including Logistic regression (LR), decision tree (DT), gradient boosting
decision tree (GBDT), random forest (RF), multi-layer perceptron (MLP), and support vector
machine (SVM). For example, in the Saladin Province of Iraq, LR was applied to assess
groundwater nitrate contamination levels [13]. A DT model was developed to classify
groundwater quality in the Ardebil aquifer, Northwest Iran [14]. Spatially distributed
feature variables related to arsenic and manganese flows were selected for the GBDT model
to obtain areas of high arsenic and manganese in the northern USA [15]. RF, LR, and MLP
algorithms were used to model fluoride in groundwater in Datong Basin, China [16]. Four
models, including MLP and SVM, were developed to estimate groundwater TDS in the East
Azerbaijan Province [17]. Recent researches on identifying groundwater contamination
using machine learning mainly focused on the identification of contamination source or
intensity in a specific contaminated site. For example, self-organizing map algorithm was
applied to identify the source of sulfate in groundwater of an abandoned mine [18]; the
Bayesian and machine learning method was used to invert the contamination source release
intensity and duration in a hypothetical case study [19]; the deep learning algorithms based
on Long-Short Term Memory networks were utilized to identify the contamination source,
initial release period, and release intensity in a hypothetical case study with irregular
boundaries [20]. However, to our knowledge, few studies have been reported on using
machine learning methods to identify potential groundwater contamination sites, especially
hybrid machine learning models. Moreover, only a few studies have shown concern for
explanatory analyses of the results.

Due to leaks from storage tanks or pipelines, groundwater contamination at gas
stations is attracting significant attention worldwide [21]. Relevant reports indicated there
might be about 242,000 leaking gas station storage tanks in the EU with contamination
from leaks [22]. Four hundred ninety-five thousand leaking gas station storage tanks
have been reported in the United States until 2010 [23]. There are 27,000 gas stations in
Brazil with possible soil and groundwater contamination from oil spills [24]. There are
over 120,000 gas stations in China, located in commercial and residential areas, urban
traffic arteries, and highways; some are even in water sources and nature reserves. Total
petroleum hydrocarbon (TPH) is one of the primary contaminants in groundwater from
gas stations [22,25]. Aromatic hydrocarbons in TPH are carcinogenic, teratogenic, and
mutagenic [26]. The China Geological Survey conducted a survey of some gas stations
in Tianjin province. The results showed that the detection rate of TPH in groundwater
samples was 85%, and the exceedance samples accounted for 40% of the total groundwater
samples. Therefore, TPH was set as the target contaminant in this study, and Chinese gas
station sites were set as the study area.

This study aimed to develop machine learning models based on multi-source data
to identify the current status of groundwater TPH contamination under gas stations in
China. LR, DT, GBDT, RF, MLP, and SVM were determined as the machine learning
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algorithms used in this study. Forty feature variables from the field survey and database
were considered as input variables for machine learning to train and test the models. The
optimization effect of Bayesian optimization (BO) was also examined, and the importance
of feature variables was discussed using the Shapley additive explanations (SHAP) method.

2. Materials and Methods
2.1. Methodology

As shown in Figure 1, there are three steps in the framework for developing models
for groundwater contamination site identification. Firstly, data collection was conducted
simultaneously from the field survey and database. Subsequently, six different machine
learning models were built based on a training dataset. Three approaches (original dataset,
min-max scaler, standard scaler) were used for data pre-processing. The model with the
optimal result was selected according to model evaluation and was compared with the
Bayesian optimization (BO) hybrid model to determine a better one. Finally, the feature
variables were analyzed using the SHAP method to obtain the key variables. These key
variables were combined with the optimal model obtained in step 2 to obtain the most
satisfying model to identify groundwater TPH contamination sites.
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Figure 1. Methodological framework in this study.

2.2. Data

Field surveys and groundwater sampling were conducted at 103 gas stations in 24 regions
of China following the requirements of the technical guidelines (HJ 25.1-2014) issued by the
Ministry of Ecology and Environment of China. The sampling was carried out from 2017 to
2019. Sample collection, storage, transportation, and testing were determined according to
guides issued by the Chinese authorities [27–29]. The groundwater TPH contamination
of 103 gas stations was finally obtained as the target variable for machine learning in this
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study. Eighty-three gas stations belonged to the “uncontaminated” category, while the
other twenty belonged to the “contaminated” category.

The factors affecting TPH contamination of groundwater at gas stations were considered,
and the available information was aggregated into the feature variables dataset for this study.
The selection of feature variables is based firstly on authenticity, accessibility, completeness,
and diversity of the data. The feature variables include six categories: management variables,
gas station variables, geography and remote sensing variables, social economy variables,
meteorological variables, and soil variables, with a total of 40 variables. All variables may
reflect some association with groundwater contamination. Key investigation list (KIL), a
management variable, reflected a greater risk of contamination around the gas station. The
construction time, a gas station variable, was associated with groundwater contamination
at the gas station. The distance to the nearest lake (dist_lake) and distance to the nearest
river (dist_river) in the geographic and remote sensing variables might influence the status
of groundwater recharge and runoff. Among the social economy variables, the night light
index (NLI), population, and GDP correspond to the intensity of human activity, which
might be a source of anthropogenic pollution of groundwater. Meteorological variables
may influence groundwater recharge and discharge; for example, precipitation is usually
positively correlated with vertical recharge and annual sunshine affects groundwater in
many aspects such as precipitation and evaporation. The soil related variables are also
included, considering the closest contact between soil medium and groundwater. To
sum up, these variables come from different sources and reflect the role of the natural
environment and human activities and are therefore included. Table 1 shows detailed
information on these feature variables, including category, name, description, and type.

Table 1. Description of feature variables in this study.

Category Variable Description Type

Management
variables

KIL Key investigation list. Whether the station is on the key
investigation list or not categorical

OC Operating condition. Whether the station is open for
business categorical

Owner The owner of the gas station categorical

LA Leakage accident. Whether the station has ever had oil
leakage accidents categorical

GWPA Groundwater protection area. Whether the station is located
in a groundwater protection area categorical

Gas station
variables

Construction Time The length of time since the station was constructed discrete
No.Tanks Total number of tanks at the gas station discrete

No.SingleTanks Total number of single-layer tanks at the gas station discrete
Impermeable ponds Whether the gas station has built impermeable ponds categorical

Pipeline Type of pipeline at the station categorical

Geography and
remote sensing

variables

Dist_lake The distance from the nearest lake continuous
Dist_river The distance from the nearest river continuous
Elevation The elevation where the gas station is located continuous

NPP Net primary productivity at the location of the gas station continuous

LAI Leaf area index. The leaf area index of the location of the
gas station continuous

Landuse Land use types around gas stations categorical
NDVI Normalized vegetation index of the gas station location continuous

Social economy
variables

NLI Night light index. The night light index of the gas station
location continuous

population The population of the town where the gas station is located continuous
GDP Total GDP of the cell grid where the gas station is located continuous
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Table 1. Cont.

Category Variable Description Type

Meteorological
variables

Permafrost type The type of frozen soil categorical
EVP Annual mean evaporation continuous
GST Annual mean ground surface temperature continuous
PRE Annual precipitation continuous
PRS Annual mean pressure continuous
RHU Annual mean relative humidity continuous
SSD Annual sunshine continuous
TEM Annual mean temperature continuous
WIN Annual mean wind speed continuous

Soil variables

Soil erosion Types and properties of external forces of soil erosion categorical
clay_top The proportion of clay in the topsoil (0–30 cm) continuous
sand_top The proportion of sand in the topsoil continuous
silt_top The proportion of silt in the topsoil continuous

soil moisture The moisture of the topsoil continuous
clay_sub The content of clay in the subsoil (30–100 cm) continuous
sand_sub The content of sand in the subsoil continuous

CEC_S Soil cation exchange capacity in 100–200 cm continuous
TK_S Total potassium in soil from 15 to 30 cm continuous

gravel_S Gravel content in soil from 30 to 60 cm continuous
pH_S Soil pH in the range of 30–60 cm continuous

2.3. Machine Learning Approach
2.3.1. Models

Here, we briefly introduce the basic principles of the six algorithms (LR, DT, GBDT,
RF, MLP, SVM), the detailed principles of which can be found in the attached reference. LR
is one of the most classical statistical machine learning models. LR can make categorical
predictions from several selected categorical, discrete, or continuous variables and is a
suitable technique for predicting binary outcomes [30,31]. Based on a logistic function,
LR maps the linear regression results to the interval [0, 1] [32]. DT is a machine learning
algorithm based on a tree structure that can reveal complex relationships that are difficult
to identify with linear statistical models [33]. The tree includes the root, internal, and leaf
nodes. During training, the role of the nodes is to test and assign the feature variable for
each input until it reaches the leaf nodes. Each leaf node represents a class of instances [34];
for example, this study represents two classes of TPH out of threshold or not out of
threshold. GBDT is an ensemble learning algorithm based on DT consisting of multiple
trees. Therefore, it combines crucial advantages of the DT algorithm [35]. The basic idea of
GBDT is boosting mechanism. A new tree is trained with the original feature variables in
each iteration. This new tree will fit the residuals left by the previous tree, thus continuously
reducing the model error [36]. Therefore, the number of trees (n_estimators) is one of the
critical hyperparameters of the algorithm. RF is another ensemble learning algorithm based
on DT that has been widely modeled in recent years [37]. Unlike GBDT, the idea of RF is
bagging. In RF, each tree is trained using a different part of the same training set, meaning
each tree learns different samples. A vote of all trees generates the final result of RF. This
sampling mechanism allows RF to circumvent the effects of noise in the data [38]. MLP,
also known as artificial neural networks, has a long history in groundwater modeling [39].
The MLP model consists of an input, hidden, and output layer. Neurons characterized
by weights and biases interconnect these layers. The input layer is to input data, and the
output layer is the target of the model prediction. An activation function is embedded in
the hidden layer to transform the deviation-weighted summation of the layer to the next
layer until it reaches the output layer [40]. Therefore, selecting an appropriate activation
function plays an important role in the training of the MLP. In addition, the number of
layers and neurons in each hidden layer constitute the hidden layer size, and experiments
are needed to obtain the optimal hyperparameter settings. Finally, SVMs are a class of
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generalized linear classifiers that perform binary data classification in a supervised learning
manner. In the binary classification problem investigated in this study, SVMs attempt to
locate a hyperplane in the n-dimensional input space that can separate the data points into
two distinct classes. The boundaries of this hyperplane (called decision boundaries) also
have to be as large as possible to make reliable classification predictions [41].

The computer configuration used to perform the experiments was CPU Core i7-
6820HQ, 48 GB of RAM, and Windows 10 as the operating system. We used the Scikit-learn
toolkit in Python to perform machine learning modeling (https://scikit-learn.org/stable/
index.html (accessed on 3 January 2023)). The GridSearchCV module in Scikit-learn was
called to determine the best hyperparameters for different algorithms and optimize the
model’s performance. We first identified the critical hyperparameters of each algorithm
and the search scope of GridSearchCV through a literature review in conjunction with
the problem of this study. GridSearchCV performs an exhaustive search for a specified
machine learning algorithm within a hyperparameter search range with an exhaustive
search. Afterward, GridSearchCV uses the adjusted hyperparameters to train the learner
to find the most accurate parameter in the validation set from all parameters. Here, the
validation set is generated by cross-validation with k = 10. The descriptions and ranges of
the critical hyperparameters for the different algorithms are shown in Table 2.

Table 2. Hyperparameter settings [42–46].

Algorithm Hyperparameter Description Range

LR C
Regularization parameter. A smaller C means that
the model may have better generalization, but it is

also more likely to underfit

[0.0001, 0.001, 0.01, 0.1, 1, 10,
100, 1000, 10,000]

DT

criterion Selects the criteria by which attributes will be
selected for separation [gini, entropy, log_loss]

min_samples_leaf The minimum number of samples required at a
leaf node [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

max_depth The maximum depth of the tree [3, 4, 5, 6]

min_samples_split The minimum number of samples required to split
internal nodes [0.1, 0.2, 0.3, 0.4, 0.6, 0.8, 1.2]

GBDT

criterion Selects the criteria by which attributes will be
selected for separation

[friedman_mse,
squared_error]

n_estimators
The number of boosting stages to perform. It is
represented in GBDT as the number of decision

trees

[10, 25, 50, 60, 70, 80, 90, 100,
110, 120, 130, 140, 150, 160,

170, 180, 190, 200, 500, 1000,
1500, 2000]

DT hyperparameters min_samples_leaf, max_depth, and
min_samples_split Same as DT

RF
n_estimators The number of trees in the random forest Same as GBDT

DT hyperparameters Criterion, min_samples_leaf, max_depth, and
min_samples_split Same as DT

MLP

hidden_layer_sizes The number of hidden layers in the neural network
and the number of neurons in each hidden layer

[‘layer1’: 1 to 20 (n), ‘layer2’: 0
to n]

activation Activation function for the hidden layer [identity, logistic, tanh, relu]
max_iter The maximum number of iterations of the solver [100, 280, 460, 640, 820, 1000]

learning_rate_init The initial learning rate used. It controls the step
size when the weight is updated

[0.001, 0.0108, 0.0206, 0.0304,
0.0402, 0.05]

momentum Momentum for gradient descent update [0.5, 0.58, 0.66, 0.74, 0.82, 0.9]

SVM
C Regularization parameter [0.001, 0.01, 0.1, 1, 10, 100,

3300, 1000]
kernel Specifies the kernel type used in the algorithm [linear, rbf, poly, sigmoid]

Although GridSearchCV is guaranteed to obtain the most satisfying hyperparameters
within a specified range of parameters, this advantage also has the disadvantage of being

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
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time-consuming. Therefore, after executing GridSearchCV and recording the results, the
best-performing machine learning algorithm was selected. BO was introduced to tune and
compare the machine learning algorithms with GridSearchCV results, including model
performance and time consumption. BO is a powerful sequential optimization tool widely
applied in machine learning modeling for its ability to obtain the best hyperparameter
values quickly [47]. BO allows for mastery of prior knowledge, i.e., incorporating historical
information in the iterative process and avoiding redundant and unnecessary evaluation of
the objective function c(x) [48,49]. In this study, the execution of BO is implemented by the
bayes_opt toolkit.

2.3.2. Input Setting and Feature Importance Analysis

The dataset was randomly divided into a training set and a test set by applying the
leave-out method at 80–20%. The model’s training is performed on the training set, and the
test set checks the model’s generalization ability. We first used all 40 feature variables as
input to machine learning to examine the performance of the algorithms. Three different
continuous variable pre-processing methods were considered to examine the effect of pre-
processing on model performance. The three continuous variable pre-processing methods
are original dataset (OD), Min-Max Scaler (MMS, Equation (1)), and standard scaler (SS,
Equation (2)):

Xnew =
X − Xmin

Xmax − Xmin
(1)

where Xnew represents the scaled value, X is the original value to be scaled. Xmax and Xmin
represent the maximum and minimum values in the feature variables, respectively.

Xnew =
X − µ

σ
(2)

where µ and σ are the mean and standard deviation of the feature variables.
SHAP is a game-theoretic method that can be applied to interpret the output of

machine learning models [50]. SHAP interprets the output of a model as the sum of the
actual values attributed to each input feature variable and is an additive feature attribution
method [51]. The detail of the computational principles of SHAP can be found in the
attached reference [52]. In this work, SHAP was applied to explain the attribution of
the model based on a well-established machine learning model for groundwater TPH-
contaminated site identification at gas stations.

2.3.3. Model Evaluation

F1 score and area under curve (AUC) were chosen to evaluate the performance of
models. Gas stations with TPH-contaminated groundwater are marked as 1 and uncontam-
inated as 0. If the predicted result and actual value are both 1, the station is classified as
a True Positive (TP); while, if the predicted result and actual value are both 0, the station
is classified as a True Negative (TN). Conversely, if the predicted result is 1 but the actual
result is 0, the station is classified as a False Positive (FP), and if the predicted result is 0 but
the actual result is 1, the station is classified as a False Negative (FN). Precision refers to
the proportion of results with a predicted value of 1 corresponding to an actual value of
1, i.e., TP/(TP + FP). In contrast, recall refers to the proportion of samples with an actual
value of 1 with a predicted outcome of 1, i.e., TP/(TP + FN). F1 score is taken to be in the
interval [0,1], the larger, the better. According to Equation (3), the F1 score can be calculated
as follows:

F1 score = 2 × precision × recall
precision + recall

(3)

AUC is calculated based on the receiver operating characteristic curve (ROC), which
consists of recall and 1-specificity for different classification probability thresholds. AUC is
the area bounded by the ROC curve and the x-axis, x = 1. AUC is within the range [0.5, 1],
with larger values indicating better model performance.
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In addition, this study evaluates the training speed according to the time consumption,
aiming to obtain the most efficient model.

3. Results and Discussion
3.1. Performance of Machine Learning Models

The model performances are given in Figure 2. In detail, Figure 2a displays that the F1
score performed well for the LR, GBDT, and SVM models on the training set, all achieving
an F1 score of 1. GBDT achieved an F1 score of 1 on the test set, while the highest scores
for LR and SVM were only 0.67 and 0.57, respectively (Figure 2c). Figure 2b shows that
LR, GBDT, and SVM achieved better results than the DT, RF, MLP, and hierarchical cluster
analysis (HCA) models regarding the AUC scores for training. The best AUC results on the
test set were GBDT (AUC = 1) > LR (AUC = 0.75) > SVM (AUC = 0.72) (Figure 2d). The
results illustrated that GBDT has a certain degree of generalization performance. GBDT
accurately identified groundwater TPH contamination in 82 gas stations in the training
set and validated the algorithm’s capability in 21 gas stations in the test set. This can be
attributed to the iterative residual correcting strategy of GBDT, which allowed GBDT to
achieve better results than DT and RF [53]. LR performed poorly at dealing with unbalanced
datasets, so the results were not satisfying [54]. In addition, SVM and MLP require high
data density, which otherwise tends to underfit [55,56]. Moreover, the poor performance
of the traditional HCA model compared to machine learning models may be attributed
to the specificalities of feature variables. These feature variables were not the classical
hydrochemical variables related to groundwater TPH, which is a significant difference
from other studies where groundwater hydrochemical characteristics were used as input
variables in the HCA model [57]. The input variables of the ML model are more flexible,
which means all potentially relevant variables can be set as input variables, while the HCA
method tends to use groundwater chemistry indicators as input variables. Moreover, the
ML model has a stronger ability to find nonlinear relationships among variables than the
HCA model. Overall, the GBDT model based on GridSearchCV achieved the highest F1
score and AUC in both the training and test sets. The prediction performance of GBDT was
satisfying, while the other models were not.

Models trained with the data processed by SS tend to achieve better performance.
In the LR, SVM, and MLP models, the best training results were achieved pre-processed
by SS, with F1 scores and AUCs higher than those of OD and MMS. However, in the
testing phase, the SS-built models did not necessarily achieve optimal results. The MMS-
based LR model performed better in the testing phase, while the SVM was better using
OD, indicating that overfitting occurred when using SS for training LR and SVM [58].
Furthermore, for the tree models, including DT, GBDT, and RF, the F1 scores and AUC
results obtained from the three pre-processing methods were equal. It may be attributed
to the operational mechanism of DT: each input feature variable is treated separately, and
therefore each variable does not involve inconsistencies in the magnitudes of different
feature variables [59]. Figure 3 shows the confusion matrix of the best-performing models
on the test set. GBDT performed well on the 21 samples in the test set, correctly identifying
all 4 TPH-contaminated sites (TP = 4, FP = 0, FN = 0). In comparison, other models could
only identify one or two. This demonstrates the generalization ability of the GBDT model
in identifying TPH contamination in groundwater from gas stations. Therefore, the GBDT
model, pre-processed by OD, was chosen for further analysis.
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Table 3 shows the information obtained for the GBDT model. Based on the boosting
mechanism, GBDT classifies data by overlaying base learners, in which the residuals from
the training process are continuously reduced [36]. In this study, the hyperparameter
associated with boosting is n_estimators, which eventually took a value of 25, implying
that 25 boosting stages were performed during the implementation. Among the hyper-
parameters related to the tree model, the optimal criterion was friedman_mse. Therefore,
friedman_mse, a modified mean squared error function, was chosen to measure the impu-
rities of the nodes [60]. Min_samples_split determines the minimum number of samples
required for each internal node to be divided. The optimal value of min_samples_split was
0.1, which means that 10% of the training samples were required to split an internal node.
Max_depth means that a single DT is limited in further subdividing the nodes, with an
optimal value of three. The optimal value of min_samples_leaf was three, indicating the
minimum number of samples in each tree leaf node. Min_samples_leaf is complementary
to min_samples_split.
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Table 3. Information on the GBDT model for groundwater TPH contamination identification.

Algorithm Pre-Processing Hyperparameter Parameter Optimum

GBDT OD

criterion friedman_mse
n_estimators 25

min_samples_leaf 3
max_depth 3

min_samples_split 0.1

3.2. Model Optimization

Excessive training time is unacceptable due to the wide range of different site types,
pollutants, and the fact that the training time of the model increases with the sample size.
Table 4 presents the time the model’s training consumes based on the GridSearchCV method.
MLP consumed the most time, followed by RF and GBDT. Overall, this was attributed
to the exhaustive search mechanism of GridSearchCV. However, the single attempt time
of MLP was only 1.21–1.28 s. This resulted from the fact that MLP had set the largest
number of parameter groups (198,720). RF had the longest single attempt time (3.64 s), so
its total time was much longer than GBDT. The GBDT model with the optimal predictive
performance had the problem of inefficiency. The single attempt time was about 1.5 s,
and the total was more than 5 h. The MLP algorithm set the largest number of parameter
groups, since 230 different hidden layer sizes were designed. In addition, both RF and
GBDT had a number of parameter groups of the order of 104. As a result, MLP, GBDT, and
RF were time-consuming. For algorithms such as LR, GBDT, RF, and MLP, MMS or SS
pre-processing of the input shortened the time to train the model. Nevertheless, the total
training time for GBDT was still unacceptable.
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Table 4. Time consumption summary of training models based on the GridSearchCV method.

Algorithm Pre-Processing
Number of
Parameter

Groups
Total Time (s) Single Attempt

Time (s)

LR
OD 9 53.10 5.90

MMS 9 13.10 1.46
SS 9 7.75 0.86

DT
OD 840 60.57 0.07

MMS 840 60.07 0.07
SS 840 70.70 0.08

GBDT
OD 12,320 19,125 1.55

MMS 12,320 18,665 1.52
SS 12,320 18,961 1.54

RF
OD 18,480 67,283 3.64

MMS 18,480 66,574 3.60
SS 18,480 65,326 3.53

MLP
OD 198,720 253,500 1.28

MMS 198,720 248,400 1.25
SS 198,720 240,780 1.21

SVM
OD 32 2.24 0.07

MMS 32 3.95 0.12
SS 32 3.02 0.09

Since GBDT can achieve optimal identification performance, the hyperparameters
search process of GBDT was considered to be optimized to improve the efficiency of model
training. Here, we proposed to optimize the model parameters by using BO. The settings
of BO were as follows:

1. Black box function: the cross-validation score of the GBDT algorithm, and the metrics
are F1 score and AUC.

2. Random search step: 5.
3. The number of iterations: 100.
4. Range of hyperparameters: see Table 5. The input of hyperparameters to BO can

only be float instead of string and integer. Therefore, the criterion of GBDT is set to
friedman_mse, which is also the default value of the model.

Table 5. Hyperparameter range for BO-GBDT.

Hyperparameter Range

n_estimators (1, 2000)
min_samples_leaf (1, 10)

max_depth (3, 6)
min_samples_split (0.1, 1)

Table 6 displays the results of the hyperparameters optimized by BO. Compared
to GridSearchCV, the optimal hyperparameters searched by BO differed from that of
GridSearchCV. However, BO achieved the best performance on both the training and test
sets, indicating that the hyperparameters optimized by BO can also exploit the best learning
ability of GBDT [61]. Compared to GBDT, the training efficiency of BO-GBDT was much
higher, taking only 1/37 of the total time of GBDT. In terms of the single attempt time,
BO-GBDT took 5.13 s while GBDT spent 1.5 s for a single model, reflecting the value of
BO-GBDT in improving overall efficiency. Therefore, the BO-GBDT model can improve
the efficiency of identifying groundwater TPH contamination sites at gas stations without
reducing the identification accuracy.
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Table 6. The BO results in the GBDT model.

Hyperparameter Hyperparameter
Optimum Performance Training Time

n_estimators 978 Training: F1 score = 1,
AUC = 1

Test: F1 score = 1,
AUC = 1

513 s
min_samples_leaf 1

max_depth 3
min_samples_split 0.9745

3.3. Feature Variables Analysis

The top 20 ranked feature variables were presented in the variable importance plot
(Figure 4a), including WIN (wind), population, EVP (evaporation), TK_S (total potassium
in the soil), PRE (precipitation), LA (leakage accidents), sand_sub (the content of sand in
the subsoil), GDP, sand_top, pH_S, silt_top, SSD, Dist_river, construction time, clay_top,
NDVI, LAI, soil erosion, NO.SingleTanks, RHU. WIN was regarded as the essential variable
for identifying groundwater TPH contamination under gas stations in China (Figure 4a).
The WIN distribution in the SHAP summary results further confirmed the high importance
of wind speed in identifying groundwater TPH contamination at gas stations (Figure 4b).
The results implied that wind speed lower than 1.8 m/s resulted in a higher probability
of groundwater TPH contamination (Figure 5a). Part of the reason for this result may be
the acceleration of the gasoline vaporization rate by increased surface wind speeds, which
results in less TPH leaking into the groundwater [62]. Moreover, the natural attenuation of
TPH could be enhanced by an active water cycle under strong wind [63]. The population
showed high importance in identifying groundwater TPH contamination (Figure 4a). The
SHAP value gradually increased with population, and meanwhile the positive effect on the
probability of groundwater TPH contamination increased as well (Figure 4b). The SHAP
value was positive when the population was more than 2780 p/km2 (Figure 5b), indicating
that groundwater TPH contamination is more likely to occur at gas stations in densely
populated areas, which may be related to the high volume of transportation and storage due
to the high demand for gasoline [64]. The association between population and groundwater
TPH contamination reflected the enormous impact of human activities on groundwater
around gas stations, including TPH transportation, storage, and accidental spills. EVP, as
another meteorological variable, was also important to the BO-GBDT model. The SHAP
values were negative with lower EVP values (Figure 4b). Specifically, when the EVP was
below 1391 mm/a, the groundwater at the gas station was not likely to be contaminated
with TPH (Figure 5c). In contrast, the probability of groundwater TPH contamination
increased remarkably when EVP was higher than 1391 mm/a, which could be ascribed to
the increase in TPH concentration caused by water evaporation [65,66]. Moreover, high
EVP may result from high permeability, which may accelerate the transport of TPH from
soil to groundwater.

TK_S between 0 and 1969 mg/kg has a negative SHAP value, while it has a positive
SHAP value when TK_S is greater than 1969 mg/kg (Figure 5d). This indicates that the
high TK_S is somewhat related to the TPH pollution of groundwater in the local gas station.
In addition, PRE was identified as another important variable associated with groundwater
TPH contamination. The results of the SHAP summary showed that the decrease in PRE
increased the probability of groundwater TPH contamination (Figure 4b). The SHAP
values start to turn negative when the PRE exceeds 560 (Figure 5e). This result may be
related to the high natural attenuation of TPH at high value of PRE [67]. Meanwhile, PRE
tends to be negatively correlated with TK_S due to the strong leaching effect caused by
rainfall [68], which explains the positive correlation between TK_S and SHAP value. LA
was also identified as a significant variable. Groundwater TPH contamination occurred at
all gas stations where tank leaks have been detected (Figure 4b), indicating that once tank
leaks occur, groundwater is likely to be contaminated. The results alert the environmental
authorities to monitor the gas storage tanks more closely to avoid the risk of LA. The
SHAP value increased with a decrease in sand_sub, indicating that TPH contamination of
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groundwater at gas stations is more likely to occur with low sub-soil sand content. The
SHAP value was negative when sand_sub was between 0 and 12.33% (Figure 5f). This may
be related to the TPH trapping effect of the sand in the subsoil [69]. For features ranked
after sand_sub, their SHAPs are concentrated around 0, indicating that they play a minor
role in the well-established model (Figure 4).
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Furthermore, the above seven crucial feature variables were set as inputs of BO-GBDT
to investigate their identification performance of groundwater TPH pollution. The settings
of the input variables are shown in Table 7.

Table 7. Input combinations for each BO-GBDT model.

Number of Variables Input Variables

1 WIN
2 WIN, population
3 WIN, population, EVP
4 WIN, population, EVP, TK_S
5 WIN, population, EVP, TK_S, PRE
6 WIN, population, EVP, TK_S, PRE, LA
7 WIN, population, EVP, TK_S, PRE, LA, sand_sub

The performance metrics of the BO-GBDT model obtained by training with the seven
input settings are shown in Figure 6. Overall, the F1 score and AUC of the BO-GBDT model
showed an increasing trend when the number of input variables was increased, showing the
boosting effect of increasing variables on the model performance. It is worth noting that the
model already performed well when using only WIN as an input variable, with F1 scores
and AUCs of 0.87 and 0.90 on the training set and 0.75 and 0.85 on the test set, respectively,
reflecting the vital role of WIN in the model’s prediction. This is in agreement with the
findings presented in Figure 3a. At five variables, the predictive performance slightly
decreases compared to four, suggesting that with few feature variables, adding features
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may potentially introduce overfitting, as previously reported [70]. The model’s performance
saw a notable improvement when using six input variables (training F1 score = 1, test F1
score = 0.89, training AUC = 1, test AUC = 0.97). When the number of input features was
seven, the results were consistent with those when the number of features was six. It was
found that when using six or seven input variables, all the prediction errors involved cases
where no contamination was predicted as contamination (n = 1). In that case, although the
model’s results are not perfect, they are relatively conservative. Therefore, a reliable model
for identifying groundwater TPH contamination can be established using only six variables
(WIN, population, EVP, TK_S, PRE, LA).
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test sets.

The variables analysis results reveal that TPH contamination in groundwater at gas
stations in China is a combination of natural and anthropogenic factors. China’s eco-
environmental authorities are undertaking a series of pollution prevention control of gas
stations, as required by policy documents such as the National Groundwater Pollution
Prevention and Control Plan (2011–2020) and the 14th Five-Year Plan for Soil, Groundwater
and Rural Ecological Protection. The human activities at gas stations including the trans-
portation and storage of gas need to be further regulated. We recommend that managers
pay more attention to the supervision of gas storage tanks in densely populated areas in
order to detect potential leaks on time. This study also provides a scientific basis for the
site selection of new gas stations. From the point of view of avoiding groundwater contam-
ination by TPH, areas with low wind speed, low evaporation, low population density, and
high precipitation are considered suitable sites for new gas stations.

4. Conclusions

This study applied a machine learning approach to develop models to identify ground-
water contamination sites. An evaluation of model prediction performance and efficiency
was carried out. A case study was conducted using gas station sites in China with ground-
water TPH as the target contaminant. The model developed by the GBDT algorithm had the
most satisfying prediction performance (F1 score = 1, AUC = 1). Compared to GridsearchCV,
the BO-GBDT model could significantly improve the modeling efficiency without degrad-
ing the prediction performance, with a time from 19,125 s to 513 s. Therefore, BO-GBDT
was the most reliable prediction model in this study. The SHAP results displayed that the
critical feature variables in the BO-GBDT model included wind, population, evaporation,
total potassium in the soil, precipitation, and leakage accident.

It can be seen that the machine learning approach, particularly being optimized with
BO, shows potential for identifying groundwater contamination sites. The limitations of
the method mainly come from two aspects: (1) the machine learning model has inherent
uncertainty itself, which may affect the generalization ability; (2) the relatively small sample
size introduces uncertainty into the results of this study. In future studies, researchers
should incorporate more gas station contamination samples for further model improvement
and validation. Moreover, detailed experiments should be conducted to further verify the
relationships between the variables and TPH contamination identified in this study. In
addition, some other machine learning models, such as deep learning-based models, also
deserve to be studied for groundwater contamination site identification. The idea of using a
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machine learning approach to identify groundwater contamination sites is highly suggested
to be employed in more countries/regions and more types of sites and contaminants.
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