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Abstract: Floods can cause huge damage to society, the economy, and the environment. As a result,
it is vital to determine the extent and type of land cover in flooded areas quickly and accurately
in order to facilitate disaster relief and mitigation efforts. Synthetic aperture radar (SAR) is an
all-weather, 24 h data source used to extract information about flood inundations, and its primary
aim is to extract water body information for flood monitoring. In this study, we have studied the
backscattering characteristics of water and non-water, combined the threshold segmentation method
with Markov random fields (MRF), and embedded simulated annealing (SA) in the process of image
noise reduction, resulting in the development of a water extraction method KI-MRF-SA with high
accuracy in classification and high automation. Furthermore, object-scale adaptive convolutional
neural networks (OSA-CNN) are introduced for the classification of optical images before the flood
in order to provide reference data for flood inundation analysis. The method proposed in this study
consists of the following three steps: (1) The Kittler and Illingworth (KI) thresholding algorithm is
used for the segmentation of SAR images in order to determine the initial flood inundation extent;
(2) MRF and SA algorithms are employed as a means to optimize the initial flood inundation extent,
and the results are combined across multiple polarizations by using an intersection operation to
determine the final flood inundation extent; and (3) As part of the flood mapping process, land cover
types before the flood are classified using OSA-CNN and combined with flood inundation extents.
According to the experimental results, it is evident that the proposed KI-MRF-SA method is capable
of distinguishing water from non-water with significantly higher accuracy (3–5% improvement in the
overall accuracy) than conventional thresholding methods. Combined with the classification method
of OSA-CNN proposed in our earlier research, the overall classification accuracy of flood-affected
areas could reach 92.7%.

Keywords: SAR; GF-3; Markov random field; simulated annealing; deep learning; water extraction

1. Introduction

As one of the most devastating natural disasters in the world, floods cause a large
number of casualties and economic losses every year due to their sudden occurrence, wide
range of influence, and high recurrence rate [1–5]. Accordingly, as flood risks increase,
timely and synoptic observations of flood water extents are essential in order to respond to
and manage disasters efficiently [6,7].

Optical remote sensing images are one of the most commonly used data sources for
land use classification. However, since the visible and near-infrared spectrums of the optical
sensor have weak penetration ability, which makes it more susceptible to extreme weather
conditions, and because floods are often accompanied by extreme weather events such as
cloudy and rainy weather, a large number of non-detection zones may occur as a result. As
an active detector, SAR is well suited for flood mapping since it is capable of providing
24 h observations regardless of adverse lighting or weather conditions. Thus, it can also
compensate for certain shortcomings of optical remote images [8–11].
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Floods are caused by water flooding; thus, the key to utilizing SAR as a means to
monitor floods lies in the detection and mapping of water bodies. The backscattering
intensity of a SAR image is closely related to the ground’s surface roughness. Water
bodies have smooth surfaces that typically reflect the radar signal in the specular direction
away from the antenna, thereby producing a very low backscattering effect [9,12]. In
the case of study areas with flooding, the histogram of SAR images usually exhibits a
bimodal distribution, with one peak corresponding to water and another to non-water
areas [13–15]. Accordingly, since the water extraction method based on thresholding
segmentation is simple and efficient, it has been widely applied in a large number of
studies [16–22]. In recent years, in spite of the substantial advances in flood mapping
with SAR, further research is still needed in order to detect flood inundation in complex
environments such as vegetation and urban areas [23–29], because radar signals may be
quite complex and difficult to predict in these places. Smooth land surfaces may exhibit
specular scattering [30–32], but extreme weather conditions, such as heavy precipitation
and strong storms may cause rough water surfaces, which reduce the backscattering
contrast between water and non-water surfaces [33]. Consequently, a large amount of
noise may appear in the image after thresholding segmentation, which may disturb the
classification accuracy.

In this study, we aim to fully exploit the potential of SAR images for the detection of
water bodies, to correlate water and non-water areas in spatial distribution, and to present a
technical framework for “extraction and refinement” through the use of context information.
Firstly, a water body is extracted through thresholding segmentation and binarization. This
step is designed to quickly determine the initial water extent, which may involve a number
of noise errors as well. Secondly, on the basis of the binary image, the neighborhood
relationship of pixels is fully taken into consideration, and MRF is then utilized to denoise
the image. Furthermore, the simulated annealing (SA) method is incorporated in the
iterative process in order to achieving the global optimum in the denoising process by
preserving image detail while reducing noise errors, thereby facilitating the rapid extraction
of the flood inundation extent. In comparison to the conventional threshold method,
the proposed method minimizes the interference of speckle noise on the image. The
conventional threshold pursues an optimal threshold, which is used for the simple division
of water and non-water. Nevertheless, speckle noise causes their backscattering histograms
to overlap, and a single threshold cannot distinguish between water and non-water. In
contrast, the proposed method does not excessively rely on the selection of a threshold but
rather adopts post-processing to eliminate commission and omission errors. This yields a
globally optimal solution for water extraction, which considerably enhances the accuracy
of water identification.

On the basis of the identification of flood inundation extent, we expect to obtain the
land cover types through optical image classification, which can provide data support
for further inundation analysis. Traditionally, land cover type classification methods
operated at the pixel level and assessed the geometrical, textural, and contextual features
surrounding the focal pixels. The problem is that the land-surface information presented by
optical remote sensing images is complex, with fuzzy and uncertain semantics, and pixel-
based classification often suffers from errors in scale, morphology, or attribute. Compared
with traditional classification methods, deep learning technology can automatically learn
image features from massive images, avoid manual feature extraction, and achieve high
accuracy in image classification. Deep learning-based image classifications that utilize
convolutional neural networks (CNNs) are research hotspots in the field of remote sensing
image processing [34–36]. Typical applications include scene classification [37–42] and
land use/land cover classification [43–46]. However, CNN requires fixed inputs of object
primitives, without considering multiple scales of different objects. In order to solve this
problem, the object-scale adaptive convolutional neural networks (OSA-CNN) method was
proposed in our previous study and successfully applied to the classification of optical
remote sensing images [47]. The method combines object-based image analysis (OBIA)
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with CNN, in which multi-scale image segmentation and CNN classification are combined
through an object-scale adaptive mechanism and achieve high image classification accuracy.
In the current study, we also adopted this method in order to determine the land cover
types before the flood, thereby providing a data reference for the flood inundation analysis.

The remainder of this article is organized as follows: Section 2 introduces the remote
sensing images and the study sites; Section 3 introduces the details of the proposed method,
including the major components and the validation design; Section 4 conducts an experi-
mental analysis and accuracy evaluation; Section 5 discusses the proposed method and key
parameters; and Section 6 provides concluding comments.

2. Test Case and Dataset

From June 12 to 25, 2022, the Pearl River Basin experienced heavy rainfall for seven
consecutive days, causing a wide range of catastrophic floods. The floods affected 102 vil-
lages in five provinces, including an area of 113,070 hectares of croplands, 239,500 people
who were relocated, and a direct economic loss of RMB 11.652 billion. Among the flood
locations, Yingde City and Qingyuan City were the most severely affected. Our research
was conducted on the flood-affected areas of Boluokeng and Pajiang in these two cities and
collected the GF-3 images of the two experimental areas on 24 June 2022. At the time, the
flooding was still ongoing and close to its peak. In addition, we have also collected the
GF-2 data images before the event in order to analyze the land cover types before the flood,
as shown in Table 1.

Table 1. Summary of remote sensing data used in this study.

Image Location Remote Sensor Acquisition Date Size (Pixel) Resolution (m)

Boluokeng 113◦23′51′′ E GF-3 (FSII) 24 June 2022 1045 × 1411 10 × 10
24◦7′23′′ N GF-2 11 November 2021 1972 × 2768 4 × 4

Pajiang 113◦14′56′′ E GF-3 (FSII) 24 June 2022 2099 × 1319 10 × 10
23◦43′31′′ N GF-2 11 November 2021 3160 × 1953 4 × 4

During the flood, the China Centre for Resources Satellite Data and Application
gathered a large amount of data in this area (as part of the national response to sudden
natural disasters), and the GF-3 used in this research is the only microwave remote sensing
satellite in the major projects of the “China High-Resolution Earth Observation System,” as
well as China’s first multi-polarization high-resolution synthetic aperture radar satellite.
The GF-3 SAR data used in this study are dual-polarization (VV, VH) images acquired in
Fine Stripe 2 (FSII) mode. According to the spatial resolution reports, it is evident that the
sensor is capable of effectively identifying adjacent targets with an azimuth of 8 to 12 m
and a range of 10 m; thus, the image resolution was set to 10 × 10 m during preprocessing.
Upon completing the preprocessing, the sizes of the intercepted test areas were 1045 × 1411,
and 2033 × 1319, respectively, and the coverage area was as shown in Figure 1, with the
HV polarimetric SAR image as the base map.

During a flood event, it is not easy to obtain reliable and high-quality optical remote
images of an area depicting the environment. It should be noted that floods are often
accompanied by cloudy and rainy weather. Extreme weather hinders the acquisition of
surface information by optical sensors, and many optical remote images with clouds cannot
be directly used. Given the width of high-resolution optical satellites is smaller than that of
SAR satellites, and the revisiting time is relatively long, a comprehensive and quantitative
large-scale comparison between optical satellite images and SAR data is difficult to carry
out. As a result, we have collected as much information as possible from multiple data
sources, and selected typical areas among them for carrying out a local comparison by
employing SAR data as they became available. Finally, we have selected the GF-2 optical
satellite, which is the civil remote sensing satellite with the highest spatial resolution
independently developed by China to date. The GF-2 optical satellite is equipped with
a multi-spectral camera with a resolution of 4 m, and it also possesses effective earth
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observation capabilities. The image data we collected were taken on 11 November 2021,
about 6 months before the flood, and the types of land coverage showed little change. At
the time, there were few clouds in the sky, and the conditions for remote sensing shootings
were favorable, making it possible to easily classify land coverage types. The GF-2 data
collected at the time basically overlap with the SAR data range and cover the flood-affected
area. The image sizes of the two test areas are 1972 × 2768 and 3160 × 1953, respectively,
and the coverage area is shown in Figure 2.
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3. Methodology

In this study, the main technical process of the method proposed is shown in Figure 3,
which is mainly divided into the following two modules: (1) The KI-MRF-SA method is
used to delineate the flood water extent based on SAR images in the event of a flood. The
primary implementation steps of this module include: firstly, the SAR data are preprocessed
through the Environment for Visualizing Images (ENVI) 5.6.2 software; then, the initial
extent of the water body is delineated by employing the Kittler and Illingworth (KI) thresh-
olding algorithm; finally, MRF and SA are used as a means to refine the extraction results,
and the final flood water extraction results are obtained through multi-polarization fusion.
(2) The OSA-CNN method is employed for the classification of optical remote sensing
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images before the occurrence of the flood. In order to obtain the entire image classification
result, multi-scale image segmentation is conducted along with CNN classification and
multi-scale classification fusion. Upon completing the above two steps, the water body
extraction results and the land cover classification results are superimposed in order to
determine the land types within the flood-affected areas.
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3.1. Image Preprocessing

The SAR data of this study were preprocessed by employing the SARscape module of
ESRI’s commercial software, ENVI 5.6.2. The original data of GF-3 employ two bands in
order to store the real part and the imaginary part in one file, which is then imported into
SARscape and automatically combined into Single Look Complex (SLC) data. Subsequently,
the following preprocessing steps were applied to each image: multi-looking, terrain correc-
tion using a DEM, radiometric calibration, and geocoding. Firstly, the SAR intensity images
were generated from the SLC image according to the range and azimuth looks, which
were automatically determined due to the geometric relationship between the incident
angle and the range and azimuth directions in multi-looking. In the process of geometric
correction, the elevation data were downloaded from the National Elevation Dataset with
a resolution of 5 m. There is also an automatic download DEM feature available through
SARscape, including the 30-m and 90-m grids of NASA’s Shuttle Radar Topography Mis-
sion (SRTM). The refined Lee speckle filter was applied in order to reduce the noise level of
the intensity images, following which, the images were geocoded and resampled to the
SAR orthophotomap with a resolution of 10 m. In the automatic preprocessing process, the
majority of the default parameter settings of SARscape for GF3 data were adopted, except
for the output image resolution, to ensure accurate data processing efficiency with minimal
manual participation.

Since the downloaded GF-2 image is at the L1A level and has been radiometrically
corrected, it can only be used directly after it has been orthorectified. Through overlay
analysis, it was found that the spatial positions of the GF-2 and GF-3 images do not precisely
match, resulting in several pixels of deviation between them. In this study, the GF-2 image
obtained after orthorectification was utilized as a reference image, and the GF-3 SAR image
was matched with the GF-2 image by making use of coordinate translation.
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3.2. Thresholding Segmentation

There is a close relationship between the intensity of backscattering and the roughness
of the ground surface. There is a low backscattering intensity in water bodies due to their
smooth surfaces, as opposed to vegetation, bare land, and towns, which have a rough
surface, resulting in a high backscattering intensity. Therefore, the threshold-based method
is simpler and more efficient as a means for distinguishing water and non-water areas in
images. In particular, backscattering values below a candidate threshold represent water
pixels, and the rest represent non-water. A smaller threshold usually identifies water
extent with higher confidence, while a larger threshold tends to increase the confidence of
non-water [15]. In this study, some regions of interest from GF-3 images in FSII mode were
selected for analysis of their optimal thresholds. The water pixels represent areas including
rivers, lakes, ponds, and flood-affected areas, and the non-water pixels represent areas
including cropland, construction land, woodland, bare soil, etc., with a total of 20,000 pixels.
The backscattering ranges of the water and non-water areas of the HH and HV polarizations
have been calculated separately, and the histograms of the two polarization images are
shown in Figure 4.
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Figure 4. (a,b) are the water/non-water histograms of HV and HH polarization of the Boluokeng
area, respectively. (c,d) are the water/non-water histograms of HV and HH polarization of the
Pajiang area, respectively.

According to Figure 4, it is evident that the backscattering intensity of the water areas
in the two experimental areas is significantly smaller than that of the non-water areas, and
they are partially overlapped. Thresholding is greatly influenced by how much overlap
there is between two distributions of water and non-water areas.

As compared with HH polarization, HV polarization has a smaller histogram overlap
area between water and non-water areas, making it relatively easier to distinguish between
them. This is due to the fact that the cross-polarized image information is mainly deter-
mined by volume scattering and is less sensitive to specular scattering. In addition, the
surface of the water is smooth and uniform, and the noise level in the cross-polarized image
is lower, which is more conducive to the detection of water bodies.
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Through visually interpreting the probability density curves of the SAR image of
Boluokeng, it is possible to achieve more favorable water identification results by employing
−29 dB and−23 dB as the segmentation thresholds of HV polarization and HH polarization,
respectively; the optimal segmentation thresholds of Pajiang are −32 dB and −24 dB,
respectively.

By employing the backscattering intensity of a selected sample, the visual interpreta-
tion method summarizes the distribution range of water bodies in the image. Researchers
have utilized this method quite extensively. However, the acquisition of the threshold
depends on manual analysis and summary, which may involve a certain degree of sub-
jectivity. In addition, manual participation in judgment reduces its efficiency. Thus, an
automatic threshold selection method is necessary in this case. In this study, Otsu’s and
KI’s thresholding segmentation methods are employed for image binarization, and the
results are then compared in order to prove their effectiveness.

As an early-developed image segmentation method, Otsu’s method maximizes the
variance between two classes in order to determine a threshold [48]. We define the seg-
mentation threshold as T, the proportions of the number of pixels in the two categories as
ω0 and ω1, and the corresponding mean values as µ0 and µ1, respectively. The inter-class
variance σB can be calculated according to the following function:

σ2
B = ω0(µ0 − µ)2 + ω1(µ1 − µ)2 = ω0ω1(µ0 − µ1)

2 (1)

The selection of a suitable threshold T is based on the maximum of a given predefined
function.

Although a SAR image intensity histogram does not completely conform to the Gaus-
sian distribution, the Gaussian distribution results in a better fitting effect as compared to
other existing empirical statistical models. In this study, the KI’s thresholding algorithm [49]
has been adopted, which is predominantly used in remote sensing image analysis [50–53].
In this technique, the sets of pixels in grayscale images are grouped into object and back-
ground classes using the minimum error approach. The fitting criterion function under the
Gaussian distribution is defined as:

J(T) = 1 + 2[Pw(T)lnσw(T) + Pn(T)lnσn(T)] + 2H(Ω, T) (2)

H(Ω, T) = −2[Pw(T)lnPw(T) + Pn(T)lnPn(T)] (3)

where Pw(T) and Pn(T) represent the prior probability of water and non-water areas at the
threshold T, and σw(T) and σn(T) are the corresponding standard deviations. As long as
the threshold T is varied, the models of the Gaussian distributions change. The lower the
value of the criterion function, the better the model fits the data.

3.3. Refinement of the Water Extraction Method

Otsu’s and KI’s thresholding segmentation methods are only capable of turning all the
pixels of an image into one-dimensional samples for unsupervised classification; however,
these methods do not take the spatial neighborhood information into consideration, and
are vulnerable to noise in complex environments. Although the noise level of SAR images
can be reduced through multi-look, filtering, and other processes during preprocessing,
there are a number of inherent speckle noises with high scattering that are difficult to
eliminate. Furthermore, excessive filtering may lead to the degradation of the image
resolution and may exhibit water bodies with blurred edges, resulting in a decrease in the
final classification accuracy. Accordingly, it is necessary to employ methods that involve
both noise suppression as well as detail preservation in order to perform more accurate
classification of a SAR image.

MRF is capable of fully utilizing context information and prior knowledge of image
features, and can accurately describe the dependencies between pixels. In this study, MRF is
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adopted in order to extract water bodies more accurately. First, the SAR image is converted
into a binary image through threshold segmentation, with the water pixels marked as 1 and
the non-water pixels marked as −1. xi is defined as the pixel from the original image, and
yi as the pixel in the observed image. The process of removing noise can be regarded as
the process of restoring the random field y to the real random field x. Generally, the pixels
in the original image are closely related to those in the observed image, and each pixel is
relatively close to its surrounding pixels since there is no noise in the original image. The
following prior knowledge can be obtained: 1. xi is related to yi; 2. xi is only related to its
adjacent pixel xj from the original image. Thus, the complex Markov model can be divided
into a series of simple cliques composed of

{
xi, yi, xj

}
, and the energy function is defined

as:
E(x, y) = h ∑

i
xi − β ∑

{i, j}
xixj − η ∑

i
xiyi (4)

The corresponding joint probability distribution function is as follows:

P(x, y) =
1
Z

exp{−E(x, y)} (5)

where h, β, and η represent the non-negative weight, and Z represents the normalization
factor. In conclusion, the lower the energy, the higher the joint probability distribution, and
in turn, the denoised image has a higher probability of being consistent with the original
image.

The optimization of the solution is carried out by employing the Iterated Conditional
Modes (ICM) strategy [54]. This strategy calculates local energy changes by changing
the current pixel and fixing other pixels in each iteration, and it provides the advantages
of convenient calculation, eliminates the need to repeat the calculation of global energy,
and is highly efficient. However, it also has certain defects, which may lead to relatively
dense noise points forming noise blocks, thus falling into a local optimum. In order to
obtain a better denoising result, it is necessary to adopt a strategy that can lead to obtaining
the global optimum. The simulated annealing method [55] is a recursive and iterative
global optimization algorithm that is capable of randomly searching for the global optimal
solution by accepting the local non-optimal solution with a certain degree of probability.
The key to simulated annealing is finding an acceptably good solution by calculating the
acceptable probability q based on the current temperature t, and determining whether or
not the current change should be accepted based on the Metropolis acceptance criteria [56].
The specific algorithm flow is as follows:

Step 1: Threshold segmentation is performed for each polarization of a SAR image,
and the water pixels and non-water pixels are initialized to 1 and –1, respectively;

Step 2: The current temperature t is calculated based on the current iteration number k
and the maximum iteration number kmax;

Step 3: Each pixel xk is traversed and converted into {1 and −1} in order to calculate
the local energy change ∆E;

Step 4: The acceptable probability q is calculated based on ∆E and t, and the current
pixel value is modified to xk+1 according to the Metropolis acceptance criterion;

Step 5: Steps 2–4 are then repeated until the maximum number of iterations is reached
or the difference between the two adjacent global energy changes is less than 0.1%;

Step 6: Based on the results of the water extraction process in different polarization
images, the final result is generated through the operation of intersection.

During the algorithm process, the cooling schedule controls the entire algorithm flow.
The temperature in the cooling schedule does not necessarily have any actual physical
meaning, but as the iterative calculation proceeds, the temperature should gradually
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approach zero. Thereby, the result can converge to the global optimal. In this study, the
temperature calculation formula was designed as:

t(k) = s ∗
(

1
k
− 1

kmax

)
(6)

where s is a constant for controlling the rate of temperature drop, and k and kmax are the
current iteration number and the maximum iteration number. In this study, s was set at
0.01, and kmax was set at 30.

xk is defined as the value of pixel x in the kth iteration, E(xk) refers to the local energy
only affected by xk, and E(xnew) refers to the new local energy after changing the value
of xk. Based on the current temperature t and the local energy change, the acceptable
probability q can be calculated using the following formula:

q = exp
(
−E(xnew)− E(xk)

t

)
(7)

Subsequently, the change of the current pixel is accepted probabilistically according to
the Metropolis criterion:

xk+1 =

{
xnew, q ≥ 1 or q > ξ

xk, q < ξ
(8)

where ξ is a random number uniformly distributed on the [0, 1] interval. When q is greater
than ξ or q is greater than or equal to 1, the current pixel change is accepted; otherwise, it is
not accepted. In each iteration of ICM and SA, the water distribution map is continuously
updated. When the global energy change between two adjacent iterations is less than 0.1%
or the number of iterations reaches 30, the iteration is terminated and the flood inundation
map is generated accordingly.

As SAR images are usually composed of multiple polarizations, multiple polarizations
can be combined in order to take advantage of more information about the land surface,
thereby improving the delineation of water bodies. Consequently, we first delineated the
flood inundation map at each polarization and then applied an intersection operation in
order to combine flood inundation maps across the various polarizations (i.e., a pixel is
labeled as water only if it appears in different polarizations).

This method does not only integrate the multi-polarization data of the SAR image, but
also takes into account the global optimization of the noise reduction process. By enhancing
its ability to suppress the inherent speckle noise and maintain the detailed quality of the
images, the robustness of the method is enhanced.

3.4. Classification of Flooded Area

In our previous research, we have proposed the OSA-CNN classification method [47],
and demonstrated the effectiveness of this method in the classification of optical remote
images. OSA-CNN is divided into two main modules. The first one is the image seg-
mentation and classification module. The object primitives at a set of scales are obtained
through hard-boundary-constrained segmentation (HBC-SEG) [57–61]. Then, the object
primitives are mapped into image patches using adaptive patch sampling along the object
primitive axes, and the results are classified using CNN. These processes are conducted
at all scales to obtain a set of classification results. The second one is the multiscale clas-
sification fusion module. Each object primitive is classified through majority voting on
the image patches’ classification results to obtain the entire image classification result.
The object primitive/image patch conversion, CNN network modification, and multiscale
classification fusion are the key links for fulfilling the proposed method. In the current
study, this method is employed as a means to carry out the classification of land cover
types before the occurrence of floods. In addition, two scales of 50 and 100 are utilized for
segmentation according to the specific conditions of the two experimental areas, and the
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OSA-CNN model is used to distinguish between the five main land cover types: water,
woodland, cropland, bare soil, and construction land.

The implementation process of the model is depicted in Figure 5. First, HBC-SEG is
utilized for image segmentation to convert the image into a series of object primitives, as
demonstrated in Figure 5b. Second, the axis of each object primitive is extracted to obtain
the sampling candidate points, as illustrated in Figure 5c. Third, the object primitives are
mapped into image patches using adaptive patch sampling along the object primitive axes,
as shown in Figure 5d. Finally, OSA-CNN is employed for the classification of each image
patch. The object primitive classification results are achieved through voting, as depicted in
Figure 5e,f. Figure 5 is the OSA-CNN classification process at one scale. The image patches
at more scales can be obtained through multi-scale segmentation, and the classification
results at different scales will be considered in the voting process.
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The adaptive patch sampling scheme is as follows:
Step 1: Position the first image patch sample at the widest axis point and set the square

width to double the axis width (e.g., S1 in Figure 5d);
Step 2: Excluding the axes covered by the sample generated in Step 1, search the

remaining axes for the second widest axis point and generate the candidate sample. Discard
the candidate if its overlap rate with prior samples exceeds 30%; otherwise, consider the
candidate as a new image patch sample (e.g., S2 in Figure 5d);

Step 3: Repeat Step 2 until no axis points are available or until the number of samples
reaches a certain threshold.

These image patches cover the majority of the parts of the object primitive, accurately
represent the object primitive’s configuration, and facilitate the subsequent CNN training
and classification. For OSA-CNN network structure and other details, refer to [47].
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The surface water is extracted from the images before and after the flood inundation,
and the water and non-water pixels are assigned as 1 and 0, respectively, in order to obtain
binary images. Then, the binary images are superimposed for change detection, and the
flood inundation extent is obtained through the following formulas:

∆P = P2 − P1 (9)

W =

{
1, ∆P > 0
0, ∆P ≤ 0

(10)

where P1 and P2 refer to the binary images before and after the flood inundation, respec-
tively. W = 1 refers to the flooded pixels, and W = 0 refers to the non-flooded pixels. By
superimposing the flood inundation extent and the land cover types before the occurrence
of the flood, the flood inundation map can be obtained.

3.5. Accuracy Evaluation

A confusion matrix was established to evaluate the accuracy of the compared methods.
The accuracy measures used in this study include user accuracy (UA), producer accuracy
(PA), overall accuracy (OA), and Kappa.

UA(a) =
Xaa

∑n
i=1 Xai

(11)

PA(a) =
Xaa

∑n
i=1 Xia

(12)

OA =
∑n

i=1 Xii

N
(13)

Kappa =
N ∑n

a=1 Xaa −∑n
a=1(∑

n
i=1 Xai ×∑n

i=1 Xia)

N2 −∑n
i=1(∑

n
i=1 Xai ×∑n

i=1 Xia)
(14)

where n represents the number of classes, N denotes the total number of test samples,
and Xai represents the number of samples whose actual and predicted classes are a and i,
respectively.

4. Results
4.1. Water Extraction

Four water extraction schemes were adopted as a means to verify the effectiveness
of the method proposed in this research: Otsu, KI, KI-MRF, and KI-MRF-SA. Otsu and KI
verify the effectiveness of cases that only utilize Otsu’s and KI’s thresholding segmentation
for water extraction, respectively. KI-MRF verifies the effectiveness of cases that utilize MRF
for water extraction based on KI’s thresholding segmentation method. KI-MRF-SA is the
final scheme proposed in this paper, which indicates the effectiveness of the combination
of the MRF and SA methods for water extraction based on KI’s thresholding segmentation
method. Each scheme has made improvements on some key steps compared to the previous
one, and the last scheme incorporates all of the improvements.

To ensure accuracy and comparability, the four schemes utilized the same parameters
in the same step, including energy weight parameters h, β, η, the maximum number
of iterations kmax, etc. For the quantitative evaluation, a total of one thousand sampling
points were randomly generated within the two experimental areas. These points were
labelled through visual interpretation, which enabled a comparison of the accuracy of the
four schemes.

The quantitative evaluation results of the four schemes are listed in Table 2. The OAs of
these methods are above 88%, because the majority of the image points are non-water areas
and they are most accurately delineated, thus inflating the OA. In the extraction process
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of the flood inundation, more attention should be paid to the accuracy indicators related
to water. The OAs of Otsu’s and KI’s threshold segmentation methods are approximately
88.60%, and 90.50%, respectively, which demonstrates the robustness of these two classical
segmentation methods. However, in the case of Otsu’s method, there is a higher commission
error rate, with the lowest UA of 84.90%. The UA of KI’s threshold segmentation is 86.51%,
which is relatively superior to Otsu, indicating that the water extraction results obtained
through KI’s threshold segmentation are more accurate. Both KI’s and Otsu’s methods do
not take the spatial neighborhood information into consideration, which leads to a large
number of noise errors in the results and a PA of only 88.35% and 88.31%, respectively.

Table 2. Accuracy assessment of water and non-water delineation using different methods.

Method
UA (%) PA (%) OA (%) Kappa

Water Non-Water Water Non-Water

Otsu 84.90 92.87 88.35 90.61 88.60 0.77
KI 86.51 92.62 88.31 91.42 90.50 0.80

KI-MRF 87.41 94.20 90.84 91.91 91.50 0.82
KI-MRF-SA 89.82 95.38 92.65 93.53 93.10 0.85

As compared with simple thresholding segmentation, the method proposed in this
study is capable of producing more accurate results for various indicators. The KI-MRF
method can reduce a number of small noise errors through MRF, thus directly improving
the UA and PA of the water extraction results by approximately 1% and 2.5%, respectively.
On this basis, KI-MRF-SA employs the SA algorithm as a means to further improve the
results, making the effect of noise reduction reach the global optimum. In the case of
KI-MRF-SA, there was an increase in the UA and PA of the water extraction results by
approximately 2.5% and 1.8%, reaching 89.82 and 92.65%, respectively. As a result of
improving the method proposed in this research, there was an increase in the OA and
Kappa coefficients. Compared with the KI method, KI-MRF-SA showed an increase of
about 2.4% in total in OA, and the Kappa coefficient increased by 0.03, indicating that
KI-MRF-SA is capable of effectively improving the accuracy of the water detection method.

Figures 6–9 show the water extraction results, in addition to enlarged images of the
four schemes. In terms of the overall extraction effect, they are consistent with the previous
quantitative analysis results. There is a large amount of noise in the results of Otsu’s and
KI’s methods. The KI-MRF method is capable of effectively reducing part of the noise, and
KI-MRF-SA can further reduce the noise level and achieve the best extraction effect.

According to the enlarged image, Otsu’s and KI’s methods misclassify some isolated
pixels of water as non-water; those must be classified as water pixels with higher backscatter
intensities due to the SAR speckle noise occurring in a homogenous surface, as shown
at spots A, B, and C in Figure 7 and spots A, B, and C in Figure 9. Additionally, some
non-water pixels with lower backscattering intensities are misclassified as water, as shown
at spot D in Figure 7 and spot D in Figure 9. The main reason for this is that a smooth
land surface may also lead to a lower backscattering intensity. Therefore, omission and
commission errors are hard to avoid with only threshold segmentation.

Regarding threshold segmentation, the KI-MRF method employs MRF to further
optimize the segmentation result. Some isolated and small noises can be easily reduced, but
some dense and large noises are still difficult to eliminate, as shown at spot A in Figure 7
and spot A in Figure 9. The KI-MRF-SA method is capable of “melting” this part of the
noise with the global optimization capability of SA and can obtain the best water extraction
results. The contrast experiment of water extraction proves that the combination of MRF
and SA can effectively take advantage of the spatial neighborhood information in order
to eliminate omission and commission errors, thereby improving the accuracy of water
extraction results.
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Figure 6. Water delineated by using (a) Otsu’s method, (b) KI’s method, (c) the KI-MRF algorithm,
and (d) the KI-MRF-SA algorithm in Boluokeng. The red boxes mark some remarkably changed spots
(A, B, C and D) and method enhancements.
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4.2. Classification of Inundated Areas

OSA-CNN was utilized for the classification of GF-2 images in order to determine
the types of land cover before the occurrence of floods, as shown in Figures 10a and 11a.
The flood inundation map was obtained by employing the superimposed flood inundation
extent and land cover types, as shown in Figures 10b and 11b.

According to the statistics of the flood-affected areas in the experimental areas, the
total flood-affected areas of Boluokeng and Pajiang measured 8.99 km2 and 24.83 km2,
respectively, among which the cropland, woodland, bare soil, and construction lands of
Boluokeng measured 6.62 km2, 1.69 km2, 0.32 km2, and 0.36 km2, respectively, and those of
Pajiang measured 4.89 km2, 1.84 km2, 17.44 km2, and 0.66 km2, respectively.
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Figure 8. Water delineated by using (a) Otsu’s method, (b) KI’s method, (c) the KI-MRF algorithm,
and (d) the KI-MRF-SA algorithm in Pajiang. The red boxes mark some remarkably changed spots
(A, B, C and D) and method enhancements.



Water 2023, 15, 1288 17 of 25Water 2023, 14, x FOR PEER REVIEW  17  of  25 
 

 

 

Figure 9. Detail displays of water extraction in Pajiang. The subfigures (A–D) are some remarkably 

changed spots in Pajiang. 

4.2. Classification of Inundated Areas 

OSA-CNN was utilized for the classification of GF-2  images in order to determine 

the types of land cover before the occurrence of floods, as shown in Figures 10a and 11a. 

The flood inundation map was obtained by employing the superimposed flood inunda-

tion extent and land cover types, as shown in Figures 10b and 11b. 

According to the statistics of the flood-affected areas in the experimental areas, the 

total flood-affected areas of Boluokeng and Pajiang measured 8.99 km2 and 24.83 km2, re-

spectively, among which  the cropland, woodland, bare soil, and construction  lands of 

Boluokeng measured 6.62 km2, 1.69 km2, 0.32 km2, and 0.36 km2, respectively, and those 

of Pajiang measured 4.89 km2, 1.84 km2, 17.44 km2, and 0.66 km2, respectively. 

On the basis of the statistical results, the land type of the flood-affected area in Bolu-

okeng was mainly cropland, accounting for 73.6% of the flooded area, followed by wood-

land, accounting for 18.8%. As shown in Figure 10, the flood-affected cropland and wood-

land were mainly distributed in the plains on both sides of the river, and the surrounding 

higher-lying woodland was less affected. The construction land in the northeast was also 

less affected due  to  the  construction of dams along  the  river. Pajiang  is  located  in  the 

Figure 9. Detail displays of water extraction in Pajiang. The subfigures (A–D) are some remarkably
changed spots in Pajiang.

On the basis of the statistical results, the land type of the flood-affected area in Boluo-
keng was mainly cropland, accounting for 73.6% of the flooded area, followed by woodland,
accounting for 18.8%. As shown in Figure 10, the flood-affected cropland and woodland
were mainly distributed in the plains on both sides of the river, and the surrounding
higher-lying woodland was less affected. The construction land in the northeast was
also less affected due to the construction of dams along the river. Pajiang is located in
the downstream plain with open and low-lying terrain, and since the accumulated water
cannot be easily discharged, it resulted in a large flooded area. Flood-affected areas were
predominantly composed of bare soil and cropland, accounting for 70.2%, and 19.7% of
the total. As shown in Figure 11, the flood spread from the south side of the river to the
surrounding mountains. Although there is a dam built on the north side of the river, the
long-term heavy rain caused the dam to overflow, causing a large area of cropland to be
flooded on the north side.
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Boluokeng.

Since the extraction accuracy of the flood inundation area has been verified previously,
only the classification accuracy verification is required to be carried out within those areas.
For this purpose, a total of one thousand sample points were randomly selected from the
flooded areas of the two experimental areas, and their land types were manually labelled
with reference to the GF-2 image. Subsequently, a confusion matrix was employed as a
means for accuracy validation, as shown in Table 3. In this case, the OA of the classification
result is 92.7%, and the classification accuracy of water, cropland, and bare soil is higher,
with a PA and UA exceeding 90%, while the PA and UA of woodland and construction
land are relatively lower, at approximately 82% and 88%, respectively. Due to the relatively
small proportion of woodland and construction land within the flooded area, and the fact
that they are dispersed, the CNN results are easily disturbed by ground objects.

In our previous studies [47], the OSA-CNN method was capable of achieving approxi-
mately a 90% OA and a 0.87 Kappa in the case of the GF-2 image classification. Compared
with that, in this study, the classification process was able to achieve superior results in the
cases of OA and Kappa, reaching 92.7% and 0.9, respectively. This is due to the fact that
this experiment mainly focused on flood-affected areas, where the terrain is flat and there
is no interference from mountain shadows. Moreover, in this experiment, the main types of
land used were cropland and bare soil, both of which have relatively simple characteristics
and homogeneous distributions, which facilitate a more accurate classification process.
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Table 3. Accuracy assessment of the land cover classification of the flooded area.

User/Reference Class Water Cropland Bare Soil Woodland Construction Land Sum

Water 185 10 6 2 0 203
Cropland 10 257 9 5 2 283
Bare soil 0 8 382 1 0 391

Woodland 3 2 6 75 3 89
Construction land 0 1 2 3 28 34

Sum 198 278 405 86 33
PA (%) 93.4 92.4 94.3 87.2 84.8
UA (%) 91.1 90.8 97.7 84.3 82.4
OA (%) 92.7
Kappa 0.90

5. Discussion

In this research, two automatic thresholding methods, Otsu and KI, are employed for
the segmentation of SAR images of GF-3. In this procedure, the automatic thresholds are
compared with the visual interpretation threshold, and the influence of different polar-
izations on the thresholding segmentation results is discussed. As shown in Table 4, the
thresholds of Otsu’s method are generally higher, with a difference of approximately 1–2 dB
from the visual interpretation threshold, which may lead to an increase in the commission
error rate. However, the difference between KI’s threshold and the visual interpretation
threshold is relatively small, with less than 0.5 dB in different polarizations, indicating that
the result of KI’s thresholding method is closer to the real distribution of water, which is
consistent with the results of the quantitative evaluation. In addition, the thresholds of the
two methods in the HV polarization are closer to the results of the visual interpretation
thresholds than the HH polarization, indicating that water detection in the HV polarization
is more stable.

Table 4. The comparison of thresholds using different threshold segmentation methods.

Image Visual Interpretation (dB) Otsu (dB) KI (dB)

Boluokeng HV −29 −28.02 −29.20
Boluokeng HH −23 −21.12 −22.80

Pajiang HV −32 −30.56 −31.90
Pajiang HH −24 −22.31 −23.64

Speckle noise is a characteristic of SAR images regardless of imaging modes, resulting
in abrupt variations of pixel intensity in homogeneous regions and a high number of
omission and commission errors, as depicted in Figure 12b,f. Typically, speckle noise can
be reduced by applying low-pass filtering to images, such as the refined Lee speckle filter
adopted in the preprocessing section of this study, as depicted in Figure 12c,g. In some
complex regions, however, speckle noise cannot be entirely eliminated by filtering, and
excessive filtering may impair image resolution. In this study, KI-MRF-SA was adopted for
morphological optimization. The advantage is that only local noise was processed so as to
avoid image detail loss caused by global filtering, as illustrated in Figure 12d,h.

The KI-MRF-SA method was applied to each polarization of the image, and an inter-
section operation was used to aggregate the water extents from two polarizations (HH and
HV). The water maps derived from HH and HV are distinct because scatters within the
same scene exhibit varying scattering strengths in different polarization modes. In general,
strong HH signals are associated with rough surface scattering, whereas HV signals are
typically more susceptible to volume scattering. Applying the intersection of the two
polarizations can reduce commission error by masking rough surfaces or volume scatterers
with high backscattering, though it may slightly increase the omission error, as depicted in
Figure 12i.
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Figure 12. (a) HH polarimetric SAR image. (b–d) are the water maps derived from (a), which
are processed by KI, refined Lee filter + KI, and refined Lee + KI-MRF-SA respectively. (e) HV
polarimetric SAR image. (f–h) are the water maps derived from (e), which are processed by KI,
refined Lee filter + KI, and refined Lee + KI-MRF-SA respectively. (i) The intersection of (d,h).

In the KI-MRF-SA method, the temperature control parameter s directly affects the
convergence rate in energy decline; thus, a further examination of the impact of different s
values is warranted. In this regard, taking the HV polarization of Boluokeng as an example,
s was set as 0, 0.005, 0.01, and 0.02, respectively, and the other parameters remained constant.
Then, we calculated the global energy change, as shown in Table 5. s = 0 means that SA
is not involved in the iterative operation, which is the KI-MRF method proposed in this
research. KI-MRF is characterized by a fast convergence speed, and the global energy
of the image tends to be stable after applying the second iteration. However, due to the
incomplete noise elimination, the energy of convergence is relatively high, approximately
−7233. As s increases, the convergence speed of the energy slows down. When s is set as
0.005, 0.01, and 0.02, the corresponding convergence iterations are 4, 7, and 10, respectively,
and the corresponding energies are −7247, −7251, and −7251. This demonstrates that the
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energy convergence reaches the minimum when s is 0.01, and as s increases further, the
convergence time is prolonged rather than the energy being reduced.

Table 5. Global energy change in the HV polarization of Boluokeng during the iterative operation.

k
Energy

s = 0 s = 0.005 s = 0.01 s = 0.02

0 −7198 −7198 −7198 −7198
1 −7231 −6838 −4339 −1522
2 −7233 −7216 −6569 −4236
3 −7233 −7240 −7167 −5933
4 −7233 −7246 −7229 −6876
5 −7233 −7246 −7248 −7146
6 −7233 −7246 −7250 −7211
7 −7233 −7247 −7251 −7231
8 −7233 −7247 −7251 −7243
9 −7233 −7247 −7251 −7250
10 −7233 −7247 −7251 −7251

We proposed a novel water extraction method for SAR imagery based on MRF and SA.
Compared with the traditional threshold method, this method can reduce the classification
error caused by speckle noise more efficiently, allowing for greater accuracy. The method is
unsupervised, efficient, and suitable for near real-time flood detection. However, in densely
populated metropolitan regions, tall buildings can hinder the applicability of SAR images.
Owing to the side-looking nature of the sensor, building shadows with low brightness
intensities would be classified as water. On the other hand, the corners formed by buildings
and the ground can produce a double bounce effect, resulting in bright pixels in the image.
When these corners are flooded, the image pixels appear to be brighter, which causes
threshold methods to misclassify them. Based on the discussion above, flood extraction in
high development density areas needs to further improve for flood mapping strategies. In
future studies, additional data sources, such as UAV images, will be considered to improve
the classification accuracy, or time series SAR images will be used to overcome the problem
of smooth surfaces with low backscattering. In this study, only a single-temporal SAR
image was utilized to identify the flood inundation area; however, the proposed method
can be simply applied to multi-temporal images to detect inundation changes.

6. Conclusions

The earth observation technology of remote sensing has always been the key means
of flood monitoring, and the combination of optical remote images and SAR images for
the extraction of flood inundation information is a promising application mode. Optical
images provide clear imaging and rich features, while SAR imaging provides 24 h and all-
weather characteristics, making it possible to obtain information about inundation extent
after floods as well as land cover types prior to floods, thus improving the classification
of flood inundation areas. In this study, the combination of KI’s threshold segmentation,
MRF, and SA algorithms is applied to the water extraction process in SAR images, and
the technical framework of “extraction and then refinement” is adopted in order to form a
more flexible KI-MRF-SA method. The experimental results of Boluokeng and Pajiang’s
Gaofen-3 satellite images demonstrate that, in comparison with the traditional threshold
method, KI-MRF-SA offers advantages in terms of water extraction, retaining the quality of
image details while reducing the impact of noise. Combined with the classification method
of OSA-CNN proposed in our previous research, the classification of flood-affected areas
can be further realized on the basis of high-precision identification of the flood inundation
extent.

Although threshold segmentation still needs to be improved, since only a small scale
of water extraction is investigated in this study, a single threshold may not be sufficient to
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distinguish between larger scales of water extraction. Therefore, our future work will focus
on multi-threshold segmentation and local threshold segmentation in order to develop
more robust threshold segmentation methods.

The findings of this study demonstrate that the comprehensive utilization of SAR
and optical images can accurately identify the land cover type and extent of the flood
inundation area. The direct value of this study is to enable emergency managers to fulfill
their need for collecting near real-time flood inundation maps, so as to offer auxiliary
decision-making for disaster relief measures in different flooded areas, and provide data
support for disaster assessment. Hence, the method proposed in this paper can represent a
valuable tool to pursue this objective.

Moreover, the added value of this study is that it paves the way for the development
of novel applications in flood disaster management. For instance, sequential flood coverage
monitoring data can be utilized to regularly update/correct flood computation models
through data assimilation procedures, as well as to estimate pertinent variables such as
river discharge and channel depth. Other studies have demonstrated that flood inundation
maps obtained from satellite earth observation are of great value in lowering the prediction
uncertainty of numerical models and generating essential hydrological variables [62–64].
However, given that this study method has not been implemented in other instances,
further verification of its efficacy is required and is planned for the near future.

Author Contributions: Methodology, J.W.; Validation, J.W.; Writing—original draft, J.W.; Supervision,
B.H. and F.W.; Funding acquisition, B.H. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the China Postdoctoral Science Foundation (No. 2022M710837),
the Key-Area Research and Development Program of Guangdong Province (No. 2020B0101130018),
and the GuangDong Basic and Applied Basic Research Foundation (No. 202201011275).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Acknowledgments: The authors gratefully acknowledge the contribution of many research fellows
in the Guangdong Provincial Science and Technology Collaborative Innovation Center for Water
Safety and the Guangdong Key Scientific Research Base of Hydraulics.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Liang, Y.; Liu, D. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery. ISPRS J. Photogramm.

Remote Sens. 2020, 159, 53–62. [CrossRef]
2. Adhikari, P.; Hong, Y.; Douglas, K.R.; Kirschbaum, D.B.; Gourley, J.; Adler, R.; Robert Brakenridge, G. A digitized global flood

inventory (1998–2008): Compilation and preliminary results. Nat. Hazards. 2010, 55, 405–422. [CrossRef]
3. Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3,

802–806. [CrossRef]
4. Schumann, G.J.P.; Bates, P.D.; Di Baldassarre, G.; Mason, D.C. Chapter 6 The Use of Radar Imagery in Riverine Flood Inundation

Studie. In Fluvial Remote Sensing for Science and Management; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 115–140.
5. Pall, P.; Aina, T.; Stone, D.A.; Stott, P.A.; Nozawa, T.; Hilberts, A.G.J.; Lohmann, D.; Allen, M.R. Anthropogenic greenhouse gas

contribution to flood risk in England and Wales in autumn 2000. Nature 2011, 470, 382–385. [CrossRef]
6. Martinez, J.M.; Le Toan, T. Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using

multitemporal SAR data. Remote Sens. Environ. 2007, 108, 209–223. [CrossRef]
7. Tralli, D.M.; Blom, R.G.; Zlotnicki, V.; Donnellan, A.; Evans, D.L. Satellite remote sensing of earthquake, volcano, flood, landslide

and coastal inundation hazards. ISPRS J. Photogramm. Remote Sens. 2005, 59, 185–198. [CrossRef]
8. Kuenzer, C.; Guo, H.; Schlegel, I.; Tuan, V.; Li, X.; Dech, S. Varying scale and capability of Envissat ASAR-WSM, TerraSAR-X

Scansar and TerraSAR-X Stripmap data to assess urban flood situations: A case study of the mekong delta in can tho province.
Remote Sens. 2013, 5, 5122–5142. [CrossRef]

9. Mason, D.C.; Giustarini, L.; Garcia-Pintado, J.; Cloke, H.L. Detection of flooded urban areas in high resolution Synthetic Aperture
Radar images using double scattering. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 150–159. [CrossRef]

10. O’Grady, D.; Leblanc, M.; Bass, A. The use of radar satellite data from multiple incidence angles improves surface water mapping.
Remote Sens. Environ. 2014, 140, 652–664. [CrossRef]

http://doi.org/10.1016/j.isprsjprs.2019.10.017
http://doi.org/10.1007/s11069-010-9537-2
http://doi.org/10.1038/nclimate1979
http://doi.org/10.1038/nature09762
http://doi.org/10.1016/j.rse.2006.11.012
http://doi.org/10.1016/j.isprsjprs.2005.02.002
http://doi.org/10.3390/rs5105122
http://doi.org/10.1016/j.jag.2013.12.002
http://doi.org/10.1016/j.rse.2013.10.006


Water 2023, 15, 1288 24 of 25

11. Schumann, G.J.P.; Neal, J.C.; Mason, D.C.; Bates, P.D. The accuracy of sequential aerial photography and SAR data for observing
urban flood dynamics, a case study of the UK summer 2007 floods. Remote Sens. Environ. 2011, 115, 2536–2546. [CrossRef]

12. Ulaby, F.; Dobson, M.C. Handbook of Radar Scattering Statistics for Terrain; Artech House: Norwood, MA, USA, 1989.
13. Chaouch, N.; Temimi, M.; Hagen, S.; Weishampel, J.; Medeiros, S.; Khanbilvardi, R. A synergetic use of satellite imagery from

SAR and optical sensors to improve coastal flood mapping in the Gulf of Mexico. Hydrol. Process. 2011, 26, 1617–1628. [CrossRef]
14. Chung, H.W.; Liu, C.C.; Cheng, I.F.; Lee, Y.R.; Shieh, M.C. Rapid response to a typhoon-induced flood with an SAR-derived map

of inundated areas: Case study and validation. Remote Sens. 2015, 7, 11954–11973. [CrossRef]
15. Gstaiger, V.; Huth, J.; Gebhardt, S.; Wehrmann, T.; Kuenzer, C. Multi-sensoral and automated derivation of inundated areas using

TerraSAR-X and ENVISAT ASAR data. Int. J. Remote Sens. 2012, 33, 7291–7304. [CrossRef]
16. Boni, G.; Ferraris, L.; Pulvirenti, L.; Squicciarino, G.; Pierdicca, N.; Candela, L.; Pisani, A.R.; Zoffoli, S.; Onori, R.; Proietti, C.; et al.

A prototype system for flood monitoring based on flood forecast combined with COSMO-SkyMed and Sentinel-1 Data. IEEE J.
Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2794–2805. [CrossRef]

17. Chini, M.; Hostache, R.; Giustarini, L.; Matgen, P. A hierarchical split-based approach for parametric thresholding of SAR images:
Flood inundation as a test case. Geosci. Remote Sens. IEEE Trans. 2017, 55, 6975–6988. [CrossRef]

18. Greifeneder, F.; Wagner, W.; Sabel, D.; Naeimi, V. Suitability of SAR imagery for automatic flood mapping in the Lower Mekong
Basin. Int. J. Remote Sens. 2014, 35, 2857–2874. [CrossRef]

19. Martinis, S.; Kersten, J.; Twele, A. A fully automated TerraSAR-X based flood service. ISPRS J. Photogramm. Remote Sens. 2015,
104, 203–212. [CrossRef]

20. Martinis, S.; Twele, A.; Strobl, C.; Kersten, J.; Stein, E. A multi-scale flood monitoring system based on fully automatic MODIS
and TerraSAR-X processing chains. Remote Sens. 2013, 5, 5598–5619. [CrossRef]

21. Martinis, S.; Twele, A.; Voigt, S. Towards operational near real-time flood detection using a split-based automatic thresholding
procedure on high resolution TerraSAR-X data. Nat. Hazards Earth Syst. Sci. 2009, 9, 303–314. [CrossRef]

22. Twele, A.; Cao, W.; Plank, S.; Martinis, S. Sentinel-1-based flood mapping: A fully automated processing chain. Int. J. Remote Sens.
2016, 37, 2990–3004. [CrossRef]

23. Iervolino, P.; Guida, R.; Iodice, A.; Riccio, D. Flooding water depth estimation with high-resolution SAR. IEEE Trans. Geosci.
Remote Sens. 2015, 53, 2295–2307. [CrossRef]

24. Chini, M.; Pulvirenti, L.; Pierdicca, N. Analysis and interpretation of the COSMO-SkyMed observations of the 2011 Japan Tsunami.
IEEE Geosci. Remote Sens. Lett. 2012, 9, 467–471. [CrossRef]

25. Pulvirenti, L.; Chini, M.; Pierdicca, N.; Boni, G. Use of SAR data for detecting floodwater in urban and suburban areas: The role
of the interferometric coherence. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1532–1544. [CrossRef]

26. Pulvirenti, L.; Pierdicca, N.; Chini, M.; Guerriero, L. Monitoring flood evolution in vegetated areas using COSMO-SkyMed data:
The Tuscany 2009 case study. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2013, 6, 1807–1816. [CrossRef]

27. Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. Detection of temporary flooded vegetation using Sentinel-1 time series
data. Remote Sens. 2018, 10, 1286. [CrossRef]

28. Tsyganskaya, V.; Martinis, S.; Marzahn, P.; Ludwig, R. SAR-based detection of flooded vegetation—A review of characteristics
and approaches. Int. J. Remote Sens. 2018, 39, 2255–2293. [CrossRef]

29. Pierdicca, N.; Pulvirenti, L.; Boni, G.; Squicciarino, G.; Chini, M. Mapping flooded vegetation using COSMO-SkyMed: Comparison
with polarimetric and optical data over rice fields. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2017, 10, 2650–2662. [CrossRef]

30. Giustarini, L.; Hostache, R.; Matgen, P.; Schumann, G.J.P.; Bates, P.D.; Mason, D.C. A change detection approach to flood mapping
in urban areas using TerraSAR-X. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2417–2430. [CrossRef]

31. Hostache, R.; Matgen, P.; Wagner, W. Change detection approaches for flood extent mapping: How to select the most adequate
reference image from online archives? Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 205–213. [CrossRef]

32. Pierdicca, N.; Chini, M.; Pulvirenti, L.; Macina, F. Integrating physical and topographic information into a fuzzy scheme to map
flooded area by SAR. Sensors 2008, 8, 4151–4164. [CrossRef]

33. Pierdicca, N.; Pulvirenti, L.; Chini, M. Flood mapping in vegetated and urban areas and other challenges: Models and methods.
In Flood Monitoring through Remote Sensing; Refice, A., D’Addabbo, A., Capolongo, D., Eds.; Springer: Cham, Switzerland, 2018;
pp. 135–179.

34. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-based convolutional networks for accurate object detection and segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 142–158. [CrossRef]

35. Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote
sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [CrossRef]

36. Zhu, X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F. Deep learning in remote sensing: A comprehensive review and list of
resources. IEEE Geosci. Remote Sens. 2017, 5, 8–36. [CrossRef]

37. Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state-of-the-art. Proc. IEEE. 2017, 105,
1865–1883. [CrossRef]

38. Cheng, G.; Yang, C.; Yao, X.; Guo, L.; Han, J. When deep learning meets metric learning: Remote sensing image scene classification
via learning discriminative CNNs. IEEE Trans. Geosci. Remote Sens. 2018, 56, 2811–2821. [CrossRef]

39. Zhou, Q.; Zhou, Y.; Zhang, L.; Li, D. Adaptive deep sparse semantic modeling framework for high spatial resolution image scene
classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6180–6195. [CrossRef]

http://doi.org/10.1016/j.rse.2011.04.039
http://doi.org/10.1002/hyp.8268
http://doi.org/10.3390/rs70911954
http://doi.org/10.1080/01431161.2012.700421
http://doi.org/10.1109/JSTARS.2016.2514402
http://doi.org/10.1109/TGRS.2017.2737664
http://doi.org/10.1080/01431161.2014.890299
http://doi.org/10.1016/j.isprsjprs.2014.07.014
http://doi.org/10.3390/rs5115598
http://doi.org/10.5194/nhess-9-303-2009
http://doi.org/10.1080/01431161.2016.1192304
http://doi.org/10.1109/TGRS.2014.2358501
http://doi.org/10.1109/LGRS.2011.2182495
http://doi.org/10.1109/TGRS.2015.2482001
http://doi.org/10.1109/JSTARS.2012.2219509
http://doi.org/10.3390/rs10081286
http://doi.org/10.1080/01431161.2017.1420938
http://doi.org/10.1109/JSTARS.2017.2711960
http://doi.org/10.1109/TGRS.2012.2210901
http://doi.org/10.1016/j.jag.2012.05.003
http://doi.org/10.3390/s8074151
http://doi.org/10.1109/TPAMI.2015.2437384
http://doi.org/10.1109/LGRS.2017.2681128
http://doi.org/10.1109/MGRS.2017.2762307
http://doi.org/10.1109/JPROC.2017.2675998
http://doi.org/10.1109/TGRS.2017.2783902
http://doi.org/10.1109/TGRS.2018.2833293


Water 2023, 15, 1288 25 of 25

40. Li, E.; Xia, J.; Du, P.; Ling, C.; Samat, A. Integrating multi-layer features of convolutional neural networks for remote sensing
scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5653–5665. [CrossRef]

41. Du, P.; Li, E.; Xia, J.; Samat, A.; Bai, X. Feature and model level fusion of pretrained CNN for remote sensing scene classification.
IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2019, 12, 2600–2611. [CrossRef]

42. Hu, F.; Xia, G.; Yang, W.; Zhang, L. Mining deep semantic representations for scene classification of high-resolution remote
sensing imagery. IEEE Trans. Big Data. 2019, 6, 522–536. [CrossRef]

43. Zhao, W.; Du, S.; Emery, W.J. Object-based convolutional neural network for high-resolution imagery classification. IEEE J. Sel.
Topics Appl. Earth Obs. Remote Sens. 2017, 10, 3386–3396. [CrossRef]

44. Xu, Y.; Du, B.; Zhang, F.; Zhang, L. Hyperspectral image classification via a random patches network. ISPRS J. Photogramm.
Remote Sens. 2018, 142, 344–357. [CrossRef]

45. Huang, B.; Zhao, B.; Song, Y. Urban land-use mapping using a deep convolutional neural network with high spatial resolution
multispectral remote sensing imagery. Remote Sens. Environ. 2018, 214, 73–86. [CrossRef]

46. Zhou, S.; Xue, Z.; Du, P. Semisupervised stacked autoencoder with cotraining for hyperspectral image classification. IEEE Trans.
Geosci. Remote Sens. 2019, 57, 3813–3826. [CrossRef]

47. Wang, J.; Zheng, Y.; Shen, Q.; Huang, J. Object-Scale Adaptive Convolutional Neural Networks for High-Spatial Resolution
Remote Sensing Image Classification. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 2020, 14, 283–299. [CrossRef]

48. Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
49. Kittler, J.; Illingworth, J. Minimum error thresholding. Pattern Recogn. 1986, 19, 41–47. [CrossRef]
50. Bazi, Y.; Bruzzone, L.; Melgani, F. An unsupervised approach based on the generalized Gaussian model to automatic change

detection in multitemporal SAR images. IEEE Trans. Geosci. Remote Sens. 2005, 43, 874–887. [CrossRef]
51. Melgani, F.; Moser, G.; Serpico, S.B. Unsupervised change-detection methods for remote-sensing images. Opt. Eng. 2002, 41,

3288–3297.
52. Bovolo, F.; Bruzzone, L. A split-based approach to unsupervised change detection in large-size SAR images. IEEE Trans. Geosci.

Remote Sens. 2007, 45, 1658–1670. [CrossRef]
53. Moser, G.; Serpico, S.B. Generalized Minimum-Error Thresholding for Unsupervised Change Detection From SAR Amplitude

Imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2972–2982. [CrossRef]
54. Besag, J. On the Statistical-Analysis of Dirty Pictures. J. R. Stat. Society. Ser. B Methodol. 1986, 48, 259–302. [CrossRef]
55. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, A. Optimization by Simulated Annealing. Science 1983, 220, 671–680. [CrossRef] [PubMed]
56. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Taller, A.H.; Teller, E. Equation of State by Fast Computing Machines. J.

Chem. Phys. 1953, 21, 1087–1092. [CrossRef]
57. Wang, M.; Wang, J. A Region-Line Primitive Association Framework for Object-Based Remote Sensing Image Analysis. Pho-

togramm. Eng. Remote Sens. 2016, 82, 149–159. [CrossRef]
58. Wang, M.; Li, R. Segmentation of High Spatial Resolution Remote Sensing Imagery Based on Hard-Boundary Constraint and

Two-Stage Merging. IEEE Trans. Geosci. Remote Sens. 2014, 52, 5712–5725. [CrossRef]
59. Wang, M.; Xing, J.; Wang, J.; Lv, G. Technical design and system implementation of region-line primitive association framework.

ISPRS J. Photogramm. Remote Sens. 2017, 130, 202–216. [CrossRef]
60. Wang, M.; Cui, Q.; Wang, J.; Ming, D.; Lv, G. Raft cultivation area extraction from high resolution remote sensing imagery by

fusing multi-scale region-line primitive association features. ISPRS J. Photogramm. Remote Sens. 2017, 123, 104–113. [CrossRef]
61. Wang, M.; Cui, Q.; Sun, Y.; Wang, Q. Photovoltaic panel extraction from very high-resolution aerial imagery using region–line

primitive association analysis and template matching. ISPRS J. Photogramm. Remote Sens. 2018, 141, 100–111. [CrossRef]
62. Oubanas, H.; Gejadze, I.; Malaterre, P.O.; Mercier, F. River discharge estimation from synthetic SWOT-type observations using

variational data assimilitation and the full Saint-Venant hydrualic model. J. Hydrol. 2018, 559, 638–647. [CrossRef]
63. Hostache, R.; Chini, M.; Giustarini, L.; Neal, J.; Kavetski, D.; Wood, M.; Corato, G.; Pelich, R.M.; Matgen, P. Near-real-time

assimilation of SAR-derived flood maps for improving flood forecasts. Water Resour. Res. 2018, 54, 5516–5535. [CrossRef]
64. Bates, P.D. Remote sensing and flood inundation modelling. Hydrol. Process. 2002, 18, 2593–2597. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1109/TGRS.2017.2711275
http://doi.org/10.1109/JSTARS.2018.2878037
http://doi.org/10.1109/TBDATA.2019.2916880
http://doi.org/10.1109/JSTARS.2017.2680324
http://doi.org/10.1016/j.isprsjprs.2018.05.014
http://doi.org/10.1016/j.rse.2018.04.050
http://doi.org/10.1109/TGRS.2018.2888485
http://doi.org/10.1109/JSTARS.2020.3041859
http://doi.org/10.1109/TSMC.1979.4310076
http://doi.org/10.1016/0031-3203(86)90030-0
http://doi.org/10.1109/TGRS.2004.842441
http://doi.org/10.1109/TGRS.2007.895835
http://doi.org/10.1109/TGRS.2006.876288
http://doi.org/10.1111/j.2517-6161.1986.tb01412.x
http://doi.org/10.1126/science.220.4598.671
http://www.ncbi.nlm.nih.gov/pubmed/17813860
http://doi.org/10.1063/1.1699114
http://doi.org/10.14358/PERS.82.2.149
http://doi.org/10.1109/TGRS.2013.2292053
http://doi.org/10.1016/j.isprsjprs.2017.06.002
http://doi.org/10.1016/j.isprsjprs.2016.10.008
http://doi.org/10.1016/j.isprsjprs.2018.04.010
http://doi.org/10.1016/j.jhydrol.2018.02.004
http://doi.org/10.1029/2017WR022205
http://doi.org/10.1002/hyp.5649

	Introduction 
	Test Case and Dataset 
	Methodology 
	Image Preprocessing 
	Thresholding Segmentation 
	Refinement of the Water Extraction Method 
	Classification of Flooded Area 
	Accuracy Evaluation 

	Results 
	Water Extraction 
	Classification of Inundated Areas 

	Discussion 
	Conclusions 
	References

