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Abstract: The scarcity of freshwater resources, combined with deteriorating infrastructure, pushes
water utilities to employ optimal operational practices to control water distribution systems (WDSs)
based on objectives such as minimizing operational costs or leakages. This paper demonstrates a
metaheuristic optimization framework for controlling WDS operations in near real-time by minimiz-
ing the total energy consumption, while maintaining sustainable system conditions and operations,
such as those of tanks. The proposed framework, at its core, comprises a water demand forecasting
model, an optimization-based control model, and a hydraulic continuity model. The hypothesis is
that WDS can be controlled more efficiently by forecasting and predicting the near future system
conditions based on past and prevailing conditions. Operational time steps of 60, 30, and 15 min are
considered, to evaluate the benefits of using shorter operational time steps than the conventional
norm. The proposed framework is demonstrated using a small-sized benchmark WDS. The results
revealed that real-time control schemes reduce the operational costs of the selected WDS by up
to 17.8%, with the shortest time step scheme (15 min) offering the most reduction in operational
expenses, at the cost of more computational expensiveness. This study and its findings would help
utilities plan more reliable and sustainable operational schemes.

Keywords: water distribution system; pumping cost minimization; real-time control; optimization;
tank levels operation; valve controls

1. Introduction

Water distribution systems (WDSs) are lifelines of communities, as they enable se-
curity, health, and economic prosperity. The latest American Society of Civil Engineers
(ASCE) report card gave a “C” grade for drinking water infrastructure in the United States,
highlighting inadequate maintenance and a significant funding gap as the primary causes
of its condition [1]. Key indicators of the condition of our WDSs are the high number of
water main breaks and the significant amount of pipeline leakage. Water utilities strive
to maintain and retrofit aging infrastructure to minimize water quality problems, leaks,
pipe breaks, and energy consumption. Across the globe, water utility operators face multi-
ple challenges daily in keeping up with these goals while considering the infrastructure
condition and operational constraints [2]. Conventional WDS operations are primarily
controlled by predefined system settings that are developed based on past data or prac-
tical standards. Although conventional operational practices depend on some system
conditions, such as tank levels, they are mostly predetermined and intended to provide
conservative and safe operations. Therefore, WDS operational strategies do not change in
real-time based on prevailing system conditions other than tank levels. This may lead to
suboptimal operations resulting in, for example, more energy consumption than optimal.
It is estimated that about 30–60% of a city’s energy bill is accounted for by water utilities
(water and wastewater) [3], which is mainly because of pumps (~80%) that are used to
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distribute drinking water and collect wastewater [4]. Clearly, reducing the energy demand
of water utilities will have a significant positive impact, both in terms of operational cost
and environmental sustainability.

Several previous studies focused on optimal pump scheduling using a variety of
offline optimization methods [5,6]. Initially, local search methods were used, such as
linear programming [7,8]. Later on, global search methods became more popular, such as
simulated annealing [9], evolutionary algorithms such as genetic algorithms [10,11], and
ant colony optimization [12,13]. Lastly, hybrid optimization methods were introduced to
overcome the limitations of local search and global search methods [14,15]. In addition
to pumps, optimal WDS operations can be achieved through the control of valves; for
example, pressure-reducing valves (PRVs) may be controlled to enable leakage reduction
through better pressure management [16]. The optimal joint operation of valves and pumps
has not yet been fully exploited [17], especially in terms of upgrading the computational
approaches and overcoming the real-time-process bottlenecks, such as variation in water
demand, shortage of monitoring and control devices, and computational efficiency. In
addition, many of these previous studies are not real-time focused, which is a gap that
needs to be filled using the increasing availability of real-time monitoring data from WDSs.

In addition to the challenge of jointly controlling the pumps and valves, an appropriate
operational interval analysis is critical to the optimal control of WDSs. The operational
interval (or time step) should be short enough to assume steady-state conditions, while
at the same time long enough to allow sufficient computational time. Furthermore, the
operational control horizon is important, as WDS conditions change, e.g., water demand
varies during the day, and optimal control settings need to respond to those changes before
becoming outdated. Several previous studies investigated the concept of near real-time
optimal control of WDSs using single- or multiobjective optimization approaches. For
a single objective, for example, [18] presented a pump control framework in near real-
time using continuous pump speeds to control the pressure and minimize operational
costs. Their optimal pump-scheduling model was developed by coupling water demand
forecasting, EPANET hydraulic simulation, and genetic algorithm (GA)-based optimization
models [18]. On the other hand, [19] developed a multiobjective optimization methodology
based on the integration of a multialgorithm-genetically-adaptive-method (AMALGAM),
EPANET 2.0 for hydraulic simulations, and water demand forecasting using the DAN2-H
model, which is a hybrid model developed by [20] that uses the error produced by the
Fourier series forecasting as input to the dynamic neural network. The Pareto front was
determined for two objectives: minimum energy consumption, and maximum operational
reliability. The WDS benchmark used in previous studies varied in terms of size and
complexity, with some studies considering portions of real-world WDSs or twisted versions
to preserve their anonymity, while others considering simplified versions of real-world
WDSs for proof-of-concept evaluations. These previous studies only varied pump statuses
to control WDS operations, and those controls were determined at once for the upcoming
24 h period. The reported computational time in these studies was more than 16 min for
each time step (hourly) considering a 24 h operational horizon.

More recently, [17] proposed a hybrid near real-time optimization algorithm to control
the settings on pumps (i.e., variable speed) and PRVs for maximizing operational efficiency.
They used one hour operational time steps, which may be reduced to shorter time steps for
better efficiency. Based on a systematic review of relevant previous studies, Mala-Jetmarova
reported that the optimal real-time control of WDS devices (pumps and valves) using the
predictive approach is a research field still to be fully explored [21].

Many studies were published on the topic of optimized pump operation for the
control of WDSs. In addition, there are a couple of commercially available software
applications that have been used to solve this problem for many years, such as Derceto’s
(now part of Suez) Aquadapt software and Bentley Darwin Scheduler software. However,
the application of these techniques and software in practice has been limited. There are
a variety of reasons for the limited practical suitability of such pump optimization-based
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models. Firstly—optimization complexity—the pump scheduling problem is formulated as
a mixed-integer linear program (MILP) due to the changing operational states of pumps.
Specifically, it is a nondeterministic polynomial (NP) time-hard problem that is challenging
to solve for global optimality for large networks over a long time horizon. Secondly—data
availability and requirements—long history data sets are needed for many water demand
forecasting algorithms so that reliable predictions are obtained [22]. Even if the data are
available, there are changes in the WDS and water demand baseline over time, which make
the use of long-term historical data series less reliable. Thirdly—computational efficiency in
the context of real-time models—the models need to run rapidly to respond to the changing
hydraulic conditions in WDSs [23]. Additionally, [24] mentioned focusing on minimizing
energy costs and ignoring system performance as one of the aspects that made previous
real-time control schemes impractical for real-world applications.

Taking into account the complexity and computational challenges of operating and
controlling WDSs in real-world operating practices, and given that integrated water and
energy demand forecasting is highlighted as a priority research area in [25], this study
proposes a handy approach for optimized near real-time operational control that proactively
responds to short-term (e.g., every 15, 30, and 60 min) water demand variations, while
attaining the energy minimization goal. The proposed framework combines (a) a water
demand forecasting model, (b) a network-wide hydraulic model, and (c) an optimization-
based control model. Features of the proposed model compared to the existing models
include: (1) implementing a shorter time step-based operational control schedule to respond
to the dynamic nature of WDSs; (2) jointly optimizing the schedules of varying-speed
pumps and valve settings (open/closed/active); and (3) guaranteeing hydraulic continuity
between different operational and control time steps by carrying forward the hydraulic
statuses (tanks levels, pumps, and valve statuses) derived from actual water demands (as
opposed to forecasted water demands) from the preceding time steps.

2. Materials and Methods
2.1. Real-Time Scheduling Framework

Figure 1 illustrates the real-time scheduling framework proposed in this study. This
framework is based on the integration of the following three models: (a) water demand
forecasting model, (b) real-time optimization model, and (c) hydraulic simulation model.
For the first operational time step, the algorithm updates the hydraulic simulation model
with the initial tank levels and forecasted nodal demands to determine the optimal pump
speeds as a continuous variable and discrete valve statuses that will minimize the opera-
tional costs in the given time step. It is noteworthy that pump speeds and valve statuses
are subject to tank level constraints that ensure the real-world practice of tank turnover
on a 24 h horizon. The developed constraints will make sure the tanks are filled enough
during peak hours, and account for unusual fluctuations that might occur to the tank level
variations during the optimization of pump and valve settings. The actual hydraulic model
is then executed in parallel using the optimal pump speeds and valve statuses, but with
actual nodal demands.

It should be noted that the actual nodal demands could be different from the forecasted
nodal demands that were used for determining the optimal pump and valve statuses. This
variation in actual water demands is expected to inform the merit of the proposed real-
time WDS control framework. The actual hydraulic status of the system at the end of
each time step is carried forward into the simulation model to set the initial boundary
conditions for determining the optimal control strategies in the next time step. This
integrated computational model is used to generate the optimal WDS control settings for
the horizon period, at one time step at a time. The individual computational models used
in the proposed framework are further described in the following paragraphs.
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Figure 1. Proposed real-time scheduling framework.

2.1.1. Water Demand Forecasting Model

A water demand forecasting model that is capable of forecasting nodal demands for
each operational time step based on past water demand data is developed using a shallow
artificial neural networks algorithm in MATLAB’s neural network toolbox. Nodal demands
are forecasted one operational time step ahead, and passed on to the optimization model for
determining the optimal WDS control settings in the concerned time step. For lack of past
real-world water demand data, a synthetic water demand generation function, represented
by Equation (1), is used for demonstration purposes to generate historical water demand
data for all time steps, considering some random variation (±10%) from the base water
demand pattern. The hourly pattern of the base water demands of the benchmark WDS
that is used for demonstration purposes in this study is adopted and modified accordingly
based on the literature [26]. The water demand pattern (pi,t) values for the dynamic analysis
time steps (i.e., 60, 30, and 15 min) will vary within ±5% of the hourly base water demand
(qi) values.

Di,t = qi × pi,t × σ (1)

where, Di,t is the generated synthetic past water demand for demand node i, at time step t
of the day; qi is the hourly base water demand of node i; pi,t is the water demand pattern
value of node i at time step t; and σ is the random variation introduced into the generator
function (varying between 0.95 and 1.05).

Using Equation (1), 1000 data sets (base water demands) for the operational horizon
period of 24 h were generated and subsequently used to train the forecasting model. The
“train” function in MATLAB’s neural network toolbox is used to train the cascade-forward
neural network that includes a connection from the input and every previous layer to
the following layers. Day of the week and time of day were used as inputs based on the
time step number to train the forecasting model. The outputs were the forecasted water
demands for all the demand nodes. The accuracy of the water demand forecasting model
is measured using the mean absolute percentage error (MAPE), by comparing new water
demand values generated using the water demand generator function with the forecasted
values for the entire 24 h duration. MAPE values ranging from 5.2 to 8.8% were observed
(for 60 min, 30 min, and 15 min time steps), showing acceptable accuracy of the water
demand forecasting model.
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2.1.2. Hydraulic Simulation Model

The hydraulic model used in this study is a computational experiment developed
in the MATLAB interface based on the EPANET 2.0 simulation engine [27]. This model
performs extended period simulations of the pressurized WDSs, and it is used for both
simulation modeling (as part of the optimization framework) and actual hydraulic mod-
eling (representing the actual WDS) purposes. In the optimization process, the hydraulic
model is used to simulate the WDS at a given operational time step based on forecasted
nodal demands to determine the best set of control strategies. In actual WDS modeling, the
hydraulic model is used to mimic the actual WDS behavior in the same operational time
step based on actual nodal demands (i.e., generated using Equation (1)) under the control
strategies determined from the optimization model. The objective of the optimization
algorithm is to minimize the total energy cost, which is derived from the actual WDS
hydraulic model. To guarantee hydraulic continuity between consecutive operational time
steps, component statuses (tank levels, pump speeds, and valve statuses) at the end of the
actual WDS simulation time step are carried forward to the beginning of the next time step
in both optimization and actual WDS simulation models.

2.1.3. Control-Based Optimization Model

A genetic algorithm (GA)-based optimization model is used in this study for devel-
oping near real-time control strategies for WDSs. GA-based methods are reported to be
robust for optimizing WDS characteristics (e.g., pipe sizes, tank sizes, and pump sizes and
schedules) as they can handle discrete variables efficiently to produce a set of promising
results [28]. An EPANET-MATLAB Toolkit [29] associated with a single-objective genetic
algorithm in the MATLAB programming environment is employed to determine optimal
pump and valve schedules that minimize the total operational energy costs for the oper-
ational horizon period of 24 h. Multiple optimization runs with a population size of 100
and 200 generations are carried out. Pumps were considered to have constant efficiency of
75% and continuous pump speed values between 0 and 1.25, which correspond to pump
speeds of zero (pump is “off”) up to when the pump speed is 1.25, as high as the baseline
speed. The hydraulic simulation has been set to penalize the values of pump speed that
are so low that they might cause backflow. The PRVs were considered to have “active,”
“open,” and “closed” statuses in any operational time step. Active status means the PRV
is partially opened to constrain downstream pressure to its pressure setting when the
upstream pressure is higher than the setting. The PRV will be fully open if the upstream
pressure is below the setting, and closed if the pressure on the downstream side exceeds
that on the upstream side (i.e., reverse flow is not allowed) [27]. A penalty function is
added to the optimization algorithm to penalize candidate solutions that produce nodal
pressures less than the minimum required (which is considered to be 40 psi in normal
operation for the benchmark WDS) for any demand node. Additionally, a comprehensive
set of constraints were designed to control the tank levels. They account for (1) maintaining
the minimum and maximum thresholds of the tank levels that equal the same values from
the baseline according to Table 1, (2) determining the consistent filling or drafting mode of
the tank for continuous time steps by assigning a value of zero and one to avoid unwanted
fluctuations, and (3) attempting to keep tank levels at their highest during peak hours.
Additionally, a boundary condition was set to restrict the initial values of pump speeds
according to the previous time step entries so as to avoid outlying solutions.

Table 1. Conventional rule-based (baseline) pump control scheme for BWDS.

Pump ID Close When Open When

Pump-1 Tank-1 water level > 5.2 m Tank-1 water level < 4 m

Pump-2 Tank-2 water level > 5.9 m Tank-2 water level < 5 m
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Minimum tank levels are shown to be a good measure of supply reliability in water
distribution systems [19]. The minimum tank level in this study is defined as the level of
water that remains untouched during operation to overcome any contingencies (significant
demand volume differences) that might arise in the system. Meeting minimum pressure and
water tank level constraints are assumed to maintain acceptable system reliability. Finally,
the end tank level is constrained to be within 15% of the initial tank level. The operational
cost (OC) is calculated based on the pump energy consumed in each operational time
step. The pump energy costs were considered, as they account for most of the operational
costs over the lifecycle. A flat electricity rate is used, considering USD 0.12/kWh [30] of
electricity cost aggregated for the operational horizon (24 h). In the proposed operational
control framework, the optimization takes place for only one time step at a time, and the
result of this time step will not have any bearing on the optimization process of the next
time step. The optimization scheme does not have continuity, and therefore a time of use
(TOU) power tariff rate was not employed.

2.2. Study Methodology

For demonstration purposes, two types of operational schemes were simulated, and
their results were compared. Firstly, a conventional rule-based operational scheme (here-
after “baseline”) is simulated, in which the pump control decisions (switches) are only
dependent on the tank levels (baseline scenario). In this scheme, constant-speed pumps
operate following the predetermined rules that are obtained from the literature for the
chosen benchmark WDS, as shown in Table 1. Specifically, their static, binary status of
“ON” (the pump’s normal operational speed) and “OFF” is determined based on the critical
tank levels according to Table 1. In the second scheme, a near real-time control model
is used to generate pump speeds and valve schedules for the next operational time step
based on the prevailing system conditions up until the current operational time step, by
factoring in a comprehensive set of tank constraints. In this second type of operational
scheme, three dynamic analysis time steps—60, 30, and 15 min—are compared to the hourly
baseline scenario.

2.3. Demonstration

A small-sized benchmark WDS, depicted in Figure 2, which was originally proposed
by [13], is used for demonstrating the proposed near real-time WDS control framework.
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The chosen benchmark WDS (hereafter BWDS) comprises 126 nodes, 1 constant head
source, 2 tanks, 168 pipes, 2 pumps, and 8 valves, and is subjected to normal water demand
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loading. An operational horizon of 24 h is considered in this study. BWDS is a real WDS
that was twisted to preserve its anonymity. The network features are further modified in
this study by adding 2.27 m3/h of water demand at each node, and modifying the water
demand pattern to have no less than 20% (0.2 multipliers) of the base water demand at
any time during the 24 h operational horizon (at night usually). These modifications were
made to avoid negative values in the water demand forecasting model. The modified water
demand pattern adopted from the literature is illustrated in Figure 3.
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It is noteworthy that the baseline scheme, which is based on predetermined rule-based
controls, is conservative and strives to maintain tank levels between tighter boundaries (as
can be seen in Table 1). Similarly, the real-time control schemes are deliberately designed to
follow the same rules of minimum and maximum levels to make them comparable to the
baseline values.

3. Results and Discussion
3.1. Proposed Real-Time Scheduling Framework Performance

This section attempts to make a reasonable comparison between the model’s perfor-
mance under different dynamic time steps and the conservative, static scenario where
rules are predefined (i.e., the current practice at most water utilities). Table 2 summarizes
the results from each operational scheme in terms of average operational cost over the
24 h horizon period. As expected, a shorter time step duration of 15 min led to more
energy-friendly control of WDS operations based on operational costs. Operational efficacy
is defined in this study as the capability of a WDS to deliver service to its customers in
the most cost-effective manner possible, while still ensuring the acceptable quality of its
service by maintaining minimum pressures at the demand nodes and tanks. It can be seen
from Table 2 that a 60 min operational time step in the dynamic analysis resulted in about
17.1% savings in operational costs compared to the baseline scenario, followed by 17.4% for
30 min, and 17.8% for 15 min operational time steps. These savings could be more for larger
WDSs. The average computational time needed to complete the control-based optimization
for the shortest time step of 15 min duration (which is the most computationally intensive)
was found to be less than 11 min in this study when used on a cluster using parallel com-
puting. This is an important consideration for realizing the near real-time control vision, as
the computational time cannot exceed the operational time step duration.

Figure 4 illustrates the schedules of both pumps for all the control schemes. Addition-
ally, the pump energy profile over the 24 h horizon for all time steps is provided in Figure 5
to illustrate the kind of solutions the real-time control method produced.
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Table 2. Summary of results for different control schemes over a year.

Scheme Avg. Cost
(in USD 1000) Avg. Saving %

Baseline USD 962.27 –

60 min USD 798.52 17.1%

30 min USD 795.22 17.4%

15 min USD 791.61 17.8%
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The following points provide insights into why the optimal real-time scheme mini-
mized energy consumption compared to the baseline scheme:

1. In the real-time scheme, energy consumption reduction is achieved by having the
operational speed of pumps and valves vary compared to the conservative baseline
scenario operations of tanks and pumps, where the criterion for operating a pump is
solely based on whether a tank has reached its minimum or maximum level. However,
the range within which tank levels can vary remains similar in real-time, dynamic
operations to make the scenarios more comparable. One practical reason for the
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energy reduction is associated with the reduction in the speed, and thus the energy, of
the pumps, which sets the priority on energy conservation rather than filling up the
tanks suboptimally using pumps running at higher speeds. However, there are other
plausible factors contributing to energy conservation, such as dynamic controls of
valve settings. According to Figure 2, some of the valves are strategically located, in
that they can alter pressure zone boundaries, and thus the dynamic controls of their
settings can contribute to the reduction in the overall system pressure and, hence, the
less consumed energy;

2. Because the objective in the real-time operation is energy conservation, the tank levels
have to follow the optimization purpose, and the observation associated with it turns
out to be more numbers of fill/draft trends compared to the baseline scenario;

3. The number of pump switches is not a critical issue, as the pumps undergo speed
variations rather than the operationally expensive fact of being “on” or “off”; this
means that the pumps experience less friction, fewer constant on/off changes, and
thus experience a higher lifespan in the long run.

Tank levels for both optimized and baseline schemes over the operational horizon
are presented below in Figure 6. It can be seen that tanks are constrained to run a normal
turnover throughout the 24 h horizon for all scenarios. One notable observation is the fact
that tanks undergo more cycles of filling and drafting in the real-time scenarios compared
to the baseline scenario, which suggests that when pumps are running at lower speeds,
tanks play a more significant role than in the baseline scheme.

3.2. Sensitivity Analyses

Sensitivity analyses were conducted to investigate the sensitivity of the proposed
near real-time control framework to variation in certain critical model parameters. The
sensitivity analysis parameters of interest to be evaluated toward the energy cost in the
proposed model are (1) the percentage of actual water demand variation (σ) and (2) mini-
mum tank levels. These parameters are selected based on their importance in operational
practices and potential influence on costs and WDS control strategies. All operational
time step durations in this study (i.e., 60 min, 30 min, and 15 min) are considered for
conducting all the sensitivity analyses using three runs for each analysis. The purpose
of this sensitivity analysis is not only to test the robustness of the model under differ-
ent operational circumstances, but also to compare the model’s performance under the
three dynamic time steps to draw inferences as to whether shorter time steps result in
better solutions.

3.2.1. Actual Water Demand Variation

There is uncertainty associated with nodal water demands. This uncertainty has
been characterized in this study using ±5% variation compared to the hourly base water
demand pattern, as presented in Equation (1). This variation was considered in both
past synthetic water demand data that was used in the water demand forecast model,
and in the actual nodal demand generation during the hydraulic modeling in this study.
The sensitivity of the results from the proposed framework to the variation in the water
demand uncertainty is evaluated in this scenario. The water demand variation of ±1% and
±15% are considered in this scenario, while the default scenario considered ±5% variation.
Table 3 illustrates the energy consumption cost, as well as the relative improvement in
energy conservation in all dynamic time steps.

The relative improvements (savings) are associated with the baseline value of the
corresponding conventional or real-time scenario. As opposed to the real-time scheme, the
conventional method relies on fixed pattern-based demand data; therefore, no dynamic
water demand variations are applied in its sensitivity analyses. Accordingly, no significant
variations in the operational costs were observed from the results between either of the
considered water demand-varied scenarios (i.e., ±15% and ±1%). To showcase a scenario
granularly, the ±15% case for the 30 min time step has been depicted in Figure 7 in terms
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of operational features. The variations are not much different from those in the dynamic
baseline scenario in terms of pump speed factor, tank levels, and energy variations for the
30 min case. Furthermore, according to Table 3, the ±15% and ±1% scenarios resulted in
total energy consumption of roughly within −4% and 1%, respectively, compared to those
conservative-scenario values of each time step in Table 2. This observed lack of sensitivity
of the real-time control scheme to water demand variation of up to 15% is likely because the
majority of the nodal demands in the BWDN are small (<6.81 m3/h), and variation of up
to 15% of these water demands may not have affected the system stability to require more
pumping. Furthermore, even if the system stability is affected to a certain extent, tanks
can be better used in the real-time scheme to meet higher water demands without having
to turn on the pumps. Additionally, the energy consumption does not show significant
improvements for different dynamic time steps.
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Figure 6. Tank levels profile over the 24 hour operation period for (a) baseline, (b) 60 min, (c) 30 min,
and (d) 15 min.
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Table 3. Sensitivity analysis results for actual water demand variations and minimum allowed tank
level in conventional and dynamic time steps.

Parameter Variations
Hourly Energy Consumption

Cost (Conventional)

Hourly Energy Consumption Cost (Real-Time)

60 min 30 min 15 min

AC 2 RS 3 AC RS AC RS AC RS

Baseline 1 962.71 – 798.22 – 795.22 – 791.61 –

Demand Variations within ±1% – – 796.79 0.17% 803.00 −0.98% 790.04 0.20%

Demand Variations within ±15% – – 819.37 −2.64% 821.80 −3.34% 823.02 −3.97%

Minimum Allowed Tank Level
Variations minus 0.305 m 835.02 13.3% 793.74 0.56% 791.62 0.45% 786.30 0.67%

Minimum Allowed Tank Level
Variations plus 0.305 m 1159.9 −20.5% 800.33 −0.26% 803.32 −1.02% 801.28 −1.22%

Notes: 1 Actual baseline variation: within ±5% and baseline. Min: Tank-1 (4 m) and Tank-2 (5 m); initial: Tank-1
(4.6 m) and Tank-2 (5.4 m). 2 Average hourly cost over the 24 h operational horizon (in USD 1000). 3 Relative
savings in percentage compared to the corresponding baseline value.
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3.2.2. Minimum Allowed Tank Levels

The minimum allowed tank level constraints (derived from the rule-based, conserva-
tive scenario) are varied in this scenario to investigate the sensitivity of the results to these
parameters. There are two different-sized tanks in the BWDS with a diameter of 56.7 m and
32.3 m, and heights of 32.1 m and 9.8 m, respectively. Minimum allowed tank levels varia-
tion was investigated by increasing and decreasing them by one foot (0.305 m) compared
to the two tank levels used in the default scenario. Table 3 demonstrates the effects of the
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minimum allowed tank levels’ variations on the energy consumption in the conservative
vs. dynamic scenarios. As can be observed, relaxing the minimum tank level constraint
lowers the energy consumption, whereas tightening the tank level constraint brings about
more energy consumption in both the conservative and dynamic approaches. However,
according to Table 3, the conservative approach is much more sensitive to the variations
in the allowed minimum tank levels than the dynamic method. The relative savings in
the conventional scenario are within a double-digit percentage (13.3% for lowering the
tank level constraint by 0.305 m, and −20.5% for increasing the minimum tank level by
0.305 m), whereas those in the dynamic approach for all considered time steps vary within
shortly above 1%. Specifically, as can be observed from the results presented in Table 3,
when the minimum tank level constraint increased by 0.305 m, the operational cost in the
real-time scheme marginally increased by 1.02%. On the other hand, relaxing constraints
by reducing the minimum tank levels by 0.305 m produced lower operational costs, with
savings of up to 0.45%. It is noteworthy that there is no linear correlation between the
minimum tank levels and energy consumption, but it is found that, as a rule of thumb,
increasing the minimum tank levels will increase the energy consumption, and decreasing
them will reduce the system energy consumption in all dynamic time steps. Overall, it
is fair to state that the dynamic approach shows more resistance than the conservative
scenario to maintain a certain level of energy consumption amid variations in the minimum
allowed tank levels. This may, in turn, be due both to the dynamicity of pump operations
as opposed to flicking them on or off at different time steps, and to the real-time controls of
valves that regulate the energy supply more consistently at each time step.

Although tank levels have some direct relation with pump operations, as elevated
tanks could use available storage (buffer) to supply the WDS demand and reduce the
pump operation times, the system can consume more energy to fill the tanks back up
in case the minimum tank levels are lowered. It also applies to the scenario when less
energy is required to fill the tanks back up when the minimum tank levels are increased;
therefore, the variations of minimum tank levels are found to be slightly impacting the
energy consumption in direct relation. There are more increments in cost amid increased
allowable minimum tank levels when the dynamic time step is reduced from 60 to 15 min
intervals, according to Table 3. This suggests the existence of more volatility and flexibility
in the meta-heuristic optimization model when predicting the next time step.

In the sensitivity analysis section, it was observed that the real-time dynamicity
(as opposed to predefined static rules) of operating system components plays a more
significant role than merely reducing the time step from 60 min to 15 min. The variations
in the parametric assumptions affect the energy consumption much less in the dynamic
scenario and more in the conservative scenario.

3.3. Future Work and Limitations

Despite much research in the field of real-time control, it has not evolved enough for
water utility practitioners to embrace its various aspects in practice. Multiple practical
demonstrations of these approaches need to be undertaken before the experimental or
computational research could yield much direct impact [6].

This study focused on ensuring that the computational time is shorter than the hy-
draulic time step. For real-time control, the computational time depends on the network
size and, to some extent, on the number of sources, tanks, and other components. Still, the
authors believe that the computational time can be shorter than a 15 min operational time
step, even for very large networks, using the presented approach. The hydraulic simulation
can be replaced with a trained neural network with reasonably high accuracy and consid-
erable computational time savings. This claim needs to be validated in future research,
and the proposed methodology should be tested with a large real-life WDS with multiple
sources, pumps, and tanks to validate its merits. In addition, an extreme demand pattern
(peak demand loading) was considered, along with contingency tank storage (minimum
tank level) in this study, as reliability measures of WDSs; however, future work needs to
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address the sensitivity of the proposed approach to unusual and extraordinary events or
demand loading, as well as uncertainties in large WDS networks.

Additionally, a multiobjective optimization model could be used to improve the
scheduling framework by maximizing the operational resilience as an additional proposed
objective that will provide the utility operator with a set of strategies to choose from,
depending on how resilient the system is desired to be during potential failures. Another
way to upgrade the framework would be adding more constraints to the single objective
model, such as minimizing the number of pump switches and minimum operational
resilience to keep the advantage of obtaining single optimal settings for each time step,
especially in the case of automated operational control management. Additionally, the
proposed control framework could be extended to achieve other system-level goals, such as
leakage minimization and water quality control. Lastly, future work might include studying
the relationship between pumping, tank level variation, water quality, and leakage in order
to upgrade the WDS operation practices.

There are limitations of this study that may be addressed in the future. Firstly, the
exclusion of real-world energy pricing considerations, such as time-of-day pricing and
peak energy demand charges, when estimating the pumps’ operation cost. In future work,
it is possible to adapt the proposed approach to include a hybrid control scheme, where
the optimization also considers the operational horizon to attempt to minimize the cost
based on a time of use (TOU) energy pricing scheme. Secondly, in this study, a constant
efficiency of 75% was assumed for the pumps over the full range of operating conditions,
which ignored the fact that pump efficiency varies with the flow.

4. Conclusions

A framework for optimized near real-time scheduling for the operation and con-
trol of WDSs is proposed and demonstrated in this paper. The operation and speed of
pressure-reducing valves (PRVs) and pumps are jointly controlled based on an evolutionary
optimization algorithm that is driven by near real-time system monitoring data (e.g., the
system’s hydraulic data, tank level, etc.). Energy minimization is considered to be the goal
while maintaining minimum pressure and minimum tank levels, as well as real-world tank
level considerations as constraints. Dynamic operational control time steps of 60, 30, and
15 min are investigated and compared to the conventional hourly rule-based control for a
small-sized WDS benchmark. The results revealed that real-time control schemes reduce
the operational costs of the selected WDS between 17.1% and 17.8%, with the shortest time
step scheme (15 min) offering the most reduction in operational expenses, at the cost of
more computational expensiveness. Furthermore, the sensitivity analyses conducted on the
single benchmark water distribution system revealed that the real-time control scheme was
not greatly sensitive to the incremental changes in minimum tank levels or actual water
demand variations. However, the findings suggested a somewhat direct correlation be-
tween minimum tank levels and energy conservation. Moreover, the system’s actual water
demand variations due to the uncertainty in the system were found to play an insignificant
role in the presented energy conservation scheme. It was also observed that shifting from
static, conservative operations of components in a water distribution system to a real-time,
dynamic approach provides more energy conservation, real-time knowledge of the system,
and thus more flexibility and awareness to interact with the system than merely reducing
the time steps to minutes. Lastly, it was found that the average computational time for each
run in the shortest real-time control time step of 15 min is less than 11 min, if run on cluster
parallel computing nodes.
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