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Abstract: Climate change and the related temperature rise can cause an increase in evapotranspiration.
Thus, the assessment of potential evapotranspiration (PET) trends is important to identify possible
ongoing signals of climate change, in order to develop adaptation measures for water resource
management and improve irrigation efficiency. In this study, we capitalize on the data available
from a network of 46 complete meteorological stations in Sicily that cover a period of about 21 years
(2002–2022) to estimate PET by the Food and Agriculture Organization (FAO) using the Penman
–Monteith method at the daily time scale in Sicily (southern Italy). We then analyse the trends of
PET and assess their significance by Sen’s Slope and the Mann–Kendall test at multiple temporal
scales (monthly, seasonal, and annual). Most of the locations do not show significant trends. For
instance, at the annual timescale, only five locations have a significantly increasing trend. However,
there are many locations where the monthly trend is statistically significant. The number of locations
where monthly trend is significant is maximum for August, where 18 out of these 46 stations have an
increasing trend. In contrast, in March, there are no locations with a significant trend. The location
with the highest increasing trend of PET indicates trend slopes of 1.73, 3.42, and 10.68 mm/year at
monthly (August), seasonal (summer), and annual timescales, respectively. In contrast, decreasing
PET trends are present only at the monthly and seasonal scales, with a maximum of, respectively,
−1.82 (July) and −3.28 (summer) mm/year. Overall, the findings of this study are useful for climate
change adaptation strategies to be pursued in the region.

Keywords: climate change; temperature; drought; irrigation; Mediterranean area; Penman-Monteith

1. Introduction

Global warming induced by greenhouse gas emissions is claimed to be a key contribu-
tor to changes in the global climate [1–3]. The Fifth Assessment Report (AR5) by the IPCC
discusses how the last three decades have been successively warmer at the Earth’s surface
than any preceding decade since 1850. Global warming is claimed to influence the entire
hydrological cycle [4–7]. Assessments of potential evapotranspiration (PET) show that
evapotranspiration can be considerably influenced by global climatic changes [5,8–10]. The
IPCC’s sixth technical report showed that there is an increase in evapotranspiration due to
growing atmospheric water demand which will decrease soil moisture in the Mediterranean
region [1].

Evapotranspiration is also a key variable for the estimation of the energy budget in the
Earth’s atmospheric system and the water balance in a given region [5,10–12]. PET refers
to evaporation and transpiration over a surface under certain meteorological conditions
considering sufficient water and an unlimited soil water supply. Moreover, PET is impor-
tant for scientific research on hydro-climatology, irrigation planning, and water resource
management [4,6,8].
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Understanding the spatiotemporal trends of PET is a crucial part of climatology, water
resource management, and irrigation planning [13]. Both decreasing and increasing trends
of PET have been detected in different parts of the world [7,14–18]. PET is expected to
increase due to climate change. Nevertheless, decreasing trends have been identified,
leading to the so-called “evapotranspiration paradox” [4,8,18–20], and it was detected in
several regions worldwide, especially in various areas of China [7,8,10–12,16]. For the
Mediterranean climate, [21] showed that 14 studies confirmed prevailing positive trends,
4 studies negative trends, and 3 studies no trends. From 1961 to 2016, the trend of the
reference evapotranspiration from 18 meteorological stations in Slovenia was analysed and
the result showed that samples are mostly increasing and statistically significant while no
consistent trend could be detected [22]. In the western French Mediterranean area, the
PET showed an increasing trend at the monthly, seasonal (spring), and annual scales from
1970 to 2006 [23].

The Mediterranean area also showed there was an increasing trend of PET from
1950 to 2020 which significantly contributed to drought intensification in the region [24]. The
actual evapotranspiration also showed a trend in the humid and subhumid Mediterranean
climate of North Algeria from 1961 to 1990 [25]. Moreover, for the Mediterranean, future
projections of PET also confirmed that there will be an increasing trend [26]. Additionally, in
Greece, the PET showed an increasing trend [27]; in southern Italy, it showed an increasing
trend in the growing season [28]. According to Liuzzo et al. (2016), there were seasonal
differences in the spatiotemporal trend of PET in different areas of Mediterranean climate.
For instance, in southern Italy, an increasing trend was observed in correspondence with the
growing season, whereas no trend was observed during the non-growing season. However,
the mentioned study needs to be updated as it considers an outdated period and only three
locations in Sicily.

In this study, we advance from previous studies by considering a dataset that covers
a recent period (last 21 years, up to 2022) and 46 locations spread in Sicily. This allows
an unprecedented systematic and robust assessment of the PET trend in this region, which
is prone to droughts and presents several critical factors in relation to climate change [29].
In particular, in the present study, we analyse the PET trends in Sicily at multiple locations
(i.e., those of meteorological stations managed by the SIAS-Servizio Informativo Agreome-
teorologico Siciliano-the Agrometeorological Informative Service of Sicily) at the monthly,
seasonal, and annual temporal scales.

This paper is organized as follows. After this introduction, the study area and the
data are described, and the methodology is delineated (Section 2). This section explains
the methods for computing PET and the statistical methods for assessing the magnitude
and significance of trends. Then, in Section 3, the results are presented, analysing various
time scales. Section 4 discusses the results with a comparison to other regions on the globe.
Finally, Section 5 presents some conclusions and an outlook.

2. Material and Methods
2.1. Study Area and Data

Figure 1 shows the study area, Sicily. The climate of Sicily is typically Mediterranean,
with hot but not scorching summers, mild and brief winters, and moderate rainfall from
October to March. Along the coast, the average temperature ranges between 17 and 18.7 ◦C
annually, with July being the warmest month [30]. Sicily’s weather is characterized by
a hot and dry summer season, and a mild and rainy winter season [31]. The meteoro-
logical data are provided by the Agrometeorological Information Service of Sicily (SIAS,
http://www.sias.regione.sicilia.it/ accessed on 16 March 2023), which has 46 meteorolog-
ical stations distributed all over the region. Specifically, for each meteorological station,
minimum, maximum, and mean temperature (◦C), solar radiation (MJ/m2), wind speed
(m/s), and relative humidity (%) are collected from 1 January 2002 to 31 March 2022. Table 1
summarizes the main characteristics of each station, namely, name, ID, elevation, and the
coordinates of their location.

http://www.sias.regione.sicilia.it/
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Figure 1. Study area with location of meteorological stations of the SIAS network.

Table 1. Main characteristics of the SIAS network meteorological stations.

Code Name Elevation
[m a.s.l.] Annual Average PET [mm]

203 Aragona 305 1091.19
209 Licata 80 1368.18
212 Ribera 30 1119.13
214 Caltanissetta 350 1175.23
215 Delia 360 1138.6
218 Mazzarino 480 1107.06
219 Mussomeli 650 1189.08
224 Bronte 430 1040.83
227 Caltagirone 480 1101.61
228 Catania 10 1200.8
229 Riposto 50 1079.57
230 Linguaglossa 590 1049.76
231 Maletto 1040 1032.93
232 Mazzarrone 300 1177.1
233 Mineo 200 1084.08
234 Paternò 100 1156.05
235 Pedara 810 1015.08
237 Randazzo 680 1128.66
238 Enna 350 1176.78
241 Nicosia 700 1024.62
249 S. Pier Niceto 460 1103.05
254 Naso 480 948.26
256 Novara di Sicilia 750 1045.11
258 Pettineo 210 1160.26
261 Torregrotta 60 1098.13
262 Alia 560 1163.41
264 Camporeale 460 1090.79
265 Castelbuono 430 1158.36
269 Gangi 830 1105.08
273 Mezzojuso 390 1084.26
274 Misilmeri 160 1070.78
276 Palermo 50 1087.91
277 Partinico 120 1055.93
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Table 1. Cont.

Code Name Elevation
[m a.s.l.] Annual Average PET [mm]

279 Polizzi Generosa 650 1106.09
222 Sclafani Bagni 497 1066.29
281 Termini Imerese 350 1086.66
282 Acate 60 1100.15
283 Comiso 220 1099.55
286 Ragusa 650 1163.68
287 Santa Croce Camerina 55 1144.41
288 Scicli 30 1188.86
289 Augusta 60 1074.76
291 Francofonte 100 1220.19
301 Castellammare del Golfo 90 1049.9
302 Castelvetrano 120 1159.07
305 Mazara del Vallo 30 1157.54

2.2. Methodology

The Penman–Monteith method is used in the present study to calculate PET. This
method is the most comprehensive and international standard for PET estimation, and it is
also approved by the Food and Agriculture Organization (FAO) and the American Society
of Civil Engineers (ACSE) [32–37].

The FAO Penman–Monteith equation has been derived by integrating the original
Penman–Monteith equation with the equations of the aerodynamic and canopy resistance,
yielding the following equation (Equation (1)):

PET =
0.408∆(Rn −G) + γ Cn

T+273 U2(es − ea)

∆ + γ(1 + Cd U2)
(1)

where PET is potential evapotranspiration [mm day−1], Rn is the net radiation at the crop
surface [MJ m−2 day−1], G represents the soil heat flux density [MJ m−2 day−1], T is the air
temperature at 2 m height [◦C], U2 represents the wind speed at 2 m height [m s−1], es is the
saturation vapour pressure [kPa], ea is the actual vapour pressure [kPa],
(es − ea) represents the saturation vapour pressure deficit [kPa], ∆ is the slope vapour
pressure curve [kPa ◦C−1], and γ indicates the psychrometric constant [kPa ◦C−1]. Cn is
the ratio of the slope of the saturation vapour pressure curve to the psychrometric constant
at a given temperature. It represents the energy available to drive the process of evapo-
transpiration. Cd is the ratio of the aerodynamic resistance to the surface resistance. It
represents the resistance that water vapour encounters in the atmosphere as it moves from
the leaf surface into the air. In this study, we assume Cn and Cd equal 900 and 0.34, which
are the values for a grass reference crop.

2.3. Mann–Kendall Test

It is common practice to use the Mann–Kendall (MK) test to identify statistically
significant trends in various analyses of hydro-climatological time series [38–44]. It is
a rank-based non-parametric method, which has been widely used for detecting trends in
hydrometeorological time series. The MK test’s key advantage is that it is not sensitive to ex-
treme values and does not require that the data follow any statistical distribution [17,20,45].
The test is based on two hypotheses: the alternative hypothesis (H1), which shows the
existence of a trend and rejects the null hypothesis (H0), which assumes that the test
is stationary and thus there is no trend. Mann–Kendall’s statistical S is given by the
following formula:

S =
n−1

∑
k=1

n

∑
j=k+1

Sgn
(
Xj − Xk

)
(2)
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where Xk is the value of the variable at time k, Xj is the value of the variable j, n is the length
of the series, and Sgn is a function which is calculated as follows:

Sgn
(
Xj − Xk

)
=


1 if

(
Xj − Xk

)
> 0

0 if
(
Xj − Xk

)
= 0

−1 if
(
Xj − Xk

)
< 0

(3)

It has been documented that, when n ≥ 10, the statistic S is approximately normally
distributed with the mean E(S) = 0, and its variance is:

Var (s) =
n(n − 1)(2n + 5)−∑m

i=1 ti(ti − 1)(2ti + 5)
18

(4)

where n is the number of data points, m is the number of tied groups (a tied group is a set
of sample data having the same value), and ti is the number of data points in the ith group.

The standardized test statistic Z is computed as follows:

Z =


S−1√
Var(s)

, if S > 0

0, if S = 0
S+1√
Var(s)

, if S < 0
(5)

The null hypothesis H0, meaning that no significant trend is present, is accepted if
the test statistic Z is not statistically significant, i.e., −Zα/2 < Z < Zα/2, where Zα/2
is the standard normal deviation. To overcome the limitation of the MK test related to
the autocorrelation of the original data, the trend-free prewhitening (TFPW) method was
applied. This method introduced and enabled removing serial dependence, which is one of
the main problems in testing and interpreting time series data [46–48].

The trend-free prewhitening includes the following steps:

i. all of the PET time series data were first tested for the presence of an autocorrelation
coefficient (r) at a 5% significance level using a two-tailed test.

r =
∑n−1

t=1
(
Xt − Xt

)(
Xt+1 − Xt+1

)√
∑n−1

t−1
(
Xt − Xt

)2
√

∑n−1
t−1
(
Xt+1 − Xt+1

)2
(6)

ii. the autocorrelation coefficient value of r was tested against the null hypothesis at
a 95% confidence interval using a two-tailed test

r (95%) =
−1 + 1.96

√
(n− 2)

n− 1
(7)

iii. removing any trend items from the time series variables to form a sequence without
trend items.

Yt = Xt − βt (8)

iv. adding the trend term βt to obtain a new sequence without an autocorrelation effect.

Yt = Yt − rYt−1 + βt (9)

where Xt is the value at time t, n is the length of the data, and Xt is the mean value. The
original MK test is applied to Yt to assess the significance of the trend.

2.4. Sen’s Slope Estimator

Sen’s slope estimator is a non-parametric method used for estimating the slope of
a linear relationship between two variables [49–53]. It is particularly useful when the data
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exhibit high variability, non-normal distribution, or outliers. Sen’s slope estimator is based
on calculating the median of the slopes between all possible pairs of data points. This
approach makes it robust to outliers and resistant to extreme values. The method is easy to
apply and can be used for small or large datasets. In this study, we used a 0.05 significance
level; i.e., when |Z| > 1.96 (Equation (5)), the null hypothesis is rejected, and the trend is
significant at 5%. If a trend is mentioned in the data series, its amount can be evaluated by
the slope of the trend (noted β). In general, this method is used to estimate the slope of
the trend [10,54–57]. Hence, the magnitudes of the trends in ETo were studied using Sen’s
slope estimator.

β = Median
(

Xi − Xj

i− j

)
for all i > j (10)

where Xi and Xj are the data values at times i and j, respectively. β > 0 denotes an
increasing trend.

3. Results

Annual PET trends have been observed only in 5 locations out of 46. Figure 2 shows
the PET timeseries for these five locations.
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Table 2 shows that 83% of the meteorological stations recorded a trend in at least
one month or season. In terms of PET trend in the last 21 years, 38 out of 46 of the set
of analysed meteorological stations resulted in a PET trend at least one temporal scale,
whereas only 8 of them do not have any significant trend. Specifically, the latter are mostly
located close to the northern and southern coastlines of the island.
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Table 2. Z value of the PET trend for each meteorological station at different temporal scales. Yellow shading represents the Z value decreasing PET trend, whereas
the reddish shading is the Z value increasing PET trend.

Code Name Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Win Spring Summer Autumn Year

203 Aragona 0.68 1.07 −0.23 0.81 −0.42 0 0.68 1.14 1.65 0.55 −0.94 1.01 3.28 0 0.68 1.07 0.94
209 Licata 2.76 1.46 1.27 1.14 0.75 0.29 2.89 3.15 0.49 0.16 0.81 0.84 3.41 0.98 0.81 −0.29 −0.1
212 Ribera 1.27 1.59 0.55 0.94 0.49 2.5 2.82 3.41 2.82 1.72 −1.01 0.03 1.85 0.88 1.82 0.7 0.81
214 Caltanissetta 1.27 1.85 0.81 1.59 0.68 0.03 0.94 0.94 1.33 0.68 −0.55 0.23 0.49 1.26 0.94 0.84 0.62
215 Delia −0.75 0.55 0.03 0.81 −0.75 −0.52 0.16 1.14 0.91 −0.1 −0.94 0.03 1.05 0.03 0.55 0.1 0.62
218 Mazzarino 2.11 1.78 1.14 1.52 0.62 1.01 1.68 1.65 3.34 1.36 1.52 1.4 0.81 1.59 2.1 2.89 1.85
219 Mussomeli 1.72 1.59 0.94 1.65 0.42 1.14 1.14 2.11 1.91 0.49 −1.01 3.08 1.01 1.14 1.46 0.94 1.91
224 Bronte 2.24 1.69 0.42 2.14 0.88 1.46 1.91 2.08 0.55 1.59 −0.16 1.47 1.27 1.52 2.21 −0.36 0.75
227 Caltagirone 1.52 2.17 0.55 1.65 1.62 0.62 1.72 1.52 1.72 0.36 0.62 2.56 3.28 1.33 1.14 1.14 2.11
228 Catania −0.42 2.69 1.72 1.72 1.33 1.33 0.62 1.14 0.75 1.07 1.27 1.61 0.94 1.65 1.91 1.98 2.82
229 Riposto 1.27 1.98 0.81 0.42 0.49 0.35 1.52 1.85 1.27 0.49 1.59 0.49 0.36 0.68 1.27 0.84 0.75
230 Linguaglossa 1.14 −0.03 −0.88 0.16 −2.56 −1.52 −0.36 −0.23 0.1 −0.42 −0.23 3.02 1.85 −2.04 −1.4 −0.62 −1.52
231 Maletto 0.55 0.68 −0.81 −0.49 −1.65 −1.98 −2.43 −1.01 −0.29 −1.46 −0.28 0 1.01 −1.2 −2.43 −0.77 −0.42
232 Mazzarrone 1.91 1.27 1.07 0.81 0.42 1.12 0.03 2.17 1.75 1.2 1.07 1.59 2.63 0.55 1.19 0.36 0.42
233 Mineo 0.81 1.07 1.46 0.36 2.11 2.43 2.95 2.24 2.69 1.33 0.49 2.17 2.1 0.81 3.41 0.81 1.52
234 Paternò 1.07 1.2 0.68 0.88 0.42 0.29 −1.12 1.14 2.11 0.88 2.63 0.88 0.55 1.14 1.12 1.98 1.4
235 Pedara 0 −0.03 −0.23 −0.23 −1.52 −1.4 −0.68 −0.03 −0.42 −2.04 −1.01 0.29 1.85 −1.07 −1.65 −2.37 −1.33
237 Randazzo 1.2 0.81 −0.36 −0.55 −1.07 −1.14 −0.36 −0.42 0.36 −1.01 −1.27 0 1.52 −1.01 −0.62 −1.01 −1.07
238 Enna 0.03 1.68 1.27 1.61 1.01 1.33 1.01 2.24 1.68 1.78 0.68 0.62 0.68 0.94 2.3 0.55 0.88
241 Nicosia 1.17 1.85 0.49 2.04 1.07 1.01 1.65 1.33 2.11 0.29 0.58 0.16 0.36 1.72 1.52 1.27 1.01
249 S. P. Niceto −0.42 −0.16 −0.29 1.07 −0.81 −1.07 −0.49 0.68 1.27 −0.81 −1.72 −1.46 −1.2 −0.55 −0.29 −0.62 −0.68
254 Naso 0 0.36 −1.2 0.88 −1.33 −2.24 −0.81 0.36 −0.32 −0.62 −1.27 −0.49 −0.55 −1.01 −1.07 −1.27 −1.4
256 N. di Sicilia 1.27 1.46 0.23 1.01 −1.07 0.23 1.01 1.59 1.59 −0.68 0.49 0.91 1.27 0.32 1.07 0.23 1.33
258 Pettineo 3.21 2.37 1.2 0.23 0.1 1.07 2.04 2.04 1.65 0.55 0.88 1.59 3.02 1.46 1.98 1.33 3.02
261 Torregrotta 0.62 0.81 1.52 1.3 −0.29 0.42 2.11 2.43 3.08 0.75 0.62 0.75 0.81 1.01 2.37 1.98 3.08
262 Alia 1.17 1.65 1.07 2.04 0.68 0.23 1.01 0.81 0.68 −0.94 −2.56 0.62 1.98 1.14 1.46 −0.81 1.2
264 Camporeale 2.47 1.07 −0.62 0.49 −0.55 −0.84 0.55 1.2 2.11 0.81 −0.75 2.3 1.61 −0.58 0.49 1.43 0.94
265 Castelbuono 2.24 0.62 −1.14 0.49 −0.68 −0.03 1.01 0.75 −0.16 −1.2 −1.14 −0.75 0.88 −0.42 0.75 −1.46 0.03
269 Gangi 1.27 1.72 0.42 1.78 0.62 0.23 1.52 2.08 2.11 −0.03 −0.23 −1.4 1.12 0.68 1.4 −0.16 1.59
273 Mezzojuso −0.77 −0.1 −1.4 −0.03 −0.58 −1.3 0.55 0.55 −0.16 −1.46 −1.27 −2.11 −1.91 −1.07 −0.62 −2.11 −1.56
274 Misilmeri 1.33 1.78 0.23 1.52 0.03 0.68 2.3 2.04 1.27 0.42 −1.01 0.16 1.07 1.01 1.98 0.16 1.85
276 Palermo 3.19 3.02 1.27 0.42 1.27 0.49 1.91 2.43 0.68 0.49 1.07 0.1 0.36 2.37 2.11 0.29 0.88
277 Partinico 3.47 2.24 0.94 1.59 0.62 1.14 1.82 2.76 2.63 1.07 1.33 1.98 0.81 1.07 2.63 2.5 1.72
279 P. Generosa 0.75 0.88 −0.1 1.52 −0.03 0.75 1.65 1.46 1.14 −0.29 −1.52 −0.16 0.63 0.49 1.33 −0.36 0.75
222 Sclafani Bagni 1.26 2.17 1.01 0.55 1.14 1.27 0.49 2.5 1.47 1.2 0.49 0.62 0.81 1.59 2.43 0.42 1.2
281 Termini Imerese 0.42 1.04 −0.1 0.68 0.16 1.01 2.82 1.78 0.49 −0.81 −1.85 −0.94 0 0.29 2.24 −0.88 0.62
282 Acate −1.3 −0.68 −0.88 −0.49 −1.52 −0.03 0.81 1.14 0.75 −2.03 −1.59 −1.82 −1.65 −1.59 0.36 −1.59 −1.72
283 Comiso 1.65 1.04 −0.03 0.62 0.94 1.59 3.15 1.98 0.81 0.75 −0.36 1.59 1.65 0.68 2.82 0.03 1.59
286 Ragusa 0.42 0.45 −0.23 0.68 0.55 0.03 0.68 1.2 0.81 −0.94 −1.4 −0.1 1.14 0.03 0.88 −0.16 0.1
287 S. C. Camerina −2.37 −1.01 −0.94 −0.23 −0.16 1.52 1.85 2.11 0.29 −1.54 −2.11 −2.5 −2.3 −0.88 1.52 −1.2 −1.01
288 Scicli 0.36 −0.23 −0.62 0.16 −0.23 −0.16 0.13 0.29 −0.36 −1.26 −1.46 −0.55 −0.71 −0.23 0.16 −0.94 −0.81
289 Augusta 0.81 0.23 0.55 1.07 −0.23 0.23 0.55 1.4 2.5 −0.62 −0.55 1.12 0.42 0.94 0.36 0.58 0.94
291 Francofonte 1.65 1.59 1.14 1.65 1.4 1.33 0.75 1.78 2.04 0.29 1.52 2.3 2.69 1.91 2.24 1.78 3.08
301 C. del Golfo 1.01 0.55 −1.4 −0.62 −0.23 0.49 1.91 1.07 0.75 −0.16 −2.04 −1.07 0.1 −0.88 1.27 −0.65 −0.16
302 Castelvetrano 2.69 1.52 0.68 0.42 0.62 0.16 2.24 2.5 2.17 1.33 0.42 1.33 0.16 0.49 1.85 −0.49 0.29
305 Mazara del Vallo 0.68 1.2 1.14 0.94 0.36 1.91 0.81 2.76 1.46 1.91 0.62 1.91 0.36 1.27 1.27 1.07 1.4
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Table 2, instead, summarizes Z values of the PET trend for each meteorological station
and at different temporal scales.

3.1. Temporal Trend of the PET

Looking at the different analysed temporal scales, no increasing trends were observed
in March and October. Specifically, in October, exclusively decreasing trends were de-
tected in two meteorological stations, whereas in March, no trend was detected, neither
positive nor negative, for all meteorological stations. If an increasing trend of PET is con-
sidered, in August and September at a monthly temporal scale, as well as in summer at
a seasonal temporal scale, the highest number of involved meteorological stations was
recorded, namely, 15 on average for each of these temporal scales. On the contrary, the
decreasing trend of PET mostly appeared in November, June, October, and December at
a monthly temporal scale and autumn at an annual temporal scale, for each of which the
number of the concerned meteorological stations ranges between 2 and 3. Figure 3 provides
an overview of the number of meteorological stations displaying or not a trend. As can be
seen, for each analysed temporal scale, if mean values are considered with respect to the
whole of 46 meteorological stations: (i) about 39 stations do not have a highlighted trend,
with a peak in March at the monthly scale with all 46 meteorological stations involved;
(ii) about 6 stations recorded an increasing trend of PET, with a peak in August at the
monthly scale with 18 stations involved; (iii) only 1 meteorological station recorded
a decreasing trend, with a peak equal to 3 in November at the monthly scale.
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3.2. Sen’s Slope (the PET Trend Magnitude)

The magnitude of the PET trend in all 46 meteorological stations was also investi-
gated. The results show that there were different magnitudes of the PET trend in different
meteorological stations. On one side, the highest increase in the PET trend is recorded at
the annual temporal scale for three stations located at the northern and eastern Sicilian
coastline, namely, stations 228, 258, and 261 with 10.68 mm, 5.15 mm, and 4.96 mm per
year, respectively. On the other side, the highest decrease in the PET trend is recorded for
the meteorological station 231, situated on the western side of Mt. Etna, in both summer
at a seasonal monthly temporal scale (3.28 mm) and July at a monthly temporal scale
(1.82 mm). Additionally, the spring seasonal trend of station 230, another meteorological
station located at foot of Mt. Etna, showed the third-highest decreasing trend with 1.67 mm
in the last 21 years (Table 3).
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Table 3. Sen’s slope result in mm.

Code Name Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Winter Spring Summer Autumn Year

203 Aragona 0.63
209 Licata 0.64 1.35 1.59 2.07
212 Ribera 0.53 1.01 1.19 0.61
214 Caltanissetta
215 Delia
218 Mazzarino 0.36 0.8 2.47 1.44
219 Mussomeli 1.33 0.57
224 Bronte 0.34 0.7 0.87 1.89
227 Caltagirone 0.37 0.26 0.85 3.36
228 Catania 0.8 2.11 10.68
229 Riposto 0.54
230 Linguaglossa −1.37 0.63 −1.67
231 Maletto −1.24 −1.82 −3.28
232 Mazzarrone 0.74 1.19
233 Mineo 0.88 0.86 1.33 1.12 0.84 0.24 0.51 3.13
234 Paternò 0.73 0.39 1.45
235 Pedara −0.62 −1.11
237 Randazzo
238 Enna 1.58 3.42
241 Nicosia 0.84 0.74
249 S. P. Niceto
254 Naso −0.62
256 N. di Sicilia
258 Pettineo 0.72 0.62 0.67 1.04 1.75 2.14 5.15
261 Torregrotta 0.6 1.02 0.82 1.79 1.01 4.96
262 Alia 0.98 −0.5 1.01
264 Camporeale 0.28 0.61 0.43
265 Castelbuono 0.48
269 Gangi 1.73 0.88
273 Mezzojuso −0.47 −1.51
274 Misilmeri 0.66 0.78 1.53
276 Palermo 0.61 0.79 0.8 1.41 1.69
277 Partinico 0.56 0.68 1.27 0.82 0.44 2.77 1.73
279 P. Generosa
222 Sclafani Bagni 0.6 1.43 2.46
281 Termini Imerese 0.75 2.19
282 Acate −0.49
283 Comiso 0.96 1.24 2.53
286 Ragusa
287 S. C. Camerina −0.41 0.77 −0.37 −0.39 −0.83
288 Scicli
289 Augusta 0.45
291 Francofonte 0.82 0.48 1.6 2.78 6.45
301 C. del Golfo −0.3
302 Castelvetrano 0.48 0.67 1.04 0.62
305 Mazara del Vallo 1.33
Max 0.72 0.8 0.98 0.88 0.86 1.35 1.73 0.88 −0.49 0.39 0.63 2.07 1.41 3.42 2.11 10.68
Min −0.41 0.37 0.7 −1.37 −1.24 −1.82 0.74 0.45 −0.62 −0.5 −0.47 −0.83 −1.67 −3.28 −1.51 3.36

Average 0.36 0.62 0.84 −0.25 −0.14 0.47 1.17 0.72 −0.56 −0.15 0.21 0.91 −0.13 1.73 0.64 6.38
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3.3. Spatial Distribution of the PET Trend

In order to further provide a detailed framework, a spatial distribution analysis on
PET trends was also carried out. Therefore, the monthly, seasonal, and annual trends of PET
in Sicily, over the last 21 years, were represented using GIS application, and then reported
in Figure 4.
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3.4. Monthly Spatial Trend

Overall, the spatial distribution of PET trends, either positive or negative, does not
highlight a specific tendency. Looking at the distributions from January to June at a monthly
temporal scale, indeed, increasing trends of PET are prevalent, and involve a maximum
of nine meteorological stations distributed fairly evenly within the island (January) and
a minimum of one meteorological station (May). Furthermore, it should be noted that in
March at the monthly scale, there is no trend, as previously noted. Going more into the
details, (i) in January at the monthly scale, nine stations are of interest due to an increasing
PET trend (Figure 4A) ranging between 0.72 mm and 0.28 mm, and only one station in the
southern island shows a decreasing trend equal to 0.41 mm; (ii) in February at the monthly
scale (Figure 4B), only increasing trends of PET are identified in seven meteorological
stations distributed in the northern and eastern sides of Sicily; (iii) in April at the monthly
scale (Figure 4D), just three meteorological stations are characterized by a PET trend,
namely, an increasing trend ranging from 0.7 mm to 0.98 mm; (iv) in May at the monthly
scale (Figure 4E), only one station presents an increasing trend (0.88 mm), and only another
one presents a decreasing trend (1.37 mm), both stations placed in the eastern side of Sicily;
(v) in June at the monthly scale (Figure 4F), four meteorological stations present a PET
trend, specifically, two of them in the north-east with a decreasing trend (1.24 mm and
0.62 mm), whereas the other two in the centre of the island present an increasing trend
(0.53 mm and 0.86 mm).

If the spatial trends’ distribution is analysed in July, August, and September at the
monthly scale, a general rise in the meteorological stations having PET trends may be
observed. More specifically, with the exception of station 231 characterized by the second
highest decreasing trend in July at the monthly scale (Figure 4G), all of the remaining
present increasing PET trends range from 0.6 mm and 1.73 mm and are distributed within
the surroundings of the coastlines, for the most part. Particular attention should be paid to
August at the monthly scale, at which, increasing PET trends are detected in 18 meteorolog-
ical stations (39%) distributed all over the region.
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Finally, moving from October to December at the monthly scale, a general decrease in
meteorological stations presenting PET trends can be observed. Specifically, (i) in October
at the monthly scale (Figure 4J), only two meteorological stations located on the eastern and
southern sides of Sicily, respectively, detected trends which were both decreasing (0.62 mm
and 0.49 mm); (ii) in November at the monthly scale (Figure 4K), of the four meteorological
stations involved in the trends, three of them, distributed from the north-west to the
south of the island, present decreasing trends (0.5 mm, 0.37 mm, 0.3 mm), whereas only
one station on the eastern side is characterized by an increasing PET trend (0.93 mm);
(iii) in December at the monthly scale (Figure 4L), seven meteorological stations, scattered
throughout the island, detected increasing trends of PET ranging from 0.24 mm to 0.57 mm,
whereas two other stations on the north-west and south of the island detected decreasing
trends of PET with 0.47 and 0.39 mm.

The stacked bar chart reported in Figure 5 summarizes, for each meteorological station
and for each monthly scale, the magnitude of the detected PET trends. As can be seen,
station 233, which is located on the south-eastern side of Sicily, recorded the highest number
of PET trends (i.e., all increasing trends ranging from 2.11 mm to 2.95 mm) at the monthly
scale, namely, from June to September, and December.
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stations.

3.5. Seasonal and Annual Spatial Trend

As previously mentioned, the spatial distribution analysis of PET trends was also
carried out at the seasonal scale (Figure 4M–P) and at the annual scale (Figure 4Q). The
results highlighted that in summer at the seasonal scale, among 14 meteorological sta-
tions involved in increasing PET trends ranging from 1.53 mm to 3.42 mm, only station
231 detected a decreasing trend, with the highest recorded value equal to 3.28 mm. On the
contrary, in spring at the seasonal scale, only two meteorological stations in the north of
the region highlighted PET trends, namely, an increasing (1.41 mm) one, and a decreasing
one (1.67 mm). Regarding instead winter and autumn at the seasonal scale, nine and
seven meteorological stations, respectively, detected PET trends with no specific spatial
distribution within the island.

Lastly, at the annual scale, only five meteorological stations were analysed, located
from the north-eastern side of Sicily to the eastern coast. They are characterized by increas-
ing trends of PET, ranging from 3.36 mm (station 227) to 10.68 mm (station 228), which
represents the highest trend in the region in the last 21 years. The stacked bar chart reported
in Figure 6 summarizes, for each meteorological station and for each seasonal and annual
scale, the magnitude of the detected PET trends.
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4. Discussion
The Temporal Trend of PET

As revealed in the literature, the analysis of PET trends was carried out for several
other regions belonging to and distributed throughout Italy. Therefore, the results of
our study were compared with those obtained for other regions inside Italy. In northern
Italy, for instance, an increase in PET was observed in the upper part of the Adda river
catchment in the Central Italian Alps [58,59]; in central Italy, an increasing trend of reference
evapotranspiration from 1951 to 2008 [60] was also detected, with a specific reference to the
Spoleto meteorological station, which showed an increasing annual trend of PET through
the Hargreaves and Samini estimation model [61], and the historical meteorological station
of the University of Bologna which highlighted an increase at all seasonal mean PETs (for the
1972–2007 period), with an increase of 13 mm in winter, 39 mm in spring, 60 mm in summer,
and 14 mm in autumn [60]. Coming to southern Italy, increases in PET related to increasing
temperatures [28] were observed. In more detail, the Apulia region is characterized by
an annual PET trend equal to 18.6 mm [62], and particularly for the Apulian Tavoliere,
an increasing trend of evapotranspiration of 8 mm per decade in 1957–2008 is recorded.

Beyond Italy, different parts of the world showed an increasing annual PET trend. The
IPCC’s sixth technical report, indeed, showed that there is an increase in evapotranspiration
due to growing atmospheric water demand, which will decrease soil moisture over the
Mediterranean region [1]. In more detail, the Mediterranean and Iberian regions showed
increasing trends of evapotranspiration from 1971 to 2015 [63]. This is also confirmed by
the recourse of different satellite sources through which it was possible to detect increasing
evapotranspiration trends in several Mediterranean regions, including Sicily, from 2009 to
2018 [57]. Moving forward, in Spain, from 1922 to 2020, the evapotranspiration trend
showed an increasing trend and resulted in the worsening of the growth of crop water
requirements [64], as well as in the semi-arid part of Spain which presented an increas-
ing annual trend from 1970 to 2000 and confirmed that the future projections indicate
an increase [65]. Surprisingly, a monthly study revealed that June, the month with the
biggest relative changes, is primarily responsible for guiding summer trends and spring
trends, respectively [66]. That study’s findings are likewise in line with ours, according to
which, the majority of meteorological stations saw an upward trend over the spring and
summer seasons (Figure 3). Moving out onto a broader view, an increase in the annual
(0.009–0.026 mm/year) and seasonal (0.014–0.027 mm/year during southwest monsoon
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and 0.015–0.074 during northeast monsoon) ETo in peninsular Malaysia [67] was observed,
as well as in most parts of the Wei River basin (WRB) [7], north-eastern China, the southern
coastal region of China, the north-western corner of China [68], 90% of Moldova from
1981 to 2012 [69], South Korea [56], and the central and southern parts of Mongolia [70].

Concluding, if the evapotranspiration paradox is taken into account [12,28,53,67,71],
our study on Sicily shows that it was observed as monthly and winter, spring, summer,
and autumn seasonal trends in our study (Table 2). Similarly, in the Calabria region,
an analysis carried out using the Hargreaves and Samani estimation model for PET showed
a decreasing trend in the different winter, spring, summer, and autumn seasons and dry and
wet seasons [72]. In south-eastern Umbria, Central Italy, in two areas, asymmetric warming
results in a decreasing evapotranspiration level [61]. Moreover, our study confirmed that
there was a decreasing trend of PET in January, May, June, July, October, November, and
December. Likewise, the Calabria meteorological station analysis showed decreasing trend
in all months [72].

5. Conclusions

Understanding trends of evapotranspiration is crucial for water resource management,
irrigation, and the implementation of climate change adaptation measures. This study
aimed at analysing trends of PET in Sicily (southern Italy) over the last 21 years using
the hydro-meteorological data provided by 46 meteorological stations distributed all over
the region. PET has been estimated by the FAO Penman–Monteith method, and the
Mann–Kendall test as well as Sen’s Slope estimator were used to identify the trends over
time. The result showed that there were significant monthly, seasonal, and annual trends in
different stations. August is the month where the majority of temporal trends were detected
(18 out of 46 stations). On the other hand, for March, no trend was detected. Regarding
the seasonal temporal scale, the summer season showed the highest number of stations
with significant trends (14 stations), and the winter season was the one with the lowest
number of significant trends (only 2 stations). For five locations, an increasing trend has
been identified at the annual time scale. August corresponds to the highest increasing PET
trend with 1.73 mm per year at one meteorological station. Regarding the seasonal temporal
trend, meteorological station 238 had the highest increasing trend, with 3.42 mm/year
in the summer season. Finally, the highest estimated increasing trend of annual PET is
10.68 mm/year. Overall, the analysis showed that there is an increasing trend in some parts
of Sicily. This is key information for future agricultural irrigation practices and a call for
the implementation of climate change adaptation measures. As a further development of
this study, geostatistical techniques will be applied to spatialize the information derived
for single locations.
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