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Abstract: As a passive technology, constructed wetlands (CWs) are promising candidates for mine-
drainage treatment. However, the design and operation of CWs have not been fully established
because the chemical compositions of mine drainage are diverse. In this study data sets of 100 mine
drainages in Japan were classified using multivariate analysis based on water quality. Mine drainage
was classified into eight types based on the ratio of the concentrations of Cd, Pb, As, Cu, Zn, Fe, and
Mn to the effluent standard: (I) neutral and low metal concentration, (II) weakly acidic and low metal
concentration, (III) weakly acidic and high Zn concentration, (IV) weakly acidic and high Mn and
Zn concentrations, (V) acidic and high As concentration, (VI) acidic and high Fe concentration, (VII)
acidic and extremely high Fe concentration, and (VIII) acidic and high Zn concentration. Mechanisms
for removing metals in CWs were discussed based on this classification. Metal hydroxides of Cu, Pb,
Zn, and Cd can precipitate with an increasing pH. Under oxidative conditions, dissolved Fe and Mn
are oxidized to metal oxides. Under reductive conditions, Pb, Zn, Cd, and Cu precipitate as metal
sulfides. This classification of mine drainage will be helpful in the systematic design and operation
of CWs.

Keywords: principal component analysis; cluster analysis; effluent standard; hydroxides; sulfides

1. Introduction

When ores are exposed to rain and air, metals and metalloids such as iron (Fe), copper
(Cu), lead (Pb), manganese (Mn), cadmium (Cd), zinc (Zn), and arsenic (As) are released
into water. Mine drainage, which contains toxic metals, threatens ecosystems and human
health. All major global mining countries have serious problems caused by acid mine
drainage (AMD) with a pH value of less than 6.5 [1,2]. To prevent pollution, it is necessary to
minimize mine-drainage generation. Thus, mine drainage should be treated conventionally
with physicochemical processes such as neutralization, coagulation, sedimentation, and
filtration, with high costs for energy and reagents [1,2].

In Japan, since the 1970s, approximately 5000 mines have been abandoned or closed
because of increasing labor costs and the import liberalization of metal resources. Even
after the mining operation is stopped, mine drainage containing toxic metals is practically
permanent. Among these, approximately 80 legacy mines must continue mine drainage
treatment [3,4]. Various strategies have been applied to reduce mine-drainage generation,
including reforestation, tunnel plugging, and sludge backfill [4]. Furthermore, reliable and
inexpensive processes are required for treating the generated mine drainage.

The Ministry of Economy, Trade, and Industry, Japan (METI) and the Japan Oil, Gas
and Metals National Corporation (JOGMEC) published a guidance of passive treatment
for mine-drainage treatment in 2021 [5,6]. As a passive technology, constructed wetlands
(CWs) incorporating physical, chemical, microbial, and botanical processes are promising
candidates for the sustainable treatment of mine drainage. CWs for AMD have been
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reviewed by several researchers [7–10]. Figure 1 displays the conceptual mechanisms
of metal removal in CWs. In CWs, the predominant mechanisms for metal removal are
different under various types of mine drainage. With an increase in the pH, the metal
hydroxides of Cu, Pb, Zn, and Cd precipitate in CWs filled with alkaline substrates such as
limestone and seashells. Under oxidative conditions, dissolved Fe and Mn are biochemically
oxidized to metal oxides, resulting in co-precipitation with other metals such as Zn and
As. Under reductive conditions, Pb, Zn, Cd, and Cu precipitate as metal sulfides by
the microbial mediation. The selection of wetland plants is eventually affected by the
characteristics of the mine drainage. CWs are beneficial irrespective of the usage of other
processes. As a pretreatment for physicochemical processes, CWs can adjust the pH value
and reduce the drainage amount through evapotranspiration. As a post-treatment with a
low operational cost, a CW can remove the remaining metals from the effluent of the major
physicochemical processes.
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Figure 1. Conceptional mechanisms for metal removal in constructed wetlands.

However, only a limited number of CWs are used for mine drainage treatment in
Japan. At Motokura Mine in the Hokkaido Prefecture, a CW was installed on a small scale
in 2006 for removing Zn, Pb, and As [11,12]. A CW at Ningyotoge Mine in the Chugoku
Region is also used for As removal from AMD through ferrihydrite coprecipitation [13].
The design and operation of CWs have not been completely established in Japan because
the chemical composition of mine drainage is diverse. The Gray Acid Mine Drainage
Index (AMDI) uses pH, sulfate, Fe, Zn, Al, Cu and Cd [14]. The framework by Hill [15]
classifies AMD using acidity, sulfate, pH, Al, and Fe concentrations [15,16]. According
to JOGMEC [17], although the quantitative backgrounds are unclear, mine drainage in
Japan is generally classified into five types: (A) the acidic with Fe and base metals (Cu,
Pb, Zn) predominant type, (B) the strongly acidic with Fe and As predominant type found
in limonite mines, (C) the weakly acidic with Mn and base metals predominant type as
observed in few Pb, Zn, and Mn mines; (D) the neutral with As predominant type observed
in few gold and As mines, and (E) the neutral with Cd and Zn predominant type observed
in few Pb, Zn, tin, and tungsten mines.

In this study, datasets of 100 mine drainages in Japan were quantitatively classified by
multivariate analysis based on water quality. The purpose of this study was to propose
a new classification of mine drainage for discussing the design and operation of CWs
for removing heavy metals. The mine-drainage classification proposed in this study was
compared with the conventional JOGMEC’s classification. The mechanism for removing
metals in CWs was discussed based on the mine-drainage classification.

2. Analytical Methods

The annual average water quality data for 2014, 2015, and 2016 (flow rate, pH, and
concentrations of Cd, Pb, As, Cu, Zn, Fe, and Mn) from 100 mine drainages in Japan were
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provided by METI. Each mine drainage had an ID number (1–100): 20 in Hokkaido, 39 in
Tohoku, 6 in Kanto, 4 in Chubu, 9 in Kinki, 7 in Chugoku, 2 in Sikoku, and 13 in Kyushu [2].
The names and locations of the mines corresponding to individual drainages are concealed
in the present study. The locations of 80 mines in Japan are shown elsewhere [3,4]. Hokkaido
and Tohoku belong to the temperate zone with a cool, humid continental climate. The other
regions belong to the temperate zone with a humid, subtropical climate. Many mines are
located in mountains where the climate and weather are influenced by altitude.

The metal concentrations of each mine drainage over three years were averaged.
The average concentrations were divided according to the effluent standards in Japan
for standardization. The effluent standard is as follows: Cd: 0.03 mg/L, Pb: 0.1 mg/L,
As: 0.1 mg/L, Cu: 3 mg/L, Zn: 2 mg/L, soluble Fe: 10 mg/L, soluble Mn: 10 mg/L.
Standardized concentrations were used for principal component analysis (PCA) and cluster
analysis using PAST ver. 1.3.4 software [18]. The pH values of the dataset were not used
for the multivariate analysis, but the effluent standard for pH is 5.6–8.6 for discharging to
lakes and rivers.

3. Results and Discussion
3.1. Characteristics of Mine Drainage

Figure 2 shows the distribution of flow, pH, and the ratio of the metal concentration
to the effluent standard for 100 mine drainages. The flow rate was distributed in a wide
range of 5–2.6 × 104 m3/d (Figure 2A). Out of 100 mine drainages, the flow rates of 21 and
48 mine drainages were less than 150 m3/d and 500 m3/d, respectively. The hydraulic
retention times of CWs utilized for mine drainage treatment typically range from a few days
to several weeks. Considering the flow rates and retention times, the areas and volumes of
CWs should be determined. Most CWs in the U.S. for mine-drainage treatment have been
designed for a low flow rate of less than 150 m3/d, with a maximum of 570 m3/d [19].

Out of the 100 mine drainages, 48 displayed low pH values of less than 4.0, whereas
25 displayed neutral pH values of 5.6–8.6. No mine drainage demonstrated a pH value
higher than 8.6 (Figure 2B). Low pH values suggest the presence of sulfate in mine drainage,
although the dataset used in this study did not include its concentration. Pre-conditioning
by the neutralization process is required for the application of a CW treatment to AMD.
Otherwise, limestone, as an alkali, is implemented as a filter medium or substrate in CWs.

Out of the 100 mine drainages, 32 for Cd, 29 for Pb, 15 for As, 21 for Cu, 54 for Zn, 49
for Fe, and 13 for Mn showed concentrations higher than the effluent standard. A major
treatment process is suitable for moderately polluted mine drainages that are one–ten
times higher than the effluent standard: twenty-nine for Cd, twenty-six for Pb, six for As,
eighteen for Cu, forty-two for Zn, twenty-eight for Fe, and thirteen for Mn (Figure 2C).
For highly polluted mine drainage, CWs, as a post-treatment process, can remove the
remaining metals from the effluent of the major physicochemical process.

3.2. Classification of Mine Drainage
3.2.1. Clusters I–VIII

Figure 3 displays the classification of mine drainage using PCA and cluster analysis
based on standardized metal concentrations. Mine drainages No. 46 and No. 79 with
high Fe and Cu concentrations demonstrated extremely high scores for the first principal
component (PC1). The second principal component (PC2) was positive and negative for
mine drainages with high Zn concentrations and high As concentrations, respectively. Mine
drainage No. 9 displayed an extremely high score, whereas No. 3 and No. 94 displayed
low PC2 scores.
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Figure 2. Average characteristics of 100 mine drainages in Japan (2014–2016). Flow rate (A), pH (B),
and ratio of metal concentration to the effluent standard in Japan (Cd: 0.03 mg/L, Pb: 0.1 mg/L, As:
0.1 mg/L, Cu: 3 mg/L, Zn: 2 mg/L, soluble Fe: 10 mg/L, and soluble Mn: 10 mg/L) (C).

Except for such distinctiveness, mine drainages were arbitrarily divided into eight clus-
ters, designated as Clusters I–VIII by constraint-based clustering based on the standardized
metal concentrations. The characteristics of the clusters are shown in Figure 4 and Table 1.
Cluster I (14 mine drainages) was neutral (weakly acidic–weakly alkaline) and demon-
strated a low-metal-concentration type. Cluster II (24 mine drainages) was weakly acidic
and demonstrated a low metal concentration. Cluster III (16 mine drainages) was weakly
acidic and demonstrated a high Zn concentration. Cluster IV (four mine drainages) was
weakly acidic and had high Mn and Zn concentrations. Cluster V (three mine drainages)
was acidic and possessed a high As concentration. Cluster VI (nine mine drainages) was
acidic and possessed a high Fe concentration. Cluster VII (six mine drainages) was acidic
and possessed an extremely high Fe concentration. Cluster VIII (seven mine drainages) was
acidic and displayed a high Zn concentration. Mine drainages No. 28 and No. 81 belonged
to an upper cluster of Clusters I and II that commonly displayed 2.4 times higher Cu
concentrations than the effluent standard with low pH values below three (Figures 3 and 4).
Mine drainages No. 26 and No. 48 belonged to an upper cluster of Clusters I–IV that
commonly demonstrated 2.8 and 8.5 times higher concentrations of Zn and Pb than those
of the effluent standards, respectively.
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Table 1. Classification of mine drainages in Japan (2014–2016) based on the cluster analysis (Figures 3 and 4).

Cluster Type Mine Drainages Cd, mg/L Pb, mg/L As, mg/L Cu, mg/L Zn, mg/L Fe, mg/L Mn, mg/L pH Note

I

Neutral (weakly
acidic–weakly
alkaline) and low
metal
concentration type

14 (No. 2, 10, 12, 30,
38, 49, 61, 67, 68, 84,
85, 87, 92, 96)

0.00–0.04 0.00–0.24 0.00–0.082 0.00–4.00 0.00–4.20 0.00–34.93 0.00–0.97 5.8–8.0
Partly JOGMEC type E
(Neutral and Cd and Zn
predominant type)

II
Weakly acidic and
low metal
concentration type

24 (No. 6, 11, 13, 14,
15, 16, 22, 27, 34, 40,
43, 52, 62, 63, 70, 71,
72, 73, 80, 83, 86, 88,
99, 100)

0.00–0.26 0.00–0.13 0.00–0.04 0.00–1.67 0.00–4.30 0.00–28.32 0.00–7.97 3.0–5.3

III
Weakly acidic and
high Zn
concentration type

16 (No. 7, 8, 23, 24, 25,
29, 31, 32, 33, 37, 39,
47, 60, 64, 69, 98)

0.00–0.14 0.00–0.21 0.00–0.05 0.00–6.01 7.42–19.67 0.00–41.41 0.00–8.83 2.9–6.7

IV
Weakly acidic and
high Mn and Zn
concentration type

4 (No. 18, 20, 56, 66) 0.00–0.03 0.00–0.10 0.00–0.03 0.02–1.53 2.57–11.46 0.00–11.80 34.54–75.93 4.6–6.3

JOGMEC type C (Weakly
acidic and Mn and base
metals predominant
type)

V
Acidic and high
As concentration
type

3 (No. 35, 93, 90) 0.00–0.01 0.00–0.32 0.98–1.87 0.00–0.84 0.00–2.98 0.00–59.00 0.00–0.00 3.1–7.4

Partly JOGMEC types B
(Strongly acidic and Fe
and As predominant
type) and D (Neutral and
As predominant type)

VI Acidic and high Fe
concentration type

9 (No. 4, 19, 21, 45, 74,
75, 76, 78, 89) 0.01–0.04 0.13–0.68 0.08–0.34 4.55–18.10 2.38–7.97 88.74–120.50 6.06–45.50, 2.4–5.1

JOGMEC type A (Acidic
and Fe and base metals
predominant type)

VII
Acidic and
extremely high Fe
concentration type

6 (1, 5, 17, 42, 57, 91) 0.00–0.01 0.08–0.26 0.27–0.92 3.54–10.73 0.98–3.32 185.94–214.33 3.55–10.81 2.3–3.9 Partly JOGMEC type B

VIII
Acidic and high
Zn concentration
type

7 (No. 36, 50, 55, 58,
59, 65, 82) 0.09–0.19 0.54–1.28 0.01–0.07, 3.87–9.37 28.14–43.63 52.69–118.03 13.63–56.26 2.7–5.1 Partly JOGMEC type A
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Figure 4. The ratio of the metal concentration to the effluent standard (Cd 0.03 mg/L, Pb 0.1 mg/L,
As 0.1 mg/L, Cu 3 mg/L, Zn 2 mg/L, soluble Fe 10 mg/L, and soluble Mn 10 mg/L) in Clusters
I–VIII of mine drainage in Japan (2014–2016) (Figure 3). Average plots and bars for maximum and
minimum values are displayed in detail.

3.2.2. Comparison of Clusters I–VIII with JOGMEC Types

Clusters I–VIII were compared with the conventional JOGMEC types in Table 1. The
distinctive mine drainages Nos. 9, 46, 53, 54, and 79 apparently correspond to JOGMEC
type A. Mine drainages in Cluster VI and partly in Cluster VIII also correspond to JOGMEC
type A. On the other hand, Nos. 3, 77, 94, and 95 correspond to JOGMEC type B. A few
mine drainages in Clusters V and VII also correspond to JOGMEC type B. These highly
polluted mine drainages are typically treated by neutralization using slaked lime and a
high-density sludge-recycling method [20]. Although a few mine drainages exist with high
Mn concentrations in Clusters VI and VIII, Cluster IV apparently corresponds to JOGMEC
type C. Mine drainage No. 35 in Cluster V with a neutral pH value corresponds to JOGMEC
type D. A few mine drainages of Cluster I correspond to JOGMEC type E. Interestingly,
many mine drainages in Clusters II and III did not correspond to any JOGMEC type.

3.3. Consideration of CW Treatment for Classified Mine Drainages
3.3.1. Cluster I

Mine drainages classified as Cluster I demonstrate neutral (weakly acidic–weakly
alkaline) pH values, with one or two types of metals slightly exceeding the effluent standard.
The weakly acidic mine drainage of Cluster I is typically treated by a pH increase with
sodium hydroxide to precipitate metal hydroxides, such as Cd(OH)2, Cu(OH)2, Pb(OH)2,
and Zn(OH)2, followed by neutralization using sulfate. The treatment processes for these
mine drainages could be replaced with CWs on a priority basis. In fact, mine drainage in
Cluster I in the Hokkaido Prefecture, a subsurface-flow CW planted with common reed
(Phragmites australis), was installed on a small scale in 2006 to remove Zn, Pb, and As, and
was scaled up for a demonstration test to replace the existing neutralization process [12].

3.3.2. Cluster II

Mine drainages classified as Cluster II are weakly acidic and contain one or two types
of metals slightly exceeding the effluent standard. The installation of a CW treatment should
be considered with priority to mine drainage in Cluster II in addition to Cluster I. Presently,
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these are mostly treated by neutralization using slaked lime or sodium hydroxide. For
example, mine drainage No. 68 displayed low concentrations with other metals but slightly
higher Cd concentrations than the effluent standard. A laboratory-scale experiment was
conducted to evaluate the treatment performance of CWs filled with loamy soil for synthetic
mine drainage, simulating the chemical composition [21]. The CWs removed Cd to satisfy
the effluent standards from mine drainage, mostly by soil adsorption. The presence of
emergent plants, cattail (Typha latifolia L.) and common reed enhanced metal removal
by filtration with elongated roots. Furthermore, it enhanced metal sulfide precipitation
by sulfate-reducing bacteria (SRB) in the rhizosphere. SRB decomposes organic matter
into lower-molecular-weight acids and bicarbonate, leading to increased alkalinity and
the formation of metal sulfide precipitates [22]. Bacteria–plant interactions are regarded
as important because they imply symbiotic mechanisms for heavy metal removal and
tolerance. Based on the lab-scale results, small pilot–scale CWs with a hydraulic retention
time of 3.8–1.2 days were installed in the treatment plant for mine drainage No. 68. The
unplanted and the cattail-planted CWs reduced the average concentrations of Cd from
0.031 to 0.01 and 0.005 mg/L [23].

3.3.3. Cluster III

Mine drainages classified as Cluster III contain high Zn and other metals with a low
pH. For example, mine drainage No. 69 displayed a low pH of approximately four and two-
and three-times higher concentrations of Zn and Fe, respectively, than the effluent standard
values. A lab-scale batch experiment was conducted to evaluate the treatment performance
of CWs filled with limestone and oyster shells and planted with cattails for actual and
synthetic mine drainage [24]. Seashells as byproducts of aquaculture are composed mainly
of non-hazardous calcium carbonate. Moreover, Zn can be removed by the precipitation
of hydroxide Zn(OH)2 at a pH higher than 7.8. Anaerobic bioreactors are also effective at
removing Zn at such high concentrations. A laboratory-scale SRB bioreactor containing rice
bran and husk was successfully operated to treat AMD containing 15 mg/L Zn, 40 mg/L
Fe, 5 mg/L Cu, and 0.06 mg/L Cd [22].

3.3.4. Cluster IV

Mine drainages classified as Cluster IV indicated 3–7-times higher Mn concentrations
than that of the effluent standard, and 1.5–6-times higher Zn concentration than that of the
effluent standard. Using synthetic wastewater simulating the composition of mine drainage
No. 56, the removal of Mn and Zn in lab-scale CWs filled with limestone and planted with
cattail and common reed has been studied [25]. Under aerobic conditions, Mn is removed
from CWs by the biochemical oxidation of soluble Mn to insoluble Mn oxides [26,27].
Mn-oxidizing bacteria and fungi can efficiently oxidize dissolved Mn(II) to Mn(III, IV)
through enzymatic catalysis. Furthermore, microalgae can accelerate Mn(II) oxidation
through indirect oxidation by increasing the pH and dissolved-oxygen production during
their growth [28]. Furthermore, Mn oxides can oxidize and adsorb soluble Mn ions and
other metals, such as Zn, Fe, Pb, Ni, and Co [29].

3.3.5. Cluster V

Mine drainages classified as Cluster V displayed As concentrations 10-times higher
than that of the effluent standard. The predominant forms of arsenic in water are inorganic
arsenite (H3AsO3, As(III)) and arsenate (HAsO4

2−, As(V)), with the former being more
toxic and less adsorptive. Arsenate is strongly adsorbed on the surface of several common
minerals, such as alumina and ferrihydrite. Therefore, the oxidation of As(III) to As(V)
is required for effective As removal in mine drainage. The As-removal processes in CWs
have been reviewed by several researchers [30]. Although sorption, precipitation, and
coprecipitation are the principal processes responsible for the removal of arsenic, bacteria
can mediate these processes and play a significant role under favorable environmental
conditions.
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There are a few mine drainages with high As and Fe concentrations in clusters VI
and VII. Due to the fact that the biogeochemical cycles of Fe and As are coupled in natural
systems, the presence of Fe affects the speciation of As. Iron oxyhydroxides are especially
important and effective for adsorbing and/or coprecipitating As in natural and artificial
wetlands.

3.3.6. Clusters VI and VII

The Fe concentrations of mine drainages classified into Clusters VI and VII were
more than five- and fifteen-times higher than that of the effluent standard, respectively.
Under reductive conditions, ferrous iron (Fe2+) is the dominant form which completely
dissolves in water. However, under oxidative conditions, mine drainage turns reddish
brown by spontaneous oxidation to ferric iron, Fe3+, and subsequent hydrolysis to ferric
hydroxide, Fe(OH)3, or oxyhydroxide, FeOOH. Oxyhydroxide precipitation is considered
the most important Fe-removal mechanism in CWs [31]. Fe(II) oxidation occurs in the
absence of bacteria at pH six or above. Iron-oxidizing bacteria play an important role in
Fe oxidation at pH < 4.5. Due to the fact that Fe oxyhydroxides can adsorb/coprecipitate
As, iron-oxidizing bacteria may cause the removal of both Fe and As. The co-precipitation
of heavy metals with secondary minerals, including hydrous oxides of Fe and Mn, is an
important adsorptive mechanism in wetland sediments.

3.3.7. Cluster VIII

Mine drainages classified as Cluster VIII demonstrate low pH values of 3–4, with high
concentrations of Zn and Pb. Mine drainage No. 59 was treated using lab-scale CWs [32].
The mine drainage contained 12.3 mg/L, 1.3 mg/L, 5.4 mg/L, and 0.15 mg/L of Zn, Pb,
Cu, and Cd, respectively, at pH 4.1. In lab-scale CWs filled with limestone or charcoal and
planted with common reed, the pH could be raised to sevem or more, and Cu and Pb could
be removed to the effluent standard values with a residence time of 24 h. Although the
effluent standards were unsatisfactory, 30–50% of Zn and Cd could be mostly removed
by soil adsorption. SRB were detected in CWs planted with common reed, suggesting the
formation of insoluble metal sulfides, such as ZnS and PbS.

3.4. Implications on Design Parameters and Operational Conditions of CWs

The guidance of METI and JOGMEC proposed four types of CWs: (1) aerobic CWs
for mine drainage containing <20 mg/L Fe with pH of >5 under a hydraulic retention
time (HRT) of 10–50 h, (2) anaerobic CWs for mine drainage containing Cu, Pb, Zn, and
Cd with a pH of 5–8 under a HRT of >15 h, (3) aerobic limestone-based CWs for AMD
containing <5 mg/L Fe under a HRT of 2–10 h, and (4) anaerobic limestone-based CWs
just for pH neutralization of AMD under a HRT of 2–10 h [5,6]. However, mine-drainage
types applicable for the CWs have not been discussed in detail based on the JOGMEC’s
classifications in the guidance. For establishing design guidelines of CWs, the flow rate
and geographical and weather conditions are also important in addition to the mine-
drainage classification based on the water quality, as discussed in this study. The design
parameters and operational conditions of CWs such as substrate types, plant species, water
depth, hydraulic load, HRT, and feeding mode for the mine-drainage treatment should be
discussed though a series of laboratory and field experiments.

4. Conclusions

Mine drainage in Japan was quantitatively classified into eight types based on wa-
ter quality: (I) neutral (weakly acidic–weakly alkaline) and low metal concentrations,
(II) weakly acidic with low metal concentrations, (III) weakly acidic with a high Zn con-
centration, (IV) weakly acidic with high Mn and Zn concentrations, (V) acidic with a high
As concentration, (VI) acidic with a high Fe concentration, (VII) acidic with an extremely
high Fe concentration, and (VIII) acidic with a high Zn concentration. A few exceptional
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mine drainages were acidic, Fe- and base-metal-predominant, strongly acidic, and Fe- and
As-predominant.

Mine drainages in Cluster VI and partly in Cluster VIII correspond to the conventional
JOGMEC type A. A few mine drainages in Clusters V and VII correspond to JOGMEC type
B. Cluster IV corresponds to JOGMEC type C. Mine drainages in Cluster V correspond to
JOGMEC type D. A few mine drainages of Cluster I correspond to JOGMEC type E. Mine
drainages in Clusters II and III did not correspond to any JOGMEC types.

The installation of a CW treatment should be considered with priority to mine
drainages with low metal concentrations in Clusters I and II. CWs have been studied
just in lab-scales for treating mine drainages in Clusters III, IV, and VIII. The classification of
mine drainages implemented in the present study will be helpful in the systematic design
and operation of CWs in Japan.
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