Quantitative Evaluation of Municipal Wastewater Disinfection by 280 nm UVC LED
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Design and Fabrication of LED Reactors
2.3. Disinfection Experiments Using UV LED Irradiation
2.4. Chemical Analysis
2.4.1. BSA and SARS-CoV-2 Spike Protein Analysis
2.4.2. cATP Analysis
2.4.3. Total Coliform and E. coli Analysis
2.4.4. SARS-CoV-2 Analysis
3. Results and Discussions
3.1. Simulated Radiation Field for 405 nm and 280 nm LED Photoreactors
3.2. Effect of 280 nm UV-LED Irradiation on the E. coli, Total Coliform and cATP Levels in WWTP Secondary Effluent
3.3. Comparison of the 280 nm LED’s and 405 nm LED’s Disinfection Performance from an Energy Perspective
3.4. The Impact of 280 nm LED Irradiation on SARS-CoV-2 RNA in WWTP Primary Influent
3.5. The Impact of 280 nm LED Irradiation on BSA/Coronavirus Spike Protein
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Augsburger, N.; Rachmadi, A.T.; Zaouri, N.; Lee, Y.; Hong, P.-Y. Recent Update on UV Disinfection to Fulfill the Disinfection Credit Value for Enteric Viruses in Water. Environ. Sci. Technol. 2021, 55, 16283–16298. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Mohseni, M.; Taghipour, F. Application of Ultraviolet Light-Emitting Diodes (UV-LEDs) for Water Disinfection: A Review. Water Res. 2016, 94, 341–349. [Google Scholar] [CrossRef] [PubMed]
- Görner, H. New Trends in Photobiology: Photochemistry of DNA and Related Biomolecules: Quantum Yields and Consequences of Photoionization. J. Photochem. Photobiol. B Biol. 1994, 26, 117–139. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.E.; Rodriguez, R.A.; Hawkins, M.A.; Hargy, T.M.; Larason, T.C.; Linden, K.G. Comparison of UV-Induced Inactivation and RNA Damage in MS2 Phage across the Germicidal UV Spectrum. Appl. Environ. Microbiol. 2016, 82, 1468–1474. [Google Scholar] [CrossRef] [Green Version]
- Würtele, M.A.; Kolbe, T.; Lipsz, M.; Külberg, A.; Weyers, M.; Kneissl, M.; Jekel, M. Application of GaN-Based Ultraviolet-C Light Emitting Diodes—UV LEDs—For Water Disinfection. Water Res. 2011, 45, 1481–1489. [Google Scholar] [CrossRef]
- Chen, J.; Loeb, S.; Kim, J.-H. LED Revolution: Fundamentals and Prospects for UV Disinfection Applications. Environ. Sci. Water Res. Technol. 2017, 3, 188–202. [Google Scholar] [CrossRef]
- Li, G.-Q.; Wang, W.-L.; Huo, Z.-Y.; Lu, Y.; Hu, H.-Y. Comparison of UV-LED and Low Pressure UV for Water Disinfection: Photoreactivation and Dark Repair of Escherichia coli. Water Res. 2017, 126, 134–143. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, C.; Xu, P.; Wang, X.C. Mechanisms of Ultraviolet Disinfection and Chlorination of Escherichia Coli: Culturability, Membrane Permeability, Metabolism, and Genetic Damage. J. Environ. Sci. 2018, 65, 356–366. [Google Scholar] [CrossRef]
- Kollu, K.; Örmeci, B. Effect of Particles and Bioflocculation on Ultraviolet Disinfection of Escherichia coli. Water Res. 2012, 46, 750–760. [Google Scholar] [CrossRef]
- Beck, S.E.; Ryu, H.; Boczek, L.A.; Cashdollar, J.L.; Jeanis, K.M.; Rosenblum, J.S.; Lawal, O.R.; Linden, K.G. Evaluating UV-C LED Disinfection Performance and Investigating Potential Dual-Wavelength Synergy. Water Res. 2017, 109, 207–216. [Google Scholar] [CrossRef]
- Velten, S.; Hammes, F.; Boller, M.; Egli, T. Rapid and Direct Estimation of Active Biomass on Granular Activated Carbon through Adenosine Tri-Phosphate (ATP) Determination. Water Res. 2007, 41, 1973–1983. [Google Scholar] [CrossRef]
- Acosta, N.; Bautista, M.A.; Hollman, J.; McCalder, J.; Beaudet, A.B.; Man, L.; Waddell, B.J.; Chen, J.; Li, C.; Kuzma, D.; et al. A Multicenter Study Investigating SARS-CoV-2 in Tertiary-Care Hospital Wastewater. Viral Burden Correlates with Increasing Hospitalized Cases as Well as Hospital-Associated Transmissions and Outbreaks. Water Res. 2021, 201, 117369. [Google Scholar] [CrossRef]
- Bivins, A.; Greaves, J.; Fischer, R.; Yinda, K.C.; Ahmed, W.; Kitajima, M.; Munster, V.J.; Bibby, K. Persistence of SARS-CoV-2 in Water and Wastewater. Environ. Sci. Technol. Lett. 2020, 7, 937–942. [Google Scholar] [CrossRef]
- Hamouda, M.; Mustafa, F.; Maraqa, M.; Rizvi, T.; Aly Hassan, A. Wastewater Surveillance for SARS-CoV-2: Lessons Learnt from Recent Studies to Define Future Applications. Sci. Total Environ. 2021, 759, 143493. [Google Scholar] [CrossRef]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in Sewage and Correlation with Reported COVID-19 Prevalence in the Early Stage of the Epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Meng, X.; Wang, X.; Meng, S.; Wang, Y.; Liu, H.; Liang, D.; Fan, W.; Min, H.; Huang, W.; Chen, A.; et al. A Global Overview of SARS-CoV-2 in Wastewater: Detection, Treatment, and Prevention. ACS EST Water 2021, 1, 2174–2185. [Google Scholar] [CrossRef]
- Cerrada-Romero, C.; Berastegui-Cabrera, J.; Camacho-Martínez, P.; Goikoetxea-Aguirre, J.; Pérez-Palacios, P.; Santibáñez, S.; José Blanco-Vidal, M.; Valiente, A.; Alba, J.; Rodríguez-Álvarez, R.; et al. Excretion and Viability of SARS-CoV-2 in Feces and Its Association with the Clinical Outcome of COVID-19. Sci. Rep. 2022, 12, 7397. [Google Scholar] [CrossRef]
- Cheung, K.S.; Hung, I.F.N.; Chan, P.P.Y.; Lung, K.C.; Tso, E.; Liu, R.; Ng, Y.Y.; Chu, M.Y.; Chung, T.W.H.; Tam, A.R.; et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples from a Hong Kong Cohort: Systematic Review and Meta-Analysis. Gastroenterology 2020, 159, 81–95. [Google Scholar] [CrossRef]
- Cuicchi, D.; Lazzarotto, T.; Poggioli, G. Fecal-Oral Transmission of SARS-CoV-2: Review of Laboratory-Confirmed Virus in Gastrointestinal System. Int. J. Color. Dis. 2021, 36, 437–444. [Google Scholar] [CrossRef]
- Guo, M.; Tao, W.; Flavell, R.A.; Zhu, S. Potential Intestinal Infection and Faecal–Oral Transmission of SARS-CoV-2. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 269–283. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Y.; Gao, R.; Lu, R.; Han, K.; Wu, G.; Tan, W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020, 323, 1843–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F.; et al. Presence and Infectivity of SARS-CoV-2 Virus in Wastewaters and Rivers. Sci. Total Environ. 2020, 744, 140911. [Google Scholar] [CrossRef] [PubMed]
- Inagaki, H.; Saito, A.; Sugiyama, H.; Okabayashi, T.; Fujimoto, S. Rapid Inactivation of SARS-CoV-2 with Deep-UV LED Irradiation. Emerg. Microbes Infect. 2020, 9, 1744–1747. [Google Scholar] [CrossRef] [PubMed]
- Ruetalo, N.; Businger, R.; Schindler, M. Rapid, Dose-Dependent and Efficient Inactivation of Surface Dried SARS-CoV-2 by 254 nm UV-C Irradiation. Eurosurveillance 2021, 26, 2001718. [Google Scholar] [CrossRef] [PubMed]
- Storm, N.; McKay, L.G.A.; Downs, S.N.; Johnson, R.I.; Birru, D.; de Samber, M.; Willaert, W.; Cennini, G.; Griffiths, A. Rapid and Complete Inactivation of SARS-CoV-2 by Ultraviolet-C Irradiation. Sci. Rep. 2020, 10, 22421. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Whitney, O.N.; Kennedy, L.C.; Fan, V.B.; Hinkle, A.; Kantor, R.; Greenwald, H.; Crits-Christoph, A.; Al-Shayeb, B.; Chaplin, M.; Maurer, A.C.; et al. Sewage, Salt, Silica, and SARS-CoV-2 (4S): An Economical Kit-Free Method for Direct Capture of SARS-CoV-2 RNA from Wastewater. Environ. Sci. Technol. 2021, 55, 4880–4888. [Google Scholar] [CrossRef]
- Yu, L.; Achari, G.; Langford, C.H. Design and Evaluation of a Novel Light-Emitting Diode Photocatalytic Reactor for Water Treatment. J. Environ. Eng. 2018, 144, 04018014. [Google Scholar] [CrossRef]
- Yu, L.; Achari, G.; Langford, C.H. Design of a Homogeneous Radiation Field in an LED Photo-Reactor. J. Environ. Eng. Sci. 2014, 9, 214–223. [Google Scholar] [CrossRef]
- Linklater, N.; Örmeci, B. Evaluation of the Adenosine Triphosphate (ATP) Bioluminescence Assay for Monitoring Effluent Quality and Disinfection Performance. Water Qual. Res. J. 2013, 49, 114–123. [Google Scholar] [CrossRef]
- Yang, C.; Sun, W.; Ao, X. Bacterial Inactivation, DNA Damage, and Faster ATP Degradation Induced by Ultraviolet Disinfection. Front. Environ. Sci. Eng. 2019, 14, 13. [Google Scholar] [CrossRef]
- Reardon, J.T.; Sancar, A. Nucleotide Excision Repair. Prog. Nucleic Acid Res. Mol. Biol. 2005, 79, 183–235. [Google Scholar]
- Wang, Y.; Wang, Y.; Wang, Y.; Murray, C.K.; Hamblin, M.R.; Hooper, D.C.; Dai, T. Antimicrobial Blue Light Inactivation of Pathogenic Microbes: State of the Art. Drug Resist. Updates 2017, 33–35, 1–22. [Google Scholar] [CrossRef]
- Nichia Inactivation Effect (99.99%) of Nichia’s Deep UV LEDs on the Novel Coronavirus (SARS-CoV-2). Available online: https://www.nichia.co.jp/en/newsroom/2020/2020_121701.html (accessed on 9 June 2022).
- Biasin, M.; Bianco, A.; Pareschi, G.; Cavalleri, A.; Cavatorta, C.; Fenizia, C.; Galli, P.; Lessio, L.; Lualdi, M.; Tombetti, E.; et al. UV-C Irradiation Is Highly Effective in Inactivating SARS-CoV-2 Replication. Sci. Rep. 2021, 11, 6260. [Google Scholar] [CrossRef]
- Robinson, C.A.; Hsieh, H.-Y.; Hsu, S.-Y.; Wang, Y.; Salcedo, B.T.; Belenchia, A.; Klutts, J.; Zemmer, S.; Reynolds, M.; Semkiw, E.; et al. Defining Biological and Biophysical Properties of SARS-CoV-2 Genetic Material in Wastewater. Sci. Total Environ. 2022, 807, 150786. [Google Scholar] [CrossRef]
- Kim, S.; Kennedy, L.C.; Wolfe, M.K.; Criddle, C.S.; Duong, D.H.; Topol, A.; White, B.J.; Kantor, R.S.; Nelson, K.L.; Steele, J.A.; et al. SARS-CoV-2 RNA Is Enriched by Orders of Magnitude in Primary Settled Solids Relative to Liquid Wastewater at Publicly Owned Treatment Works. Environ. Sci. Water Res. Technol. 2022, 8, 757–770. [Google Scholar] [CrossRef]
- Li, B.; Di, D.Y.W.; Saingam, P.; Jeon, M.K.; Yan, T. Fine-Scale Temporal Dynamics of SARS-CoV-2 RNA Abundance in Wastewater during a COVID-19 Lockdown. Water Res. 2021, 197, 117093. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and Functional Properties of SARS-CoV-2 Spike Protein: Potential Antivirus Drug Development for COVID-19. Acta Pharmacol. Sin. 2020, 41, 1141–1149. [Google Scholar] [CrossRef]
- Azzazy, E.; Christenson, R.H. All about Albumin: Biochemistry, Genetics, and Medical Applications; Peters, T., Jr., Ed.; Academic Press: San Diego, CA, USA, 1996; 432p, ISBN 0-12-552110-3. [Google Scholar]
- Kerwin, B.A.; Remmele, R.L. Protect from Light: Photodegradation and Protein Biologics. J. Pharm. Sci. 2007, 96, 1468–1479. [Google Scholar] [CrossRef]
- Silvester, J.A.; Timmins, G.S.; Davies, M.J. Photodynamically Generated Bovine Serum Albumin Radicals: Evidence for Damage Transfer and Oxidation at Cysteine and Tryptophan Residues. Free Radic. Biol. Med. 1998, 24, 754–766. [Google Scholar] [CrossRef]
- Lo, C.-W.; Matsuura, R.; Iimura, K.; Wada, S.; Shinjo, A.; Benno, Y.; Nakagawa, M.; Takei, M.; Aida, Y. UVC Disinfects SARS-CoV-2 by Induction of Viral Genome Damage without Apparent Effects on Viral Morphology and Proteins. Sci. Rep. 2021, 11, 13804. [Google Scholar] [CrossRef] [PubMed]
Item | NCSU334B | NVSU119C |
---|---|---|
Peak wavelength | 280 nm | 405 nm |
Maximum radiant flux | 100 mW | 2840 mW |
Spectrum half-width | 10 nm | 12 nm |
Operating temperature | −10~85 °C | −10~85 °C |
Maximum forward current | 500 mA | 1400 mA |
Wall-Plug efficiency | 65.4% * | 3.6% * |
280 nm, 500 mA | 405 nm, 500 mA | |||
---|---|---|---|---|
Parameter | D = 1 cm | D = 5 cm | D = 1 cm | D = 5 cm |
Mean | 12.09 | 9.64 | 191 | 112 |
Standard deviation | 8.51 | 0.48 | 85.5 | 5.12 |
Max | 37.62 | 10.63 | 497 | 121 |
Minimum | 3.32 | 8.74 | 102 | 102 |
Parameter | Light Intensity (µW/cm2) | UV1−log (mJ/cm2) |
---|---|---|
E. coli | 96.4 | 17.97 |
192.8 | 15.60 | |
385.6 | 12.62 | |
964 | 11.06 | |
Total Coliform | 96.4 | 14.35 |
192.8 | 11.37 | |
385.6 | 10.61 | |
964 | 10.58 | |
cATP | 964 | 3654 |
4820 | 2420 | |
9640 | 1562 |
Parameter | 405 nm LED Reactor | 280 nm LED Reactor | ||
---|---|---|---|---|
UV1−log (mJ/cm2) | EE1−log (mJ/cm2) | UV1−log (mJ/cm2) | EE1−log (mJ/cm2) | |
E. coli | 344,534 | 526,506 | 11.06~17.97 | 304~494 |
Total coliform | 1,064,285 | 1,626,406 | 10.58~14.35 | 291~394 |
cATP activity | 399,715 | 610,831 | 1562~3654 | 42,976~66,577 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Acosta, N.; Bautista, M.A.; McCalder, J.; Himann, J.; Pogosian, S.; Hubert, C.R.J.; Parkins, M.D.; Achari, G. Quantitative Evaluation of Municipal Wastewater Disinfection by 280 nm UVC LED. Water 2023, 15, 1257. https://doi.org/10.3390/w15071257
Yu L, Acosta N, Bautista MA, McCalder J, Himann J, Pogosian S, Hubert CRJ, Parkins MD, Achari G. Quantitative Evaluation of Municipal Wastewater Disinfection by 280 nm UVC LED. Water. 2023; 15(7):1257. https://doi.org/10.3390/w15071257
Chicago/Turabian StyleYu, Linlong, Nicole Acosta, Maria A. Bautista, Janine McCalder, Jode Himann, Samuel Pogosian, Casey R. J. Hubert, Michael D. Parkins, and Gopal Achari. 2023. "Quantitative Evaluation of Municipal Wastewater Disinfection by 280 nm UVC LED" Water 15, no. 7: 1257. https://doi.org/10.3390/w15071257