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Abstract: Conventional sewage treatment based on biological and chemical methods have made
historical contributions to humans. However, it breaks the biogeochemical cycles of carbon, nitrogen,
and phosphorus and cannot remove hazardous materials including viruses and nano/microplastics.
Therefore, we rethought the conceptual revolution of principles of sewage treatment in the 1890s, that
is, “the replacement of a philosophy that saw sewage purification as the prevention of decomposition
with one that tried to facilitate the biological processes that destroy sewage naturally”. We proposed a
promising sewage treatment system based on physical separation, which mainly consists of the source
separators and the insoluble-pollutants separators, soluble-pollutants separators, and the wastewater
heat recovery devices in wastewater treatment plants. By using the promising system, the carbon in
wastewater will be recovered by sending biosolids directly into the soil after removing the hazardous
materials and organic toxicity. The nitrogen and phosphorus in wastewater will be sent back into the
soil or be used for hydroponics rather than be mineralized. The thermal energy in wastewater will
be recovered and reused, and the hazardous materials will be removed. As a result, the promising
system will turn the wastewater treatment system with high resource and thermal energy waste
and high energy consumption into a no-chemicals, green factory. At present, nonetheless, it is still
urgent to develop more advanced insoluble-pollutants separators and soluble-pollutants separators
with high separation efficiency and low energy consumption, especially volume separators. Because
the volume separators (e.g., functionalized sand filters) have the potential for replacing the surface
separators (e.g., membranes).

Keywords: biogeochemical cycles; wastewater treatment; resource recycling; heat pump; carbon
neutrality; sustainable development

1. Introduction

Since the industrial revolution, to meet demands for energy and food, people have
moved a large amount of carbon, nitrogen, and phosphorus, respectively, from the under-
ground to the atmosphere, from the atmosphere to the fields, forests, and rivers, and from
the underground to the fields, forests, and rivers. As a result, the biogeochemical cycle
found in 1926 [1] was broken [2]. Excess carbon, nitrogen, and phosphorus is polluting our
environment [3,4]. The pollution of chemicals including carbon, nitrogen, and phosphorus
is causing and exacerbating global climate change [5,6] (Figure 1) and many other global
environmental issues and emerging environmental issues. Where the global environmental
issues refer to the ozone layer depletion [7], biodiversity decline [8], marine oil pollution [9],
eutrophication [10], persistent organic pollutants [11], and mercury pollution [12]. Whereas
the emerging environmental issues refer to the pollution of pharmaceutical and personal
care products [13], disinfection by-product pollution [14] (Figure 2), and microplastic pol-
lution [15]. Ironically, nonetheless, mineable resources of many essential elements are
limited [2]. The biogeochemical cycle of every element has a planetary boundary that
should not be transgressed [16].
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essential elements are limited [2]. The biogeochemical cycle of every element has a plane-
tary boundary that should not be transgressed [16]. 

 
Figure 1. (A) Trajectories for drivers of global environmental change; (B) increases in the diversity 
of US pharmaceuticals and the application of pesticides within the US and globally; (C) trends for 
the global trade value (in USD) of synthetic chemicals and for the pesticide and pharmaceutical 
chemical sectors individually. To allow comparison, all trends are shown relative to values reported 
in 1970 (Reprinted with permission from Ref. [5]. 2017, The Ecological Society of America) 

 
Figure 2. Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisci-
plinary Challenges and Opportunities. (Reprinted with permission from Ref. [14]. 2017, American 
Chemical Society). 

  

Figure 1. (A) Trajectories for drivers of global environmental change; (B) increases in the diversity of
US pharmaceuticals and the application of pesticides within the US and globally; (C) trends for the
global trade value (in USD) of synthetic chemicals and for the pesticide and pharmaceutical chemical
sectors individually. To allow comparison, all trends are shown relative to values reported in 1970
(Reprinted with permission from Ref. [5]. 2017, The Ecological Society of America).
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Figure 2. Drinking Water Disinfection Byproducts (DBPs) and Human Health Effects: Multidisci-
plinary Challenges and Opportunities. (Reprinted with permission from Ref. [14]. 2017, American
Chemical Society).

2. Broken Carbon, Nitrogen, and Phosphorus Cycles
2.1. Broken Carbon Cycles

With respect to carbon, the amount of carbon dioxide produced by the burning of
fossil fuels has increased rapidly. Global warming is becoming faster and faster [17,18], and
hence the Antarctic Ice Sheet is losing mass at an accelerating rate [19,20]. Researchers [21]
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recently found that the Antarctic Ice Sheet presents many temperature thresholds beyond
which ice loss is irreversible. Considering the great harm of climate change (e.g., the effects
on the amphibian [22], terrestrial ecosystems [23], and crop [24]), the rapid reduction of
greenhouse gas emissions has become imperative and increasingly urgent, especially the
realization of carbon neutrality [25]. It should be noted that many substances should be
used as resources rather than energy sources. Otherwise, the greenhouse effect and the
destruction of the carbon cycle will intensify and even become irreparable.

For example, the carbon stored in the top meter of the world’s soil is more than
three times [26] (or at least more than two times [27]) the amount of carbon held in the
atmosphere, and two-thirds of it is in the form of organic matter [28]. In terms of the
elemental composition of soil organic matter, soil organic carbon accounts for approximately
50% [29]. Nevertheless, the soil’s organic carbon is vulnerable to carbon losses through
biological degradation. This results are that the greenhouse gases are easy to be released to
the atmosphere. As a result, global warming is accelerated [26], which inversely accelerates
the soil organic carbon losses [30,31].

Since the 19th century, approximately 60% of the world’s soil carbon has been lost
due to the worldwide intensification of land use and conversion of uncultivated land for
food, feed, fiber, and fuel production [27]. As a consequence, agricultural productivity
and the ability to provide ecosystem services declined significantly. Thus, increasing soil
organic carbon is crucial for carbon neutrality, food production, and the delivery of many
interrelated ecosystem services. The soil organic matter containing soil organic carbon
should be used as a resource rather than an energy source (e.g., methane converted from
the soil organic carbon by anaerobic treatments [26]). To increase global soil organic carbon
stocks by 4‰ per year as compensation for the global emissions of greenhouse gases by
anthropogenic sources, the ‘4‰ Initiative: soils for food security and climate’ was launched
at the 21st Conference of the Parties to the United Nations Framework Convention on
Climate Change [32].

2.2. Broken Nitrogen Cycles

With respect to nitrogen, there are two forms of nitrogen in nature: N2 and all other
nitrogen forms as “reactive nitrogen” or “fixed nitrogen” (Nr) [33]. Where N2 maintains a
stable atmosphere for life on earth, whereas Nr is important for all life on earth, especially
for plant growth. Accordingly, in the past 100 years, people produce numerous nitrogen
fertilizers by converting nitrogen in the air to ammonia [27], which accounts for 63% of
anthropogenic nitrogen fixation [33]. Nevertheless, in terms of the whole food chain,
only nearly 20 percent of the reactive nitrogen added in farming ends up in human food,
and nearly 80 percent is wasted as excess reactive nitrogen and N2 to the environment.
Excess reactive nitrogen is polluting our environment: the water quality, ecosystems,
biodiversity, soil quality, greenhouse-gas balance, and air quality [34]. For example, NH3
causes eutrophication and decreases biodiversity. NO2 and NO are the main air pollutants.
NO3 forms particulate matter in the air. Ammonium-based fertilizers make the soil acidic.
The Global Warming Potential of N2O is 265 times that of carbon dioxide according to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change, and causes
ozone layer depletion.

However, although reactive nitrogen has far exceeded the demand for use and is
polluting our environment [16], the global consumption of nitrogen fertilizers are still
increasing rapidly. For example, from 1980 to 2016, the consumption of all types of nitrogen
fertilizers in South Asia increased from 4.7 to 21.8 million metric tonnes, and that in East
Asia increased from 15 to 34 million metric tonnes [33]. Globally, nearly 200 million tonnes
of reactive nitrogen are lost to the environment per year as excess reactive nitrogen and
N2. If the fertilizer price is USD1 per kg N, the cash loss per year will be nearly USD200
billion. Therefore, it is urgent to convert current nitrogen cycle pollution to nitrogen circular
economy by recovering and reusing reactive nitrogen through physical separation, rather
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than continuously converting N2 to reactive nitrogen with a high cost and then converting
excess reactive nitrogen to N2.

2.3. Broken Phosphorus Cycles

With respect to phosphate, which is also usually used to produce fertilizers, the phos-
phate cycle is destroyed more severely. Unlike the aforementioned carbon and nitrogen,
there are no substitutes for phosphate, and phosphate cannot be obtained from the air.
Morocco controls most of the global phosphorus reserves, and Morocco, China, and Algeria
control more than 85% of the known global phosphorus reserves [2]. The power concentra-
tion is significantly higher than that of oil, where a dozen members of the Organization
of the Petroleum Exporting Countries hold 80% of the global oil reserves. What is worse,
calculated by increasing the demand for phosphorus by 3% each year, the remaining phos-
phate rock will approximately run out in 38 years [35]. Phosphate rock may be a strategic
material for many countries in the near future.

In summary, since the industrial revolution, the biogeochemical cycles of carbon,
nitrogen, and phosphorus have been severely broken by human activities. Therefore,
we should strive to establish a circular economy as early as possible to fix the broken
biogeochemical cycles. Specifically, we should minimize the use of chemicals (e.g., carbon,
nitrogen, and phosphorus) and the greenhouse gases emissions by recovering and reusing
them. All wastewater treatment plants should reuse pollutants and thermal energy in water
by making full use of physical separation without the use of chemicals [36], especially the
physical separation technologies.

3. Conventional Sewage Treatment Based on Biological and Chemical Methods

At present, however, the treatment process of domestic wastewater is a largely one-
way flow of nutrients and is almost down the drain [37]. Most domestic wastewater is
treated utilizing the aerobic ‘activated-sludge process’, which mixes the domestic wastewa-
ter with the bacteria and air to degrade rather than reuse the pollutants including carbon,
nitrogen, and phosphorus [38]. Thus, many researchers proposed to recover chemical
energy contained in domestic wastewater by using anaerobic treatments [37,39,40] and mi-
crobial electrochemical cells [37] to produce energy-rich chemicals (e.g., methane [37,39,40]
and hydrogen gas [37]) and electrical power [37] rather than to produce carbon dioxide
(Table 1). Some researchers even suggested to use microbial electrolysis cells and microal-
gae cultivation to recover the carbon in domestic wastewater and to capture carbon by
producing carbonates [41].

Nevertheless, the carbon-rich organic matter (i.e., the so-called “carbonaceous chemical
oxygen demand” or “COD”) has a higher exergy content than methane, carbon dioxide [26,27],
and carbonates [41], which should be maintained if possible [42] (Figure 3). Namely, the
carbon-rich organic matter contained in the wastewater should be converted into organic
products with highly valuable such as biopolymers, rather than being converted first into
methane and then into carbon dioxide [42] or being converted into carbonates. Both methane
and carbon dioxide are greenhouse gases, and the global Warming Potential of methane is
28 times that of carbon dioxide according to the Fifth Assessment Report of the Intergovern-
mental Panel on Climate Change. The product value of carbonates is too low.

Based on the evaluation of a wastewater treatment plant with a feed COD of 400 mg/L,
the recoverable potential of thermal energy in the effluent of the wastewater treatment plant
is at least 6–8 times higher than that of the chemical energy [43]. Nonetheless, chemical
energy is usually treated as the only recoverable energy contained in wastewater [37,41,42].
The thermal energy, which can be easily employed for the heating or cooling of build-
ings [44], the drying of dewatered sludge [42], the heating of biogas digesters [45], the
agricultural greenhouses [42], the melting of snow [46], and the heating of domestic hot
water [47], is usually ignored [42,48].
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Table 1. Flow of nutrients and thermal energy in various wastewater treatments.

Nutrients and Thermal Energy Flow of Matter and Energy

Aerobic activated sludge
process [38]

C COD + O2→CO2 + H2O

N NH4
+ + O2→NO3

− + H+ + H2O
NO3

− + COD→N2↑ + CO2 + H2O

P PO4
3− + Al3+→AlPO4↓

Thermal energy Waste

“Denitrifying phosphorus
removal bacteria + Anaerobic

treatments” [39]

C COD→CH4

N, P NH4
+ + O2→NO3

− + H+ + H2O
NO3

− + COD + PO4
3−→N2↑ + CO2 + H2O + Phosphate

Thermal energy Waste

“Anaerobic treatment +
Anammox process” [40]

C COD→CH4

N

NH4
+ + NO2

−→N2↑ + 2H2O
NH4

+ +1.5O2→NO2
− + 2H+ + H2O

Together yield:
2NH4

+ + 1.5O2→N2↑ + 2H+ + 3H2O

P PO4
3− + Al3 + →AlPO4↓

Thermal energy Waste

“Anaerobic membrane
bioreactor +Microbial

electrochemical
cells + Ion exchangers” [37]

C COD→CH4 + Electricity

N, P N, P→Fertilizer

Thermal energy Waste

“Microbial electrolytic carbon
capture + Microalgae

cultivation” [41]

C COD + CO2→Carbonates

N, P N, P→Microalgae cultivation

Thermal energy Waste

What is worse, the domestic wastewater in China presents the characteristics of low
organic contents (the average of which is just approximately 267 mg/L [49], which is
markedly lower than the above-mentioned 400 mg/L [42]) and high inorganic solids.
This results in the fact that anaerobic digestion cannot be well operated in China, and
hence only less than 5% [49] (even 3% [50]) of wastewater treatment plants in China are
equipped with anaerobic digestion facilities. On the contrary, if the thermal energy is
extracted from the untreated wastewater rather than the above-mentioned effluent of the
wastewater treatment plant, the recoverable potential of thermal energy will be significantly
higher [44,47,51,52]. Because long-distance conveyance of wastewater from the source to
the wastewater treatment plant and wastewater treatments will cause a lot of thermal
energy loss.

In addition to the aforementioned squander of the carbon-rich organic matter and the
thermal energy in wastewater, another huge squander is nitrogen and phosphorus (Table 1),
which are valuable for making fertilizers. At present, more than 80% of nitrogen [37] and
90% of phosphorus [53,54] are squandered in the wastewater treatment processes. As a
result, excess reactive nitrogen [33] and phosphorus [2] are polluting our environment,
whereas we are still producing reactive nitrogen with a high cost to produce nitrogen
fertilizer [33], and are still mining limited phosphate rock [2,35] to produce phosphorus
fertilizer. In terms of the whole food chain, only nearly 20 percent of the reactive nitrogen
added in farming ends up in human food [33].
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Figure 3. Energy balance towards the carbon-neutral operation of the evaluated sewage treatment
plant. (Reprinted with permission from Ref. [42]. 2019, Elsevier).

Therefore, it is urgent to convert nitrogen cycle pollution into a nitrogen circular economy
by recovering and reusing the reactive nitrogen and phosphorus as fertilizers to replace the
production of concentrated fertilizer. That is, both the production of concentrated fertilizer
and the conversion from reactive nitrogen to nitrogen gas should be minimized. Accordingly,
the wastewater treatments that convert reactive nitrogen into nitrogen gas [38–40] are harmful
to the formation of a nitrogen circular economy [33]. The wastewater treatments that recover
and reuse reactive nitrogen and phosphorus [37,41] are better.

Besides, the “wet sludge” produced by wastewater treatment (5–10 kg/m3 of the
treated water) needs drying and disposal (in landfill or on land) or incineration, which
accounts for 30–50% of the treatment facility’s overall costs [37]. What is worse, a large num-
ber of hazardous materials (e.g., viruses, microplastics, bacteria, and heavy metals) are left
in the sewage and sludge [36]. The hazardous materials further migrate around the world
and cause the ozone layer depletion [7], biodiversity decline [8], marine oil pollution [9],
eutrophication [10], persistent organic pollutants [11], mercury pollution [12], pollution of
pharmaceutical and personal care products [13], disinfection by-product pollution [14], and
microplastic pollution [15]. Their effects may be carcinogenic or even genotoxic [14,55].
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4. Promising Sewage Treatment Based on Physical Separation

Therefore, we should rethink the conceptual revolution of the principles of sewage
treatment in the 1890s [56], that is, “the replacement of a philosophy that saw sewage
purification as the prevention of decomposition with one that tried to facilitate the bio-
logical processes that destroy sewage naturally”, and then combine the source-separation
idea [57] to develop less-energy-consumption physical separation technologies to recover
wastewater resources and thermal energy without the use of chemicals [58–60].

For example, we can use physical separation to replace both the conventional aerobic
activated-sludge treatments and the anaerobic treatments [37]. The promising sewage
treatment based on physical separation (Figure 1) could remove the hazardous materi-
als (e.g., the viruses, bacteria, nano/microplastics, and heavy metals) contained in the
wastewater, and could reverse the aforementioned nutrients and energy costs to form the
circular economy. The corresponding physical treatment facilities can be classified into
four types: source separators, insoluble-pollutants separators, soluble-pollutants separa-
tors, and wastewater heat recovery devices.

According to the difference in the thickness of the separation medium, the physical
separation can be divided into surface separation (e.g., membrane separation) and volume
separation (e.g., functionalized sand filtration). Unlike high-energy-consumption surface
separators that mainly rely on the aperture, the volume separator has the potential for utilizing
the adsorption function of the functionalized natural materials in the separators to achieve the
separation of soluble and insoluble micro-nano contaminants. Researchers [61] have recently
found that, by controlling the internal unevenness of the separation medium, the energy
consumption of the nanofiltration membrane can be greatly reduced. This demonstrates
that the separation efficiency and energy consumption of the separator not only depends on
the aperture and the thickness of the separation medium but also depends on the internal
unevenness of the separation medium. Therefore, volume separation has the potential
for replacing surface separation, and we need to develop a high-efficient and low-energy-
consumption volume separation theory, techniques, and equipment (e.g., functionalized sand
filtration) that can achieve ultrafiltration, nanofiltration, and reverse osmosis.

If the promising sewage treatment based on physical separation (Figure 4) is applied,
the chemical energy contained in the wastewater will be recovered by using the biosolids
directly to the soil after removing the hazardous materials (e.g., viruses, nano/microplastics,
bacteria, and heavy metals) and organic toxicity. That is, the carbon will be recovered as a
carbon resource rather than chemical energy. This will definitely promote the remediation
of the broken biogeochemical cycle by decreasing the movement of carbon from the soil to
the atmosphere [2]. The emissions of greenhouse gases (e.g., carbon dioxide emitted by the
aerobic activated sludge process and methane emitted by the anaerobic processes [37,41])
in wastewater treatment plant will decrease significantly.

The thermal energy contained in the wastewater, which is usually ignored and hence
wasted, can be recovered and reused in all the areas that need thermal energy. For example,
the drying of dewatered sludge [42], the heating or cooling of buildings [44], the heating of
biogas digesters [45], the agricultural greenhouses [42], the melting of snow [46], and the
heating of domestic hot water [47]. If we want to recover the thermal energy contained in
the wastewater as much as possible, we need to comprehensively and selectively recover
the thermal energy from both the raw wastewater and the wastewater in wastewater
treatment plants according to local needs and conditions.

The reasons are as follows: if the wastewater in the wastewater treatment plant is
chosen as the thermal source, owing to the existence of insoluble-pollutants separators, the
blockage, fouling, and corrosion issues of the wastewater heat exchanger will be greatly
released. Nonetheless, the supply distance and the thermal energy loss produced by long-
distance transportation and wastewater treatments will become critical barriers [42]. If
the raw wastewater is chosen as the thermal-energy source, the supply distance and the
thermal energy loss produced by long-distance transportation and wastewater treatments
will be avoided. Nevertheless, the blockage, fouling, and corrosion issues of the wastewater
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heat exchanger will become critical barriers [51,52]. Fortunately, unlike the wastewater
treatment plants mainly based on biological treatments [42], the thermal-energy recovery
from the raw wastewater promotes the wastewater treatments in a promising system
based on physical separations. In recent years, researchers [62,63] have developed an
efficient de-foulant hydrocyclone with a reflux function for the thermal energy recovery
from raw wastewater (Figure 5), and have reviewed the enhanced-separation hydrocyclone
technologies [64,65].

The energy-saving technologies and renewable energy technologies will boost the
energy recovery from wastewater and offset the energy consumption of wastewater treat-
ments in the promising system proposed in this study. For example, the thermal energy
recovered by the wastewater source heat pump can be used for drying the sludge, and the
electricity produced by the solar photovoltaic system can be used for providing electricity
for the wastewater source heat pump. Renewable energy technologies, such as photovoltaic
technology, photothermal technology, wind power technology, and geothermal technology,
should be selected according to local specific conditions. The energy-saving technologies
should be further developed and applied, especially those used for the physical separation
technologies (e.g., the hydrocyclone [66–69], functionalized sand filter [70] (Figure 6), fiber
coalescer [71,72], gas cyclone [73,74] (Figure 7), and membrane [58]).
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Overall, owing to the fact that the promising system proposed in this study is mainly
based on physical separation, the hazardous materials in the wastewater will be collected
and removed. The carbon, nitrogen, and phosphorus will be recovered and reused. The
broken biogeochemical cycle [2] will be fixed (Figure 8). The thermal energy contained
in the wastewater will be recovered and reused, and renewable energy will be used. The
emissions of greenhouse gases in wastewater treatment systems will decrease markedly.
The promising system proposed in this study will turn the wastewater treatment system
with high resource waste and high energy consumption into a no-chemicals, green factory,
which can collect and remove hazardous materials, and recover and reuse pollutants and
thermal energy.
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Figure 6. 7 Log Virus Removal in a Simple Functionalized Sand Filter. (A) The geographical
distribution of Moringa oleifera; (B) A simple functionalization procedure using Moringa oleifera
seed water extract was used to improve the pathogen removal efficiency of sand filters. (Reprinted
with permission from Ref. [70]. 2019, American Chemical Society).
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5. Conclusions

Based on the above discussion of the potential of reusing the pollutants and thermal
energy from water with physical separation, several conclusions can be drawn.

(1) The conventional sewage treatment based on biological and chemical methods breaks
the biogeochemical cycles (e.g., the carbon, nitrogen, and phosphorus cycles) and
cannot remove hazardous materials including the viruses, microplastics, bacteria,
and heavy metals. Accordingly, we should rethink the conceptual revolution of the
principles of sewage treatment in 1890s [56], that is, “the replacement of a philosophy
that saw sewage purification as the prevention of decomposition with one that tried
to facilitate the biological processes that destroy sewage naturally”.

(2) The carbon in the wastewater should be sent back to the soil rather than be used to
produce carbon dioxide, methane, or carbonate. The nitrogen and phosphorus in the
wastewater should be sent back to the soil or used for hydroponics rather than being
mineralized. The thermal energy in the wastewater should be recovered and reused;
whereas the chemical energy in the wastewater should be maintained rather than
be recovered by producing methane and carbon dioxide. The hazardous materials
should be removed.

(3) The proposed promising sewage treatment system based on physical separation
mainly consists of the source separators and the insoluble-pollutants separators,
soluble-pollutants separators, and the wastewater heat recovery devices in the wastew-
ater treatment plants;

(4) The proposed promising sewage treatment system based on physical separation
has the potential to replace conventional sewage treatment based on biological and
chemical methods to fix the broken biogeochemical cycles (e.g., the carbon, nitrogen,
and phosphorus cycles).

(5) It is urgent to develop more advanced insoluble-pollutants separators and soluble-pollutants
separators with high separation efficiency and low energy consumption [58–60], espe-
cially volume separators. Because the volume separators (e.g., functionalized sand
filters) have the potential for replacing the surface separators (e.g., membranes).
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