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Abstract: Soil moisture content changes caused by rainfall and other factors can significantly affect
slope stability and potentially lead to geological disasters, such as landslides and debris flows.
However, conventional finite element methods for strength reduction do not consider the impact of
water content on slope stability. This paper examines classical finite element methods for reducing
the double strength coefficient and then introduces a novel approach using changes in moisture
content. The new method is implemented through the use of an ABAQUS FE program’s USDFLD
user-defined subroutine. This paper concludes by contrasting the outcomes derived from the limit
equilibrium technique and other techniques and verifying the accuracy of the suggested approach
through theoretical and numerical simulations. The numerical calculations for the stability evaluation
of the Azhuoluo slope in the Chinese province of Guizhou, Shuicheng county were performed
utilizing the ABAQUS FE platform’s USDFLD user-defined subroutine based on the double-strength
discounting method, in response to the large landslide disaster in the region. The results show that
the red clay, formed from the weathering of basalt in the area, experiences asynchronous decay in
both friction angle and cohesion as the water content increases, with a significantly higher decay
rate in the internal friction angle compared to cohesion. This indicates that traditional finite element
methods that synchronously discount the internal friction angle and cohesion do not correspond to
reality, whereas this proposed double-strength discounting method, based on water content changes,
accurately reflects the essential characteristics of slope instability and has clear physical meaning and
practical engineering applications.

Keywords: double strength reduction; weathered-basalt soil; soil water content; user-defined subroutine;
landslides

1. Introduction

The issue of stability analysis of geotechnical slopes is a major challenge in the fields
of geotechnics and geological hazards. Most landslide hazards are caused by the soil
becoming nearly saturated due to heavy rainfall, resulting in a rapid decrease in cohesion
and an internal friction angle. The varying mechanical properties of different soils also limit
the accuracy of conventional finite element numerical analysis in solving slope stability
problems, often leading to mismatches with actual conditions or inaccurate predictions
of instability.

Since Fellenius introduced the circular slide method for addressing soil slope insta-
bility in 1927, several techniques for analyzing the stability of slopes have already been
created. Using the frictional circular approach [1], for exclusively frictional, cohesive, two
dimensional soil slopes, Taylor [2] developed stability graphs to determine the factor of
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safety. The limit equilibrium method and numerical simulation method are commonly used
analysis techniques in the study of geological hazards, such as landslides and debris flows.
Available numerical simulation analysis approaches encompass a range of techniques,
including the rigid body element method, equivalent continuous model, block theory,
discontinuous deformation analysis (DDA), discrete element method (DEM), and finite
element method (FEM). Among these, the most popular numerical simulation technique in
slope engineering is the FE method, which plays a crucial role. The FE method addresses
the limitations of limit equilibrium theory, such as the requirement to divide soil into strips
and assume rigidity. The application of FE numerical simulation in slope stability analysis
involves utilizing classical geotechnical elastic-plasticity theory. This method calculates
stress and displacement values at each node within each minimum solid element, followed
by deriving the macroscopic stress and deformation values of the geotechnical body. The
reduction of the strength parameters of the geotechnical body is then implemented to
determine geotechnical instability and solve the slope safety factor.

Recent years have seen a surge in research by Chinese and international scholars
on various slope stability analysis methods, inspired by Zienkiewicz’s classic strength
reduction method (SRM) [3]. The most widely cited example of the application of SRM
in finite element numerical simulation is demonstrated in Dawson’s article [4], which
has been replicated by multiple scholars using various numerical software. Overall, the
strength reduction method (SRM) is the most applicable method for slope stability analysis
at present.

Slope failure criteria have been the subject of studies by Ugai [5], Matsui [6], Grif-
fiths [7], and others. These studies determined safety factors by gradually increasing the
reduced factor until the slope became unstable. Wei [8] explored the application of finite
element SRM in dam failure criteria. Zheng [9] and Liu [10] investigated the viability of
various criteria, including numerical computation convergence, abrupt displacement or
deformation, and equivalent plastic connection zone. Wu et al. [11] described a novel
approach that determines slope stability using the acceleration value. First, Taylor [2]
suggested using various reduction factors for friction angle and cohesion and emphasized
that the frictional resistance on the sliding surface is primarily responsible for slope stability,
with cohesion serving as supplementary support. This theoretical formulation became
known as the Double Strength Reduction Method (DRM). Water content was shown to be
the primary factor impacting the slope mass characteristics by Liu [10] and Tang [12–14]
in their study of the shear strength decrease procedures for clay and sand. Xue et al. [15]
established a nonlinear correlation faction between the reduction coefficients of friction
angle and cohesion and then validated this conclusion utilizing FE software ABAQUS.
The proportionate relation between reduction factors for various slopes was examined by
Yuan et al. [16]. Then, they proposed two methods for defining the comprehensive safety
factor. A non-proportional relationship between the reduction coefficients of cohesion and
internal friction angle was observed by Xue et al. [17] when assuming linear attenuation
of strength parameters. The DRM reduction coefficients were determined using a method
established by Xu [18] based on the impact of water content fluctuation. Using the shortest
path of stress reduction, Zhao [19] and Isakov et al. [20] provided a formula for computing
the minimal slope complete safety coefficient. Lastly, Bai et al. [21] modified the concept
of DRM and solved for the final slope safety factor using a maximum Mohr stress circle
tangent. Various scholars [22–24] have explored the anchoring mechanism of soil and the
stability of different types of soil slopes using the strength-reduction method of analysis.

Wang [25] and Cai [26] investigated the impact of rainfall on the stability of unsaturated
soil slopes using the conventional finite element strength reduction method. However,
they did not enhance or optimize the strength reduction method and continued to employ
the conventional finite strength reduction method. This paper addresses this issue by
introducing a new method for the simultaneous reduction of both strength coefficients,
taking into account the impact of changing water content on soil strength values. The
proposed method is realized through the implementation of a user-defined subroutine
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(USDFLD) in the FE software ABAQUS. The validity of the proposed method is confirmed
through both theoretical analysis and numerical simulation.

A numerical simulation study of Azhuoluo slope stability was performed by employ-
ing the USDFLD user-defined subroutine in the FE software ABAQUS 2019. The Azhuoluo
slope is located in the Chinese province of Guizhou, Shuicheng county. On 23 July 2019, a
large geological landslide disaster occurred in this area. The simulation results revealed
that the friction angle and cohesion of the red soil, which was a result of the residual
accumulation of basalt weathering, exhibited a non-synchronized decline as the water
content increased. This new numerical simulation method, which takes into account the
impact of water content on slope stability analysis, successfully demonstrated the intrinsic
mechanism of slope instability and its clear physical meaning, making it a valuable tool for
engineering applications.

2. Fundamental Concepts of SRM
2.1. Description of the Traditional Strength Reduction Coefficient

Bishop [1] introduced the idea of a slope stability safety factor for the first time
in the limit equilibrium approach. Later, Zienkiewicz [3] put forth the idea of a shear
strength reduction coefficient, which serves a similar purpose, in his research on elastic-
plastic FE numerical study of soil. The reduction factor for shear strength is calculated
as the maximum shear strength ratio within the slope to the actual stress, given that the
external load remains constant. The maximum shear stress is obtained by applying a
reduction coefficient F to the rock–soil material parameters of friction angle ϕ and cohesion
c. These modified values ϕ and c are then inputted into the FE software ABAQUS 2019
for simulation. The procedure is repeated until the slope reaches a critical stress condition,
which is indicated by a ratio of 1 between the predicted shear strength and actual shear
stress. Then, the reduction coefficient serves as the slope’s safety factor, as described by
Equations (1) and (2).

c′ = c
F

(1)

ϕ′ = arctan
[

1
F

tan ϕ

]
(2)

2.2. Double Strength Reduction Method

The conventional Strength Reduction Method (SRM) involves reducing both the
cohesion and friction angle equally. Taylor [2] found that the slope stability effects of
cohesion and friction angle, as well as their relative reduction intensities, were not the same.
As a result, when carrying out slope safety factor reduction, it is necessary to reduce the
two parameters to varying degrees based on the actual circumstances, and this is what is
known as the Double Strength Reduction Method (DRM). The following are the details of
the calculations:

Fc =
c0

cL
(3)

Fϕ =
tan ϕ0

tan ϕL
(4)

The expressions in Equations (3) and (4) outline the relationship between the natural
cohesion c0 and friction angle ϕ0 of the soil slope, and the cohesion cL and friction angle ϕL
of the soil slope under critical stress.

The safety factor for cohesion and the safety factor for friction angle, respectively,
indicate the reduction coefficients Fc and Fϕ for cohesion and friction angle. When it
comes to analyzing and evaluating slope stability, it is common to only obtain a single
comprehensive safety factor value rather than separate values for cohesion and friction
angle. The different approaches currently used to calculate the double-strength reduction
factor F are listed in Table 1.
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Table 1. Variant approaches to determining the overall stability factor [12,16,18,20].

Case Scholar Equation

1 F. Tang F = (Fc + Fϕ)/2

2 W. Yuan F =
√

2FcFϕ/
√

F2
c + F2

ϕ

3 X. Q. Xu F = Fcβc + Fϕβϕ

4 A. Isakov F = 1/(1− Lmin), Lmin = f (Fc, Fϕ)

The destabilization of the soil slopes is caused by the degradation of the internal
friction angle and cohesion of the geotechnical material. Most landslides happen as a result
of a sudden increase in soil water content brought on by intense rainfall, which leads to the
saturation of the soil and a rapid decline in the soil’s strength parameters.

It is evident that the instability of slopes is influenced by the soil’s water content ω,
which acts as the independent variable, and the internal friction angle ϕ and cohesion c,
which act as the dependent variables. Hence, the alteration in soil water content ω can be
utilized to adjust the values of internal friction angle ϕ and cohesion c, providing a clearer
representation of the intrinsic slope instability mechanisms resulting from changes in water
content ω.

In this study, the third method for determining the composite safety factor, listed in
Table 1, was employed to adjust the values of c and ϕ based on the variations in soil water
content ω. This adjustment of c and ϕ was accomplished by utilizing ω as a function of
their respective relationships, which allowed for an asynchronous calculation process. The
task of calculating the double strength reduction coefficient in a non-linear manner was
simplified by only taking into account the water content of the soil in its critical state on the
slope once the relationship between the cohesion and internal friction angle of the soil and
its water content was established.

In this study, the reduction in cohesive force and internal friction angle caused by
changes in soil water content was analyzed. The critical water content ωL was used to
determine the cohesive force and internal friction angle under these conditions. These
values were then compared to their natural states to determine the reduction factors for
each. Lastly, a weighting of the reduction coefficients for cohesive force and internal friction
angle was performed to obtain the overall slope stability, represented as the integrated
safety factor. This approach is a finite element method that accounts for the effect of
changing water content on soil strength parameters.

γc =
c0 − cL

c0
(5)

γϕ =
tan ϕ0 − tan ϕL

tan ϕ0
(6)

βc =
γc

γc + γϕ
(7)

βϕ =
γϕ

γc + γϕ
(8)

γc and γϕ represent the reduction degree of cohesion and the internal friction angle of
soil slope in the critical state relative to the initial state, respectively.

The weighting coefficients for the reduction in cohesion and the internal friction angle
are represented by βc and βϕ, respectively. The slope’s safety factor F can be represented
as follows, as stated in the fourth method for calculating the double strength reduction
coefficient shown in Table 1:

F = Fcβc + Fϕβϕ (9)
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The slope safety factor value F can eventually be derived by substituting
Equations (5)–(8) into Equation (9) and performing rearrangement.

F =
Fc + Fϕ − (F2

c + F2
ϕ)

2− Fc − Fϕ
(10)

In Equation (10), the reduction coefficient of cohesion is denoted as Fc, and the reduc-
tion coefficient of the internal friction angle is denoted as Fϕ. They, respectively, represent
the decline in soil strength at the critical state of instability due to changes in water content.
These coefficients can be derived by utilizing Equations (3) and (4).

2.3. Performing the FE Strength Reduction Method Based on ABAQUS

The double-strength reduction method relies on changes in soil properties caused by
fluctuations in water content. This method involves reducing the strength parameters of
the soil, while considering the variations in water content to determine the slope safety
factor and analyze slope stability.

To implement this method, field sampling and testing must be conducted to determine
the relationship between soil cohesiveness, friction angle, and water content. Using the
finite element method, the c and ϕ values for each water content are calculated iteratively
until the slope’s critical stress state is reached. This stress state is identified through
non-convergent calculations.

In this work, the USDFLD user material subroutine of the ABAQUS FE software was
used to execute non-synchronous finite element reduction computations of c and ϕ values
depending on changes in water content. Figure 1 shows the calculation method.
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2.4. Slope Instability Criteria and Numerical Simulation Constitutive Model

The classical limit equilibrium approach for determining the slope stability safety
factor makes the assumption that the rock and soil mass act like a rigid-plastic body.
However, natural rock and soil materials exhibit elastic, plastic, and viscous characteristics
that are not consistent with this assumption.

When using ABAQUS 2019 software for numerical simulation of geotechnical engi-
neering, one can choose between elastoplastic, viscoelastic, or elastoplastic viscoelastic
constitutive models, depending on the specific situation. The ABAQUS software also
allows for the customization of the constitutive relationship through the redevelopment
function of its user-defined subroutines.

In slope engineering, various geotechnical constitutive relationships have been devel-
oped to analyze the failure of the mechanical properties of geotechnical materials, such as
the Drucker-Prager criterion and Mohr–Coulomb criterion. Because of its simplicity, clarity
of the parameters, and capacity to represent the characteristics of rocks and soils, the Mohr–
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Coulomb criteria is frequently employed. However, the sharp corners in the principal stress
plane of the Mohr–Coulomb criteria can cause uncertainty in plastic flow direction.

ABAQUS software incorporates the modified Mohr-Coulomb criteria, which changes
the yield surface into a smooth and continuous elliptical function. According to the
modified Mohr–Coulomb criteria, yield happens when every integration point in a material
experiences shear stress that linearly relies on normal stress in the same plane. The modified
M-C model is based on Mohr’s circle plotted in the plane of the highest and least primary
stresses for states of stress at yield. The M-C surface, which represents a shear criterion,
and the Rankine surface, which models an optional tension cutoff criterion, together form
the yield surface of the modified M-C model.

In the simulation process, there are three ways to determine whether a slope has failed:
(1) during the simulation, the numerical model does not converge, and the calculation is
aborted; (2) by observing the abrupt transition value of the displacement at a characteristic
point on the slope; and (3) by seeing if the slope forms a clearly defined roughly equivalent
plastic strain band. It is concluded that to obtain a reasonable safety factor value, all
three methods should be used in combination and applied based on the natural geological
conditions of the slope.

3. Example Analysis

In this study, the slope model proposed by Dawson [4] was utilized. The dimensional
representation of the model is shown in Figure 2. Additionally, the mechanical parameters
of the red clay soil, as given by Zhang [27], were employed. Young’s modulus of the soil
was determined to be 100 MPa, with a Poisson’s ratio of 0.35. The cohesive force c was
found to be 31.3 KPa, and the internal friction angle ϕ was 17.8◦. Lastly, the unit weight of
soil was calculated to be 19.6 KN/mm3.
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Figure 2. Numerical model of slope.

According to the direct shear test results on red clay with varying water content, as
reported in the literature [27], the cohesive force c and internal friction angle ϕ can be
represented as functions of water content, as demonstrated in Equations (11) and (12).

c = 9.396ω−0.794 (11)

ϕ = −44.68ω2 − 37.493ω + 28.162 (12)

The boundary conditions of the model were established with fixed horizontal and
vertical displacements at the bottom and fixed horizontal displacements at the sides. The
finite element type used was a plane strain quadrilateral element (CPE4) with a mesh size of
0.5 m at the top of the slope model and 1.0 m at the bottom. The modified Mohr–Coulomb
criteria were used in the numerical simulation method. The analysis was performed in two
steps. First, a geostatic analysis was conducted to calculate the ground stress of the slope
under the influence of gravity and bring the model to an equilibrium state of ground stress,
followed by a static general analysis to perform a static calculation of the slope with double
strength parameter reduction.
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The parameters and settings mentioned above were inputted into the FE software
ABAQUS, and the USDFLD user-defined subroutine was utilized to conduct numerical
calculations until the model calculation was terminated due to a lack of convergence.

Figure 3 displays the equivalent displacement distributions calculated when the
slope reaches its critical instability point, following the simultaneous decrease of the
cohesive force c and internal friction angle ϕ values. Figure 4, on the other hand, presents
the equivalent displacement distributions that result from invoking the USDFLD user-
defined subroutine and decrementing the values of c and ϕ in an asynchronous manner.
The comparison revealed that the equivalent displacement distributions and slip surface
locations derived from both methods were largely congruent; however, the equivalent
displacement values computed with the new algorithm tended to be greater in magnitude.
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Figures 5 and 6 depict the plastic strain contour plot of a slope at its critical instability,
calculated using the conventional strength reduction method and the novel method pre-
sented in this paper, respectively. The locations of the equivalent plastic zones appeared
to be largely similar; however, the equivalent plastic strain calculated by the conventional
method (with a maximum of 0.0303) surpassed that of the novel method (with a maximum
of 0.0144). Moreover, the conventional method resulted in a plastic zone with better pene-
tration, whereas the equivalent plastic band produced by the reduction of the two plastic
strength parameters in this paper did not penetrate as far up the slope.
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This slope model was integrated into the Slope module of the GeoStudio software, and
the limit equilibrium approach was used to calculate the slope’s safety factor, specifically
the Morgenstern–Price strip division method. Figure 7 displays the outcome of the crucial
sliding surface calculation.
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To verify the accuracy of the numerical results, the safety factor of this slope was
calculated using various methods and compared, as demonstrated in Table 2.

Table 2. Safety factors calculated by several slope stability analysis methods.

Methods Safety Factor

Limit equilibrium method 1.586

Traditional strength reduction method 1.58

Double strength reduction method

Tang F 1.502
Yuan W 1.487
Isakov A 1.503

This paper 1.532

Table 2 compares the slope’s safety factor between different slopes, which was cal-
culated using different methods. The results revealed that the safety factor calculated
using the limit equilibrium method was 1.586, whereas the traditional strength reduction
method yielded a value of 1.58. Additionally, the safety coefficient determined by the novel
method, which considered soil moisture content and utilized the USDFLD user-defined
subroutine, was 1.532. It was evident from the calculated safety factors that the DSRM
resulted in a lower safety factor compared to the others. Among all the safety factors
computed by the double-strength reduction method, the safety factor estimated using the
approach proposed in this paper was the most consistent with the value calculated by the
limit equilibrium method.
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In conclusion, the results of the various methods used to calculate the safety factors of
slopes were relatively comparable. The limit equilibrium method yielded the highest safety
factor, while Yuan W’s method produced the lowest value. The new method introduced in
this paper provided a moderate safety factor value.

4. Engineering Example

The research site is situated in the Chinese provinces of Guizhou, Shuicheng County,
and Jichang Town, an area characterized by its complex distribution of potential and
historical landslides. In particular, the area was impacted by a devastating landslide event
on 23 July 2019, which claimed the lives of 52 individuals.

The slope is 500 m from Jichang Town’s southwest side and has a height difference
of over 500 m from its peak to the base, where the Pingdi reservoir is situated. A county
road is located at the summit of the incline. The landslide measured over 1.3 km in length,
with a slide bed length of 1.1 km, a back edge width of 180 m, and a leading-edge width
of 370 m, with a general sliding direction toward the NNE. The total affected area was
374,000 square meters. Figure 8 shows a landslide with an estimated volume of around
2 million cubic meters.
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Consequently, in order to forestall the repetition of similar geologically-triggered
landslides, it is imperative to conduct a thorough examination of the stability of the
local slopes.

4.1. Engineering Geological Characteristics of the Study Area

Therefore, with the large landslide in Jichang Town on 23 July 2019, serving as a
backdrop, the slope located 300 m to the east of the landslide site in Azhuoluo Village was
selected as the focus of the study.

The research area is located on the western side of the upper sections of the Beipan
River and is characterized by large elevational differences in the mountainous terrain. The
highest point in the region reaches an altitude of +2870 m, while the lowest point is at
+631 m, making it a mid-mountain landscape. This region experiences high annual rainfall
due to its location in the temperate monsoon climate zone, with an average precipitation of
around 1100 mm per year.

The region’s geology is significant for being at the southeastern edge of the South
China Block and Qinghai-Tibetan Plateau, and the geological and topographic conditions
of the slope in question are depicted in Figures 8 and 9.

The slope is characterized by two main rock formations: the Longtan Formation coal-
bearing strata (P2l), and the Emeishan Basalt strata (P2β). Quaternary red soil strata (Q),
formed from the weathering of Emeishan basalt strata (P2β), covers the surface. Pyroclastic
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rocks, basaltic lava, and tuffs make up the majority of the basalt, which has noticeable
columnar joints. A clear division between the basalt and soil layers is visible (Figure 10),
with the rock strata trending northeast and a slope inclination of approximately 30◦. The
soil layer on the slope is inconsistent, being thicker in the valleys and thinner near the crest
and waist, where the basalt may be directly exposed.
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Figure 10. Interfaces of the soil and rock layers.

Measuring the slope’s weathered-basalt slope soil’s precise thickness is challenging
due to the steep and steep mountain. Figure 11, however, offers a broad approximation
based on a few data sites. The clay layer is thinner at the slope’s top and waist than at its
bottom, where it is thicker by a significant amount. These clays are naturally weathered
from hard basalt.
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4.2. Numerical Modeling of Azhuoluo Slope

Figure 11 shows how the chosen A’-A profile in the research area has been determined
to have a hazardous tendency to slide.

The Azhuoluo slope, measuring 85 m in height and 160 m horizontally from the slope
base, is coated in residual red soil ranging from several meters to over ten meters at its
crest. The Azhuoluo slope consists of a residual soil layer on the top and a basalt layer at
the bottom, and their respective mechanical properties in their natural states are displayed
in Table 3.

Table 3. FE model parameters of the Azhuoluo slope.

Material Density
ρ (g/cm−3)

Young’s
Modulus
E (MPa)

Poisson’s
Ratio v

Friction Angle
ϕ (◦)

Cohesion
c/KPa

Water Content
ω (%)

Weathered-basalt Soil 1.62 100 0.35 33.6 32.3 28.8
Basalt 2.74 60,000 0.17 43.7 28,000 -

The research team of this paper conducted several site visits to assess the geological
hazards of landslides. During these visits, it was determined that, of the various potential
landslide areas, it was not the hard basalt bedrock but rather the residual soil layer on top
that was causing slope instability. This soil, formed through the weathering of the basaltic
surface, experiences rapid decay in its cohesive force and internal friction angle during
strong rainfall, leading to instability. Previous research studies have confirmed this finding,
with the intersection of the rock and soil layers identified as the primary source of instability
due to loss of bearing capacity and scraping along this boundary after heavy rain.

The study team [28] performed laboratory tests on soil samples collected from the site
of landslide geological hazards. The samples were dried, ground, and sieved through a
2 mm standard to obtain a uniform texture. The soil samples were then remolded to mimic
different moisture contents, ranging from 5% to 50% in increments of 5%. The samples
were put through direct shear tests to ascertain the cohesiveness c and friction angle ϕ
under various moisture conditions. The results of these tests are presented in Figure 12.
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Figure 12. Friction angles and cohesion vary with water content [28].

The water content, represented as ω, was modeled as a function of the cohesion c and
friction angle ϕ values based on the experimental data. The functional relationships are
shown in Equations (13) and (14) in the data.

c = f (ω) = 303.6ω2 − 304ω + 97.2 (13)
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ϕ = g(ω) = 11.5ω2 − 64.6ω + 50.4 (14)

The procedure for setting up the numerical simulation involves modeling the slope
based on its actual dimensions.

The present paper’s numerical model of slope stability featured specific boundary con-
ditions whereby the model’s bottom constrained both horizontal and vertical displacements,
while horizontal displacements were constrained on either side of the model.

The finite element type used is a plane strain quadrilateral element (CPE4). The finite
element mesh size was established at 1.0 m at the top of the slope model and at 1.5 m at the
bottom. The Mohr–Coulomb criteria were used as the strength criterion for the numerical
simulation process.

The simulation began with a geostatic analysis, which calculated the geostress of
the slope under the influence of gravity, bringing the model to an equilibrium state of in
situ stress. The second step was a static general analysis that accounted for the slope’s
double-strength parameters.

These options and parameters were entered into the FE program ABAQUS, and the
USDFLD user-defined subroutine was utilized for numerical calculations until convergence
was achieved or the calculation was terminated. Table 3 displays the strength parameters
of the geotechnical body in its natural state.

4.3. Numerical Simulation Results

Figure 13 shows the equivalent plastic strain cloud of the critical instability stage of
the Azhuoluo slope, while Figure 14 showcases the displacement cloud in the horizontal
U1 direction at this state.
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The figures indicate that the failure of the slope takes place at the junction of soil and
rock layers within the slope. This was further corroborated by the horizontal displacement
cloud, which displayed the maximum horizontal displacement of 3.23 m at the crest of the
slope and confirmed that the slope slip was located at the interface between the soil and
rock layers.

As a result of prolonged exposure to heavy rain, the bearing capacity of the basalt-
weathered soil layer covered by the surface layer of the slope gradually deteriorates,
resulting in slope instability. The zone of plastic deformation is located at the interface
between the soil and rock layers.
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Based on the evaluation of the outcomes of the numerical simulation, it appeared
that the Azhuoluo slope reaches a critical state of instability when the water content
reaches 32.0%.

The basis for determining that the Azhuoluo slope is in a critical instability state was
determined by a sudden change in horizontal displacement at a point on the top of the
slope or by the formation of a plastic penetration zone on the slope.

At this stage, the soil exhibited a cohesive strength of 31.0 kPa and an internal friction
angle of 30.9◦. Using these values, the discount factors for cohesion Fc and friction angle Fϕ

were calculated as 1.079 and 1.137, respectively. Substituting these factors into equation 10,
we determined the synthesized safety factor of the slope to be 1.114, as shown in Figure 15.
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As shown in Figure 15, as the value of horizontal displacement at the slope’s summit
was determined for a certain moment in the numerical simulation, the reduction coefficient
for the friction angle was greater than that for cohesion, and the comprehensive reduction
coefficient was between the two. This indicates that as the water content ω increases, the
rate of decay for the internal friction angle is faster than that of cohesion. It was evident
that the cohesion c and the friction angle ϕ of the residual soil layer, which is formed by
local basalt weathering, exhibited unsynchronized decay as the water content increased.
Consequently, the traditional method of simultaneous decay of c and ϕ values in the FE
method is unrealistic, and this new method of double-strength unsynchronized decay
based on water content change, presented in this paper, is more practical and better suited
for resolving the above-mentioned engineering problems.

5. Conclusions

(1) Based on a discussion of existing slope stability analysis methods, this paper pro-
poses a novel numerical method for the asynchronous discounting of double strength
parameters based on the variation of water content. Using the secondary development
module provided in the FE program ABAQUS, the USDFLD user-defined material sub-
routine was written to enable numerical calculation of the non-simultaneous reduction of
cohesion and internal friction angle. This approach provided a more realistic representa-
tion of the soil strength reduction process. The validity of the theoretical and numerical
methodologies presented in this paper was confirmed through comparisons with the limit
equilibrium method and alternative double-strength reduction methods.

(2) The stability of the Azhuoluo slope located in Shuicheng county, Guizhou Province,
China, was evaluated using a numerical simulation in the context of the mega landslide
that occurred in the area. The results showed that the slope is a soil–rock mixture, with a
residual soil layer formed from the weathering of basalt on top of a hard basalt layer, and
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the soil–rock interface is well-defined. Upon analyzing the numerical simulation results, it
was discovered that the Azhuoluo slope experiences a state of critical instability upon an
increase in soil water content to 32%. The slope’s synthesized safety factor was determined
to be 1.114. The numerical results suggest that the slope’s potential slip surface occurred
along the soil–rock interface, leading to the formation of a high-speed debris flow landslide.

(3) With rising water content, the residual soil layer formed by basalt weathering
displays asynchronous decay in its internal friction angle and cohesion, with a faster rate
of decline in the internal friction angle compared to cohesion.
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