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Abstract: Leakage detection is an important task to ensure the operational safety of water distribution
networks. Leakage characteristic extraction based on high-frequency data has been widely used
for leakage detection in experimental networks. However, the accuracy of single-feature-based
methods is limited by the interference of background pressure fluctuations in networks. In addition,
the setting of leakage diagnosis thresholds has been insufficiently studied, but influences leakage
detection performance greatly. Hence, a new method of leakage detection is proposed based on
multi-feature extraction. The multi-features of leakage are composed of instantaneous characteristics
(ICs) and trend characteristics (TCs), which constitute comprehensive leakage information. The
levels of the instantaneous and trend pressure drops in background pressure fluctuations in network
environments are quantified for the setting of leakage diagnosis thresholds. In addition, ICs and
TCs are used for leakage degree prediction. The proposed method was applied to an experimental
network. Compared with the single-feature-based method and the cumulative sum (CUSUM) method,
the proposed method achieved increases of 6.01% and 13.66% in F-Scores, respectively, and showed
better adaptability to background pressure fluctuations in complex network environments.

Keywords: leakage detection; water distribution network; multi-feature extraction; high-frequency
pressure data; background pressure fluctuation

1. Introduction

Water, especially fresh water, is a scarce resource for human existence and develop-
ment. However, for various reasons, such as pipeline aging, inappropriate design and
operation, and lack of maintenance, pipelines in water distribution networks (WDNs) often
encounter leakage, blockage, corrosion, and other failures, resulting in a large amount
of water loss [1,2]. It has been estimated that the volume of non-revenue water (NRW)
is 126 billion m3 per year, which causes a financial cost of USD 39 billion per year [3].
Leakage is one of the most common and harmful failures, as it causes huge water waste
and poses big challenges to the daily operations and maintenance of systems. The World
Bank estimated that the annual leakage volume in urban water distribution networks was
close to 50 billion m3 worldwide, which accounted for more than 15% of the total annual
water supply volume [4]. Leakage events also cause socioeconomic losses due to disruption
to production processes, damage to property, and increased energy costs for pumping and
supplying water [2,5]. In addition, leakage may lead to the intrusion of pollutants into
the pipeline, resulting in water-quality deterioration [6]. Therefore, leakage detection is
of great significance for saving water resources, reducing economic loss, and ensuring the
operational safety of WDNs.

Leakage detection methods based on high-frequency data analysis have been widely
studied because of their potential for complete preservation and the rapid extraction of
leakage information [2]. At present, leakage detection methods based on high-frequency
data can be divided into active leakage detection methods and passive leakage detection
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methods [7–10]. Active leakage detection methods utilize actively generated transient
flow excitation signals to detect existing leaks in a pipeline [11,12]. After the generation
and measurement of transient waves, leakage events can be detected based on transient
reflection, transient damping, transient frequency response, inverse transient analysis,
or signal processing [1,2]. Further, advanced data analysis methods, such as forward–
backward transient analysis and the Dempster–Shafer evidence framework, have also been
proved to achieve good performance in leakage detection [12,13].

Passive leakage detection methods use real-time monitoring data to capture transient
flow signals which are generated by new leakages in networks [14,15]. Compared with
active leakage detection methods, passive leakage detection methods do not need excitation
signal generation, and thus have broader application prospects for actual complex networks.
When a leakage event occurs in a WDN, it generates a negative pressure wave in the
network, which is shown as a singularity in a high-frequency signal, whether it is a
pressure signal or an acoustic signal [16]. Therefore, different methods can be used to
extract the singularity in a high-frequency signal as the leakage characteristic. Due to the
characteristics of multi-scale analysis in both the time and frequency domains, the wavelet
transform (WT) is very suitable for singularity identification and has been widely applied
for leakage detection [17,18]. The wavelet transform coefficients obtained by the continuous
wavelet transform (CWT) and the detail coefficients obtained by the discrete wavelet
transform (DWT) could both be used as leakage characteristics for leakage detection [19–21].
On this basis, methods of leakage characteristic extraction were optimized to increase
leakage information contained in leakage characteristics. The optimal selection of the
mother wavelet could significantly improve the quality of leakage characteristics [22,23].
In addition, the improvement of the wavelet transform also proved to be beneficial for
the extraction of leakage characteristics [24,25]. The above methods can effectively detect
a singularity in a signal, but sometimes it is hard to distinguish whether it is caused by
leakage or background noise.

Statistics-based methods are another set of methods for leakage detection because of
their sensitivity to the trend pressure drops in networks. The cumulative sum (CUSUM)
method was successfully used to diagnose abrupt pressure changes and detect leakage
events [26]. The improved method based on cumulative integral, floor function, and curva-
ture achieved the detection of small leakage events and a reduction in false alarm rates [27].
Moreover, water balance analysis and the theory of DMA based on flow monitoring and
valve operations have also been applied to leakage detection and show wide practical
application prospects [5]. These methods can avoid noise interference but may also readily
misdetect background pressure fluctuations caused by variations in water consumption as
leakage events. In addition to the optimization of leakage characteristics, the emergence
of machine learning and deep learning models has also provided new methods for the
diagnosis of leakage characteristics. Different leakage characteristics and classification
models have been used to obtain high leakage detection accuracies [28–31]. These models
can adaptively achieve leakage diagnosis based on training data sets, thus avoiding the
difficulty of threshold setting. Nevertheless, the interpretability of machine learning models
needs to be improved, and these models can only adapt to different network environments
by updating the training data sets, which limits their further practical applications.

The above methods mainly focus on a single leakage characteristic based on the singu-
larity of a negative pressure wave or statistical fluctuations. However, when a leakage event
occurs in a WDN, the characteristics of a negative pressure wave and statistic fluctuations
are contained in the high-frequency data, which means that leakage information extracted
by single-feature-based methods is incomplete and limits leakage detection accuracy under
the interference of noise and variations in water consumption [15]. To improve leakage
detection performance, it is necessary to extract multiple characteristics and obtain com-
prehensive leakage information. In addition, it is important to set appropriate thresholds,
as these determine the performance of leakage diagnosis. However, this is difficult under
circumstances of background pressure fluctuations in WDNs [32]. Although there are sev-
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eral articles describing the setting of thresholds [19,33,34], quantitative studies of the levels
of background pressure fluctuations in WDNs are lacking, and the analysis of thresholds
is often ignored, which limits the adaptability of methods to actual WDNs. Hence, the
levels of background pressure fluctuations in WDNs, which could provide references for
threshold setting in leakage diagnosis, should be evaluated.

Therefore, a leakage detection method based on multi-feature extraction is proposed
in this paper. The instantaneous characteristics and the trend characteristics of leakage
events were extracted from high-frequency pressure data for a WDN which could provide
comprehensive leakage information and enable the interference of noise and variations
in water consumption to be overcome. In addition, the setting of thresholds for leakage
diagnosis was analyzed based on the quantification of background pressure fluctuations in
the network environment, which could guide the reasonable setting of thresholds. Then,
the optimal thresholds were determined to diagnose leakage events. Finally, the leakage
degrees of the detected leakage events were predicted based on leakage characteristics.
The proposed method was verified on an experimental network and also compared with
the single-feature-based method and the CUSUM method and showed the best leakage
detection performance.

2. Methodology
2.1. Overview of the Proposed Method

The framework of the leakage detection method based on multi-feature extraction
proposed in this paper is shown in Figure 1; it mainly consists of four parts:

(1) Data Preprocessing

The original high-frequency pressure time series s00 was processed by the Butterworth
band-stop filter for the removal of measurement noise. The filtered time series s0 was
obtained from time series s00, which was ready for the extraction of leakage characteristics.
The multi-features of leakage are composed of instantaneous characteristics (ICs) and trend
characteristics (TCs). IC refers to an instantaneous drop and the instantaneous increase in
pressure caused by the negative pressure wave generated by a leakage [10]. TC means the
increased flow caused by a leakage event which leads to a certain degree of trend pressure
drop in a network.

(2) Instantaneous Characteristic Diagnosis (IC Diagnosis)

The continuous wavelet transform (CWT) was performed on time series s0 to extract
the ICs and obtain the IC time series s1. Then, an appropriate threshold for ICs (thric) was
analyzed and set according to the instantaneous pressure drop levels of the background
pressure fluctuations in the network environment. When there was a maximum point
p in time series s1 whose IC value exceeded thric, a probable leakage event at point p
was diagnosed.

(3) Trend Characteristic Diagnosis (TC Diagnosis)

For the point p with a probable leakage event, the trend time series s2,p was obtained
with a smoothing process from the time series s0. CWT was performed on time series s2,p
to extract the TCs and obtain the TC time series s3,p. An appropriate threshold for TCs
(thrtc) was analyzed and set according to the trend pressure drop levels of the background
pressure fluctuations in the network environment. When the maximum in the time series
s3,p exceeded thrtc, it was diagnosed that a leakage event had occurred at point p, and the
leakage alarm was triggered for further analysis.

(4) Leakage Degree Prediction

ICs and TCs of leakage events are both related to leakage degrees. Pearson’s correlation
coefficient (PCC) was used to evaluate the correlation between leakage flow and two leakage
characteristics and select a suitable leakage characteristic as the indicator for leakage degree
prediction. Then, the relationship between the selected leakage characteristic and leakage
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flow was determined through linear fitting. Leakage flow of newly detected leakage events
could be predicted with leakage characteristic values. Based on leakage flow classification,
leakage degree was predicted as severe leakage or small leakage.
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2.2. Data Preprocessing

The raw data collected by a high-frequency pressure sensor in a network often contains
plenty of noise due to electromagnetic interference, the opening and closing of valves, the
vibration of the devices, and other factors [35], resulting in leakage signals being hidden
and difficult to identify. Therefore, noise filtering is necessary for leakage signal analysis.
Considering that Butterworth filters are maximally flat in their pass-bands, they are suitable
for smoothing movement data [35,36]. Therefore, the original high-frequency pressure time
series s00 was filtered by the Butterworth band-stop filter in this paper. The Butterworth
band-stop filter uses the Fourier transform to convert the signal from the time domain to the
frequency domain. According to the frequency characteristics of the signal, the noise signal
is removed, and the effective signal is retained. The transfer function of the Butterworth
band-stop filter is given in Equation (1):

H( f ) =


1√

1+( f / fc)
2n

, 0 ≤ f < π

1√
1+((2π− f )/(2π− fc))

2n
, π ≤ f < 2π

(1)

where n is the order of the filter, f is the frequency, and fc is the cut-off frequency. The
pressure fluctuation of the high-frequency signal becomes clear after filtering, as shown by
time series s0 in Figure 1.

2.3. IC Diagnosis
2.3.1. IC Extraction

CWT was performed on time series s0 to obtain the IC time series s1. The formula of
CWT is shown in Equation (2):

W f (α, τ) = 〈 f , Ψα,τ〉 =
∫ +∞

−∞
Ψα,τ(t) f (t)dt =

1√
α

∫
R

f (t)Ψ
(

t− τ

α

)
dt (2)

where Wf (α,τ) is called the wavelet transform coefficient, which is the inner product of the
mother wavelet and the time series in scale α and displacement τ, reflecting the similarity
between the time series and the mother wavelet at the scale α and displacement τ. Since
the wavelet has the characteristic of rapid decay, it reflects the properties of the time series
near the displacement τ.

For the leakage signal in the high-frequency pressure time series, the shape of the
instantaneous pressure drop caused by the negative pressure wave is similar to the Haar
wavelet, and the discontinuity characteristic of the Haar wavelet is excellent for the de-
tection of breakpoints in the signal [29,33]. Therefore, the Haar wavelet was chosen as
the mother wavelet when CWT was performed on time series s0. The wavelet transform
coefficient of each point obtained by CWT means the IC value at the point and reflects the
instantaneous pressure drop amplitude at the point in time series s0.

2.3.2. IC Threshold Analysis

The wavelet transform coefficient in time series s1 was calculated based on fluctuations
in pressure over a very short period. On the same time scale, both leakage events and the
background pressure fluctuations caused by noise in the network may produce a similar
shape of instantaneous pressure drop. Therefore, it is necessary to set an appropriate
threshold for ICs to distinguish background pressure fluctuations and leakage events
effectively. The leakage-free time series data set was used to evaluate the instantaneous
pressure drop levels of the background pressure fluctuations and determine the threshold
for ICs. The threshold for ICs was calculated as follows:

thric = meanic + αic × σic (3)
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meanic =
1
N

N

∑
i=1

max(s1,i) (4)

σic =

√√√√ 1
N − 1

N

∑
i=1

(max(s1,i)−meanic)
2 (5)

where thric is the threshold for ICs, meanic and σic are the mean and the standard deviation
of the leakage-free time series data set, and αic is the threshold coefficient for ICs, which is
used to adjust the strictness of the diagnosis of ICs. The IC value of the maximum point
p in time series s1 was compared with thric. When the IC value of point p exceeded thric,
this meant that the instantaneous pressure drop at point p was most likely not caused by
the background pressure fluctuations in the network. Hence, it was diagnosed that there
was a probable leakage event at point p.

2.4. TC Diagnosis
2.4.1. TC Extraction

For each point p whose IC value exceeded thric in Section 2.3, the pressure data of the
length l before and after the point p in time series s0 was taken to obtain the time series
s0,p,before and the time series s0,p,after, respectively, as shown in Equations (6) and (7):

s0,p,be f ore = s0(p− l : p− 1) (6)

s0,p,a f ter = s0(p + 1 : p + l) (7)

After the smoothing process, s2,p,before and s2,p,after were obtained from s0,p,before and
s0,p,after and concatenated into the trend time series s2,p, which reflected the average pres-
sure level before and after point p. The sliding time window theory was used to calculate
the average pressure value of each point in the smoothing process [31]. The formulas of the
smoothing process are as follows:

s2,p,be f ore(k) =
1

2cl − 1 ∑ s0,p,be f ore(k− cl + 1 : k + cl − 1) (8)

s2,p,a f ter(k) =
1

2cl − 1 ∑ s0,p,a f ter(k− cl + 1 : k + cl − 1) (9)

where cl is the window length, which is used to adjust the smoothness of the original signal.
Time series s2,p obtained by the smoothing process can more clearly show the trend change
characteristics of pressure. The TC time series s3,p was obtained by performing CWT on
s2,p. The Haar wavelet was also chosen as the mother wavelet when performing CWT on
time series s2,p. The maximum in the time series s3,p means the TC value at point p and
reflects the trend pressure drop amplitude at point p in time series s0.

2.4.2. TC Threshold Analysis

Both leakage events and variations in water consumption may lead to trend pressure
drops. Therefore, as in Section 2.3, the leakage-free time series data set was used to evaluate
the trend pressure drop levels of the background pressure fluctuations, and the appropriate
threshold for TCs was set to distinguish background pressure fluctuations and leakage
events. The calculation of the threshold for TCs was as follows:

thrtc = meantc + αtc × σtc (10)

meantc =
1
N

N

∑
i=1

max(s3,i) (11)
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σtc =

√√√√ 1
N − 1

N

∑
i=1

(max(s3,i)−meantc)
2 (12)

where thrtc is the threshold for TCs, meantc and σtc are the mean and the standard deviation
of the leakage-free time series data set, and αtc is the threshold coefficient for TCs, which is
used to adjust the strictness of the diagnosis of TCs. When the maximum in the time series
s3,p exceeds thrtc, this means that the trend pressure drop amplitude at point p exceeds the
normal range of the background pressure fluctuations in the network. Then, it is diagnosed
that a new leakage event occurs at point p.

To sum up, the multi-features of leakage were extracted first via the proposed method,
which includes ICs and TCs. Then, two thresholds of thric and thrtc were set based on
leakage-free time series to comprehensively diagnose whether there existed leakage events
in the network. In this paper, IC and TC were diagnosed in series rather than in parallel,
the purpose of this being to reduce the computational cost of the process of TC extraction.

2.5. Leakage Degree Prediction

The two leakage characteristics of IC and TC extracted in Sections 2.3 and 2.4, respec-
tively, are related to leakage degree. In this paper, leakage flow was used to measure leakage
degree. For different network environments, Pearson’s correlation coefficient (PCC) was
used to reflect the linear correlation between the two leakage characteristics and leakage
flow and select a suitable leakage characteristic as the indicator to predict leakage degree.
The calculation of PCC is shown in Equation (13):

r =
∑n

i=1
(
Xi − X

)(
Yi −Y

)√
∑n

i=1
(
Xi − X

)2
√

∑n
i=1
(
Yi −Y

)2
(13)

where X and Y are the two variables. PCC is in the range of −1 to 1. When PCC exceeds
0.8, it can be considered that X and Y are highly positively correlated. Then, the selected
leakage characteristic and leakage flow were linearly fitted for leakage degree prediction.
For a newly diagnosed leakage event, leakage flow is predicted with the extracted leakage
characteristic value. Based on the predicted leakage flow, the detected leakage event is
classified as severe leakage or small leakage and the predicted leakage degree is obtained,
which provides a reference for the leakage repair response level of the water company.

3. Results and Discussion
3.1. Experimental Network Setup

In this paper, a small experimental network with two loops was built to collect ex-
perimental data, as shown in Figure 2. The experimental network covers an area of about
100 m2, and the total length of the pipeline is 52 m. The network includes a tank, a water
pump, 3 pipes of 100 mm diameter, 11 pipes of 50 mm diameter, and 1 pipe of 25 mm
diameter. There are three monitoring points in the network, and each monitoring point is
equipped with a high-frequency pressure sensor and an ultrasonic flowmeter. The sampling
frequency of the pressure sensor is 10,000 Hz, and the sampling frequency of the flowmeter
is 1 Hz. There are seven leakage simulators in the network to simulate leakage events. The
opening status and opening range of each leakage simulator are controlled by a valve. The
diameter of the leakage simulator A6 is 32 mm, and the diameters of the other leakage
simulators are 15 mm. The water in the tank flows into the network after being pressurized
by the pump and finally flows back into the tank through valves X1 and X2.

In this paper, several sets of leakage experiments under different working conditions
were designed and carried out. The overall pressure level of the network was in the
range of 5–30 m, which could be adjusted by changing the operating parameters of the
pump. The total flow level of the network was in the range of 2.5–23 L/s, which could
be controlled by valves X1 and X2. The flow rate of leakage events was in the range of
0.04–9.5 L/s, which was controlled by changing the opening range of the valve at each
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leakage simulator. In addition, variations in water consumption in the actual network were
imitated by slowly and randomly adjusting valves at the leakage simulators. Finally, time
series without and with the imitation of variations in water consumption were collected
to form the steady-state time series data set and the water-consumption time series data
set, respectively.
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Each time series data set included high-frequency pressure data for multiple leakage
events and leakage-free events. Each event corresponded to a group of time series, including
three high-frequency pressure time series collected at three monitoring points in the same
period. The length of each time series was 4 s, and the sampling frequency was 10,000 Hz.
The steady-state time series data set contained 352 groups of leakage time series and
2816 groups of leakage-free time series, while the water-consumption time series data set
contained 78 groups of leakage time series and 624 groups of leakage-free time series.

3.2. Performance Indicators and Method Parameters
3.2.1. Performance Indicators

For each event in the two time series data sets, the label was unique. The label of
a leakage event was “L”, and the label of a leakage-free event was “NL”. When it was
detected that a leakage event occurred in at least one time series in the group of time series
corresponding to the same event, the output of the event was “L”. Otherwise, the output of
the event was “NL”. Since the labels for each group of time series were only “L” or “NL”,
the leakage detection problem could be regarded as a binary classification problem. Thus,
a confusion matrix (see Table 1) can be used to describe the performance of the proposed
leakage detection method [37].

Table 1. Confusion matrix.

Label
Output

L NL

L TP FN
NL FP TN

Notes: TP = True Positive; TN = True Negative; FN = False Negative; FP = False Positive.
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The confusion matrix can be used to calculate Precision, Recall, F-Score, False Alarm
Rate (FAR), and Missing Alarm Rate (MAR) to evaluate the performance of the method, as
shown in Equations (14) to (18):

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F− Score =

(
1 + β2)× Precision× Recall
(β2 × Precision) + Recall

(16)

FAR =
FP

FP + TN
(17)

MAR =
FN

TP + FN
(18)

Precision measures the reliability of the output of the method. Recall measures the
ability of the method to detect leakage events. F-Score is the harmonic average of Precision
and Recall, and β is used to adjust the weights of Precision and Recall in different tasks.
When Precision is more important, β can take a value greater than 1. Considering that the
water company hoped to detect as many leakage events as possible in the actual leakage
detection work, β was taken as 2 in this paper to increase the weight of Recall. Precision,
Recall, and F-Score were used to select the appropriate αic and αtc, while FAR and MAR
were used to describe the leakage detection results for the time series data sets.

3.2.2. Parameters for Multi-Feature Extraction

An appropriate scale α in Equation (2) is set to represent IC information in the time
dimension. α should be close to the total duration of the ICs of leakage events. The
calculation of the total duration of an IC is defined in Figure 3. The instantaneous pressure
drop duration, the instantaneous pressure increase duration, and the total duration of IC
of leakages in 1065 time series in the steady-state time series data set were determined,
as shown in Figure 4. The results show that the instantaneous pressure drop duration of
75.49% leakages was in the range of 500–1500, that the instantaneous pressure increase
duration of 71.55% leakage was not more than 1000, and that the total duration of IC of
81.88% leakages was not more than 2500. Therefore, α was taken as 2500 in the extraction
of the IC.
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l in Equations (6) and (7) was taken as 10,000, and cl in Equation (8) was taken as 2000,
which indicated that the pressure value of each time point in the time series s2,p reflected
the average pressure level within 0.4 s around the point p and avoided the influence of the
noise. When CWT was performed on time series s2,p, the change in α did not significantly
affect the detection of TCs due to the elimination of ICs in the time series s2,p. Considering
that the pressure fluctuations caused by variations in water consumption might have an
impact on the calculation of the average pressure drop levels caused by leakage events, α
was taken as 1000 in the extraction of TCs.

3.3. Results for Two Time Series Data Sets
3.3.1. Leakage Detection Results

Figures 5 and 6 show the leakage detection performance of the method on the steady-
state time series data set and the water-consumption time series data set under different αic
and αtc, respectively. With increase in αic and αtc, thric and thrtc increase correspondingly,
the diagnostic criteria for ICs and TCs become stricter, and more background pressure
fluctuations and small-degree leakage events are not detected as leakage events, resulting
in an increase in Precision and a decrease in Recall. Hence, F-Scores were used to balance
Precision and Recall and select the appropriate thresholds. Finally, αic and αtc in the steady-
state time series data set took 0 and 3 to obtain the maximum F-Score of 93.30%, and αic
and αtc in the water-consumption time series data set took 1 and 2 to obtain the maximum
F-Score of 84.75%. Compared with the steady-state time series data set, the increase in αic
and αtc in the water-consumption time series data set had a more significant impact on
Recall but roughly the same impact on Precision, which means that variations in water
consumption create huge challenges in the diagnosis of small leakage events.

The leakage detection results for the two time series data sets are shown in Table 2.
On the one hand, the proposed method successfully extracted multi-features of leakage
information and achieved accuracy and reliability in leakage detection. On the other hand,
the existence of variations in water consumption inevitably affected the performance of
leakage detection, causing an increase of 2.34% in FAR and an increase of 6.85% in MAR.
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Table 2. Leakage detection results for two time series data sets.

Time Series Data Set Name FAR MAR

Steady-State Time Series Data Set 2.63% 3.41%
Water-Consumption Time Series Data Set 4.97% 10.26%

3.3.2. Leakage Degree Prediction Results

Figures 7 and 8 present the relationships between leakage flow and the two leakage
characteristics successfully detected in two time series data sets. For the two time series
data sets, PCCs between leakage flow and the two characteristics at three monitoring points
were all higher than 0.8, which indicates that the ICs and TCs of leakage events are both
highly positively correlated with leakage flow. In the steady-state time series data set, the
average PCC between leakage flow and IC at three monitoring points was 0.8887, and the
average PCC between leakage flow and TC at three monitoring points was 0.8566. Hence,
IC was selected as the indicator for predicting the leakage flow of leakage events in the
steady-state time series data set. Different from the steady-state time series data set, the
average PCC between leakage flow and ICs at three monitoring points was 0.9194 for the
water-consumption time series data set, and the average PCC between leakage flow and
TCs at three monitoring points was 0.9342. Hence, TC was selected as the indicator for
predicting the leakage flow of leakage events in the water-consumption time series data set.

In order to further verify the performance of leakage degree prediction, according to
the distribution of leakage flow in two time series data sets in this paper, leakage events
were divided into severe leakages (more than 1 L/s) and small leakages (no more than
1 L/s), which kept the number of time series with severe leakages roughly balanced with
the number of time series with small leakages. For leakage detection in real WDNs, water
companies can set different classification methods for leakage events according to their
own needs. The confusion matrix in Figure 9a represents the results for leakage degree
prediction for the steady-state time series data set. The results show that the accuracy of
leakage degree prediction reached 78.53% for all the successfully detected leakage events.
The confusion matrix in Figure 9b shows that the accuracy of leakage degree prediction
reached 92.11% for all the successfully detected leakage events in the water-consumption
time series data set. The results for leakage degree prediction for the two time series data
sets indicate that the two leakage characteristics both contain information on leakage degree
and can be used to predict leakage flow. Meanwhile, the existence of variations in water
consumption in the network does not interfere with the prediction accuracy for leakage flow.
On the contrary, the accuracy of leakage degree prediction for the steady-state time series
data set was 13.58% lower than that for the water-consumption time series data set. This
result was mainly due to the fact that the number of time series with leakage flow around
1 L/s in the steady-state time series data set was larger than that in the water-consumption
time series data set, which can be seen in Figures 7 and 8. The proposed method achieved a
high accuracy of leakage degree prediction on both two time series data sets, and thus has
good adaptability to different network environments. In actual leakage detection, the water
company needs to strike a balance between reducing the waste of water resources and
reducing maintenance costs, as it cannot completely avoid false-alarm events. Therefore,
leakage degree predicted by the proposed method can accurately reflect the severity of a
leakage event and provide a reference for the water company to take a proper response
level of leakage repair.



Water 2023, 15, 1187 13 of 19

Water 2023, 15, x FOR PEER REVIEW 14 of 21 
 

 

for predicting the leakage flow of leakage events in the water-consumption time series 
data set. 

 
Figure 7. Relationships between characteristic values of leakage events and leakage flow in the 
steady-state time series data set. 

 
Figure 8. Relationships between characteristic values of leakage events and leakage flow in the wa-
ter-consumption time series data set. 

In order to further verify the performance of leakage degree prediction, according to 
the distribution of leakage flow in two time series data sets in this paper, leakage events 
were divided into severe leakages (more than 1 L/s) and small leakages (no more than 1 
L/s), which kept the number of time series with severe leakages roughly balanced with 
the number of time series with small leakages. For leakage detection in real WDNs, water 

Figure 7. Relationships between characteristic values of leakage events and leakage flow in the
steady-state time series data set.

Water 2023, 15, x FOR PEER REVIEW 14 of 21 
 

 

for predicting the leakage flow of leakage events in the water-consumption time series 
data set. 

 
Figure 7. Relationships between characteristic values of leakage events and leakage flow in the 
steady-state time series data set. 

 
Figure 8. Relationships between characteristic values of leakage events and leakage flow in the wa-
ter-consumption time series data set. 

In order to further verify the performance of leakage degree prediction, according to 
the distribution of leakage flow in two time series data sets in this paper, leakage events 
were divided into severe leakages (more than 1 L/s) and small leakages (no more than 1 
L/s), which kept the number of time series with severe leakages roughly balanced with 
the number of time series with small leakages. For leakage detection in real WDNs, water 

Figure 8. Relationships between characteristic values of leakage events and leakage flow in the
water-consumption time series data set.



Water 2023, 15, 1187 14 of 19

Water 2023, 15, x FOR PEER REVIEW 15 of 21 
 

 

companies can set different classification methods for leakage events according to their 
own needs. The confusion matrix in Figure 9a represents the results for leakage degree 
prediction for the steady-state time series data set. The results show that the accuracy of 
leakage degree prediction reached 78.53% for all the successfully detected leakage events. 
The confusion matrix in Figure 9b shows that the accuracy of leakage degree prediction 
reached 92.11% for all the successfully detected leakage events in the water-consumption 
time series data set. The results for leakage degree prediction for the two time series data 
sets indicate that the two leakage characteristics both contain information on leakage de-
gree and can be used to predict leakage flow. Meanwhile, the existence of variations in 
water consumption in the network does not interfere with the prediction accuracy for 
leakage flow. On the contrary, the accuracy of leakage degree prediction for the steady-
state time series data set was 13.58% lower than that for the water-consumption time series 
data set. This result was mainly due to the fact that the number of time series with leakage 
flow around 1 L/s in the steady-state time series data set was larger than that in the water-
consumption time series data set, which can be seen in Figures 7 and 8. The proposed 
method achieved a high accuracy of leakage degree prediction on both two time series 
data sets, and thus has good adaptability to different network environments. In actual 
leakage detection, the water company needs to strike a balance between reducing the 
waste of water resources and reducing maintenance costs, as it cannot completely avoid 
false-alarm events. Therefore, leakage degree predicted by the proposed method can ac-
curately reflect the severity of a leakage event and provide a reference for the water com-
pany to take a proper response level of leakage repair. 

 
Figure 9. Leakage degree prediction results: (a) the steady-state time series data set; (b) the water-
consumption time series data set. 

3.4. Discussion 
3.4.1. Adaptability Analysis of Threshold Setting 

To explore the influence of variations in water consumption on leakage detection, the 
distributions of two leakage characteristics of leakage-free time series were calculated and 
these were used to reflect the instantaneous and trend pressure drop levels of background 
pressure fluctuations in two different network environments. The results are shown in 
Figure 10, in which the red stars and the middle lines in the boxes represent the means 
and the medians of the time series data sets, respectively. 

Figure 9. Leakage degree prediction results: (a) the steady-state time series data set; (b) the water-
consumption time series data set.

3.4. Discussion
3.4.1. Adaptability Analysis of Threshold Setting

To explore the influence of variations in water consumption on leakage detection, the
distributions of two leakage characteristics of leakage-free time series were calculated and
these were used to reflect the instantaneous and trend pressure drop levels of background
pressure fluctuations in two different network environments. The results are shown in
Figure 10, in which the red stars and the middle lines in the boxes represent the means and
the medians of the time series data sets, respectively.
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The effectiveness of the leakage detection method is based on the significant distri-
bution differences in pressure drop levels between the leakage time series data sets and
the leakage-free time series data sets. Therefore, the variations in the pressure drop levels
of background pressure fluctuations will affect leakage detection performance. Here, the
average pressure drop level is defined as the average of the median and the mean of a time
series data set. As shown in Figure 10, with the addition of variations in water consumption,
there was a small rise of 2.37% in the instantaneous average pressure drop level of the
leakage-free time series, while the trend average pressure drop level of the leakage-free
time series rose significantly by 22.92%.

When the average drop level of the leakage-free time series increases, this means
a higher coincidence degree of the distribution of leakage characteristics between the
leakage time series and the leakage-free time series, such that some small leakage events
are undetectable and some background pressure fluctuations are misreported, leading to
reductions in leakage detection performance. Therefore, it can be inferred that the existence
of variations in water consumption has a slight impact on IC diagnosis but a significant
impact on TC diagnosis.

The threshold coefficient represents the strictness of leakage diagnosis. The optimal
threshold coefficients of the two time series data sets mentioned in Section 3.3.1 are shown
in Table 3. In the steady-state time series data set, αic took the value of 0 and αtc took the
value of 3, which meant that the coincidence degree of ICs between the distributions of the
leakage time series and the leakage-free time series was much higher than that of TCs in
the network environment without variations in water consumption. Hence, αic took the
laxest value to decrease MAR and αtc took the strictest value to decrease FAR. With the
addition of variations in water consumption, there was a small increase in the coincidence
degree of ICs but a significant increase in the coincidence degree of TCs. Therefore, αtc
should be reduced to avoid a steep increase in MAR. At this time, αic should be increased
to improve the overall performance of leakage detection. As a result, αic took 1 and αtc
took 2 in the water-consumption time series data set.

Table 3. Threshold coefficients in two time series data sets.

Time Series Data Set Name αic αtc

Steady-State Time Series Data Set 0 3
Water-Consumption Time Series Data Set 1 2

In the above discussion, the adaptability of threshold setting to variations in water
consumption has been analyzed, providing an applicable reference for reasonable thresh-
old setting for leakage diagnosis in complex network environments. In actual WDNs,
trend pressure drop levels more accurately reflect the characteristics of variations in water
consumption than instantaneous pressure drop levels and thus can be used to adjust αic
and αtc appropriately and improve adaptability to different network environments. For
instance, when there are slight variations in water consumption in a network during the
night, a low αic and a high αtc, is suggested, e.g., 0 and 3, and when variations in water
consumption become greater during the daytime, a higher αic and a lower αtc are needed.

3.4.2. Comparison of Three Methods for Leakage Detection

To verify the adaptability of the proposed method to variations in water consumption,
the single-feature method based on IC and the CUSUM method based on statistics were ap-
plied to the two time series data sets and compared with the proposed multi-feature-based
method. As in Section 2.3, the same method of threshold determination was used in the
two methods to diagnose leakage events. Figure 11 shows the influence of the threshold
coefficient on leakage detection performance based on different methods. As the threshold
coefficient increased, Precisions all increased significantly and Recalls decreased in varying
degrees. According to the F-Score results, with the single-feature-based method, the thresh-
old coefficients in the steady-state time series data set and the water-consumption time
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series data set were both taken as 3. With the CUSUM method, the threshold coefficients in
the two time series data sets were taken as 3 and 1, respectively.
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The final leakage detection performance results based on three different methods are
shown in Figure 12. The single-feature-based method achieved a lower leakage detection
performance on the steady-state time series data set but a better leakage detection perfor-
mance on the water-consumption time series data set than the CUSUM method. It is shown
that different characteristics are suitable for different network environments. ICs show
better adaptability in network environments with obvious variations in water consumption,
and the statistical characteristics extracted via the CUSUM method show the opposite. The
proposed multi-feature-based method achieved better F-Scores for leakage detection on
both of the time series data sets compared to the other two methods. Considering that
the steady-state time series data set simulates a network environment during the night
and that the water-consumption time series data set simulates a network environment in
the daytime, the results for leakage detection show that the proposed multi-feature-based
method can achieve better performance in different network environments and thus have
more practical value in actual WDNs than the other two methods.
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4. Conclusions

A leakage detection method based on multi-feature extraction from high-frequency
pressure data has been proposed in this paper. The instantaneous and trend characteristics
of leakage signals were extracted and analyzed for the detection of leakage events. The
proposed method was verified in an experimental network with the interference of water
consumption fluctuations.

The proposed method provides a new idea for leakage detection based on the ex-
traction of comprehensive leakage information with two different kinds of characteristics.
The data distributions of leakage time series data sets and leakage-free time series data
sets were analyzed, the levels of pressure fluctuations in the network environments were
quantified, and reasonable thresholds for leakage diagnosis were set in the paper. The
results show that the proposed method has better adaptability to the pressure fluctuations
in networks with different working conditions and that it achieves better accuracy and
reliability in leakage detection in comparison to the single-feature-based method and the
CUSUM method. The levels of pressure fluctuations were quantified and analyzed, pro-
viding an applicable reference for reasonable threshold settings of leakage diagnosis in
a complex network environment. In addition, the prediction of leakage degree can be
realized based on correlation analysis of the leakage characteristics and the flow rates of
leakage events, which can assist a water company to take the proper response level of
leakage repair.

This study has certain limitations, as it was conducted on an experimental network
setup, where the simulation of variations in water consumption cannot fully reflect the
patterns of water consumption in real WDNs. Therefore, the adaptability of the proposed
method could be improved by further experiments with real WDNs. In future research, a
small section of a real WDN should be considered as the research area and monitored with
high-frequency pressure sensors at different locations. Combined with different working
conditions and characteristics of water consumption, the levels and patterns of background
pressure fluctuations in the research area should be evaluated and analyzed, and the setting
of thresholds should be optimized to enhance the robustness of the proposed method for
real WDNs.
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