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Abstract: Oil-contaminated water is among the most significant environmental challenges from
various industries and manufacturing processes. Oily water poses a severe environmental threat
and is toxic to many forms of life. This study aims to investigate the potential of natural adsorbents,
namely animal bones (ABs) and anise residues (ARs), for removing oil from water using a batch
adsorption process. The effects of adsorbent dosage (0.2–2 g), oil concentration (200–1000 mg/L),
and contact time (30–120 min) on the adsorption process were evaluated. This study is the first to
employ ABs and ARs as adsorbents for oil removal, and their efficacy for this purpose has not been
previously reported. The results indicate that ABs exhibit superior oil removal capacity compared to
ARs. Specifically, ABs removed 45 mg/g of oil from water, while ARs removed only 30 mg/g of oil.
Furthermore, ABs achieved a percentage removal rate of 94%, whereas ARs had a percentage removal
rate of 70%. The adsorbents were characterised using Fourier transform infrared (FTIR) spectrometry,
contact angle measurements before and after adsorption, and thermogravimetric analysis (TGA).
In addition to the experimental analysis, several kinetic and adsorption models were employed to
investigate the adsorption process. The pseudo-first-order and pseudo-second-order models were
used to represent the kinetics of the reaction, while the Langmuir and Freundlich isotherm models
were used to represent the adsorption isotherm. Marquardt’s percent standard deviation (MPSD)
error function was used to confirm the fit of the experimental data with the isotherm model, in
addition to the correlation coefficient R2. The isotherm studies indicated that the experimental data
of the two adsorbents used with the Langmuir isotherm model were consistent with one another.
The kinetics study demonstrated that the adsorption process using the two adsorbents adheres to a
pseudo-second-order kinetics model.

Keywords: remediation; natural adsorbents; oily water; toxicity; isotherm; kinetics

1. Introduction

Oil-contaminated water is currently a significant environmental issue resulting from
various industries and production processes, and it poses a serious threat to the environ-
ment and various life forms due to its toxicity [1,2]. Therefore, it is crucial to treat oily
water and remove oil from water before discharging water into the environment. Different
techniques have been employed for this purpose, including biological processes [3,4], ultra-
filtration and nanofiltration [5], microfiltration [3], adsorption [6–8], de-emulsification [9],
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reverse osmosis [10,11], advanced oxidation processes [12], flocculation, electrocoagula-
tion, chemical coagulation, and electroflotation [13,14]. However, these techniques have
limitations and often involve high capital and operational costs. Among these techniques,
adsorption has emerged as an efficient method for removing oil pollutants from water,
involving the adsorption of oil pollutants on the surface of the adsorbent.

Oil adsorption refers to the process of oil molecules being attracted to the surface of a
sorbent [15]. A variety of physical forces, including Van der Waals forces, hydrophobicity,
hydrogen bonding, polarity and steric interactions, dipole-induced dipole interactions, and
π−π interactions, primarily control adsorption [16]. Adsorption is a frequently used and
effective method for treating oily water due to its low cost and straightforward process
design. The process is driven by the attractive force between the sorbent’s outer surface
and the sorbate, causing the sorbate molecules to aggregate on the surface of the sorbent
without penetrating it [17]. Generally, there are three stages to the adsorption of oil:
dispersion of oil molecules into the surface of the sorbent, trapping of the oil molecules
in the sorbent framework via capillary action, and the aggregation of oil droplets within
the porous and rough structure of the sorbent [16]. Adsorption has several advantages
over other techniques, including simple design and low capital costs. While activated
carbon is commonly used as an effective adsorbent in water and wastewater treatment
for the removal of various pollutants, organic and inorganic, due to its large surface
area per unit mass, it is costly [4]. Therefore, alternative low-cost and efficient materials,
such as agricultural wastes, must be sought. Adsorption using biosorbents derived from
agricultural waste, such as date pits, walnut shells [6], corn stack [7], banana peels [8,18],
eggshells, fish scales [19], palm leaves [20], and waste tea [21], is considered an effective
method for the purification of oily water and wastewaters. This technique is widely used
for the removal of several pollutants, such as taste, odour, and colour, as well as inorganic
and organic materials, such as heavy metals, dyes, and oil.

Benjamin Daniel et al. [22] previously looked at the potential of two different types
of bio-sorbents, namely lasani sawdust and coconut coir, to remove spent motor oil from
the aqueous phase. They found that coconut coir had a greater tendency to remove oil
than lasani sawdust, and they believed that this advantage was a result of the structure of
the sorbent. Onwuka et al. [23] compared the sorption of crude oil from water utilizing
acetylated and unacetylated oil palm empty fruit bunch (OPEFB) and cocoa pod (CP).
Equilibrium studies revealed that CP had a greater sorption capacity than OPEFB, and
acetylation increased the sorbents’ crude sorption capabilities. The present study explores
the potential of animal bones (ABs) and anise residues (ARs) as natural adsorbents for
removing oil pollutants from oily water. The novelty of this research lies in the fact
that these bio-waste materials have not been previously studied for this purpose. This
investigation is significant in providing a sustainable and eco-friendly solution for oily
wastewater treatment but also contributes to the reduction in waste by utilizing these
materials. Various factors, such as the amount of adsorbent, are considered to evaluate the
efficacy of ABs and ARs as adsorbents, oil concentration in water, and contact time. Kinetic
and adsorption isotherm models are employed to assess the performance of the adsorbents
and optimize their efficiency.

2. Materials and Experimental Work
2.1. Materials

In this study, crude oil from the Basrah field in Iraq with an API of 30.5 was utilized,
and the adsorbent materials were animal bones (ABs) and anise residues (ARs). ABs and
ARs were procured from the local markets in Baghdad, Iraq, and Figure 1 presents a visual
representation of the materials used. ABs are composed of bone from the dermal skin layer,
which contains calcium carbonate and hydroxyapatite [24]. Hydroxyapatite, also known
as hydroxylapatite (HA), is present in ABs. The density of ABs has been reported to be
900 kg/m3 in previous research [25].
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Figure 1. Visual representation of the adsorbent materials used: animal bone (AB) and anise residue (AR).

The ABs were subjected to a series of washing procedures to remove surface impurities,
starting with hot water followed by immersion in water for 24 h. Next, they were immersed
in a 15% NaOH solution for 24 h, rinsed with distilled water for 24 h, and dried in the
sun for 2 days to eliminate moisture. Finally, they were oven-dried for 24 h at 100 ◦C and
ground into granules using a mill.

The ARs were found to contain volatile oil primarily composed of trans-anethole,
lipids with high levels of fatty acids such as palmitic and oleic acids, and carbohydrates
and protein in amounts of 4 and 18 mass percent, respectively [26]. The true density of ARs
was reported to be 966.35 kg/m3 [27]. The ARs were washed with tap water and distilled
water, sun-dried for 2 days, oven-dried for 24 h at 100 ◦C to eliminate moisture, and ground
into granules using a mill.

This study employed sodium hydroxide (NaOH) and hydraulic acid (HCl) as analyti-
cal reagents for pH adjustment, while Hexane anhydrous (95% purity) was used to extract
oil from the water after the adsorption process for oil concentration measurement. All
chemicals used in this study were supplied by Sigma-Aldrich, Dorset, UK.

2.2. Method

The experimental procedure employed the batch adsorption process. Specifically,
50 mL of an oil–water solution with a concentration of 400 mg/L was added to several
conical flasks containing a predetermined quantity of adsorbent (ranging from 0.2 to 2 g).
These flasks were shaken for 60 min, after which the oil–water solution was separated from
the mixture using a separating funnel. Hexane solvent was then added to the separated
solution to extract the oil. The concentration of oil in the resulting hexane solution was
determined using a UV-spectrometer at a wavelength of 350 nm. The adsorption capacity
(qe), defined as the amount of adsorbate adsorbed per unit mass of adsorbent, was calcu-
lated using the following equations, which were derived from the material balance on the
adsorption system.

qe =
V
m
(Co − Ce) (1)

where qe the adsorbent capacity at equilibrium mg/g, Co and Ce are the concentration of
oil in the oil–water solution (mg/L) at the initial and at equilibrium, respectively, V is the
volume of oil–water solution (L), and m is the mass of the adsorbents (g).

2.3. Adsorbent Characterisation
2.3.1. FTIR Analysis

Spectrophotometry is among the important techniques in the diagnosis of different
materials and is characterised by the fact that its performance is simple, fast, and cheap. This
technique is used to identify hydrogen bonds, functional groups and chemical bonds [28].
In the present work, the functional groups present in ABs and ARs before and after the
adsorption of oil were investigated by FTIR (BRUKER, Ettlingen, Germany) analysis to
identify changes that may occur in the vibrational frequency of the functional group of the
adsorbents after adsorption of oil. The FTIR spectrum measurement was recorded in the
wavenumber range of 600–4000 cm−1. The spectrum recording method employed was the
attenuated total reflectance (ATR) method with a resolution of 0.085 cm−1.
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2.3.2. TGA Analysis

Thermogravimetric analysis (TGA) is a method used to determine a material’s thermal
stability, moisture content, and volatile components by observing its weight change during
constant heating. This study utilized a Linseis STA PT 1600 instrument for TGA analysis.
Specifically, 12 mg of AR and 14.5 mg of AB were placed in the instrument’s holder, and
Nitrogen gas was used to purge the system at a flow rate of 1 mL/min. The sample was
heated to 900 ◦C at a rate of 5 ◦C/min and then cooled at a rate of 20 ◦C/min. Figure 2
displays the instrument’s pictorial view and its operational principle.
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2.3.3. Contact Time Measurements

This method qualitatively assesses the hydrophilic or hydrophobic nature of an ad-
sorbent surface. The technique involves placing a small water droplet on the surface and
observing its behaviour, which is characterised by the contact angle between the water and
the material surface.

3. Results and Discussion
3.1. FTIR Analysis of Adsorbents

The FTIR spectra of ABs before and after oil adsorption are presented in Figures 3 and 4,
respectively. The spectra reveal that the peaks observed in both spectra are in the same
region, but an increase in peak intensity is observed after adsorption. Table 1 displays the
wavenumber, location, and type of functional groups before and after adsorption.

The FTIR spectrum of AB adsorbents before and after oil adsorption is presented
in Figures 3 and 4, respectively. Table 1 provides information about the wavenumber,
functional group type, and location before and after adsorption. The broad bands observed
in the region of 3200–3500 cm−1 in both spectra indicate the presence of hydroxyl groups
O-H. The presence of a C–H expansion of alkenes is shown by the two peaks in the region
of 2850–3000 cm−1. The peak observed in the range of 1550–1650 cm−1 may be due to
adsorbed water’s bending vibration and aromatic groups’ presence. The peak represents
the N-O asymmetric stretching vibration of nitro compounds spotted in the band in the
range of 1470–1550 cm−1. The C-C stretching vibration of aromatic groups is indicated by
the band in the range of 1400–1500 cm−1. Lastly, the two peaks identified in the region of
1020–1250 cm−1 correspond to the C-N stretching vibration of the aliphatic amines group.
From Figures 3 and 4, the location range of the peaks did not change. An expansion in their
size after adsorption was observed in both spectra. This phenomenon can be attributed to
the physical adsorption process used to remove the oil with AB adsorbent.
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Table 1. FTIR spectrum of AB adsorbents before and after the adsorption process of oil.

Wavenumber cm−1
Wavenumber Range cm−1 Vibration Functional Group Present

Before After

3305.6 3268.89
3200–2500 O-H Stretching Alcohol, phenols,

Carboxylic acid3078.05 3078.07
2929.82 2923.33

2850–3000 C-H Stretching Alkenes2858.09 2853.36
1631.90 1630.25 1550–1650 C=C Stretching AromatiAB
1519.45 1528.45 1475–1550 N-O asymmetric stretching Nitro compounds
1446.45 1449.59 1400–1500 C-C Stretching AromatiAB
1334.22 1332.69 1290–1400 N-O Stretching Nitro compounds
1235.78 138.34 1000–1320 C-O Stretching Alcohols, carboxylic acids, esters, ethers
1156.56 1164.31 1150–1300 C-H wag (-CH2X) Stretching Alkyl halides
1081.96 1080.30

1250–1020 C-N Stretching Aliphatic amines
1028.30 1031.79
874.36 876.00 910–665 N-H wag Stretching Primary, and secondary amines
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The FTIR spectrum of AR adsorbents before and after oil adsorption are shown in
Figures 5 and 6, respectively, and the wavenumber range, the vibration and the type of
functional groups, are listed in Table 2.

Table 2. FTIR spectrum of ASs adsorbents before and after adsorption process of oil.

Wavenumber cm−1
Wavenumber Range cm−1 Vibration Group Present

Before After

3341.53 3313.51 3200–3500 O-H stretching, H bond Alcohol, phenols
2923.48 2923.23

2850–3000 C-H stretching Alkanes2853.32 2853.16
1744.79 1741.90 1690–1760 C=O stretching Carbonyl, carboxylic acid
1643.15 1633.18 1630–1680 C=O stretching Amides
1511.49 1512.14 1475–1550 N-O symmetric stretching Nitro compounds
1456.41 1454.96 1450–1470 C-H bending Alkanes
1376.5 1373.82 1290–1400 N-O stretching Nitro compounds

1318.92 1316.08 1000–1320 C-O stretching Alcohols, carboxylic acids, esters, ethers
1244.64 1245.47 1150–1300 m C-H wag (-CH2X) Alkyl halides
1146.18 1146.58 1250–1020 C-N stretching Aliphatic amines
1032.78 1026.87 1250–1020 C-N stretching Aliphatic amine
721.70 780.08 910–665 N-H wag Stretching Primary, secondary amines
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The FTIR spectrum analysis of adsorption in Figures 5 and 6 demonstrates a broad
peak and a number of sharp peaks. These peaks occupy the same location range of
wavenumber in both Figures 5 and 6 but are different in size or percentage transmittance.
The broad peak at the wavenumber range of 3200–3500 cm−1 indicated the presence of O-H
stretching vibration of alcohols and phenols on the surface of the adsorbent. The two sharp
band peaks at the wavenumber range 2850–3000 cm−1 correspond to the presence of C-H
stretching vibration of alkanes groups. A sharp peak observed in the wavenumber range
1690–1760 cm−1 was attributed to the C=O stretching vibration of carbonyl and carboxylic
acid. The peak present in the wavenumber ranges 1630–1680 cm−1

, corresponding to the
C=C bending of amides. Finally, the peak in the wavenumber of 1032.78 and 1026.87 cm−1

in Figures 5 and 6, respectively, is for C-N stretching of aliphatic amine.
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3.2. Thermogravimetric Analysis (TGA)

The thermal stability of the two adsorbents, ARs and ABs, was investigated using
TGA analysis. Additionally, the results generated were captured and reported accordingly,
as shown in Figures 7 and 8 for ARs and ABs, respectively. The TGA of Figure 7 shows
mass change at a temperature range of 0–200 ◦C due to the loss of moisture content in the
AR. Between 200 and 500 ◦C, there is a sharp drop in mass, which is most likely due to the
loss and decomposition of the volatile component. The curve is straight at temperatures
above 500 ◦C, indicating that only carbon remained at that temperature. In Figure 8, there
is a change in mass from 0 ◦C to approximately 220 ◦C, corresponding to moisture content
released from ABs. Between 220 and 550 ◦C a sharp decrease in mass and this could be
due to the decomposition of organic matter. At 550 ◦C, there is no change in the mass with
temperature [29,30].
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3.3. Contact Angle Measurement

The hydrophilicity of an adsorbent’s surface can be qualitatively evaluated through
the contact angle measurement. As seen in Figures 9 and 10, the contact angle results before
and after the adsorption process were both zero for both ARs and AB adsorbents. The
contact angle was measured by placing a 5 µm water droplet on the adsorbent surface.
A contact angle of zero indicates complete wetting of the surface. A low contact angle
indicates good interaction between the liquid and solid surface, implying good surface
wettability and adhesion [31].
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3.4. Adsorbent Dose Impact

The effect of varying doses of two adsorbents (ABs and ARs) on the removal of oil
from the water was investigated by utilizing different dosages ranging from 0.2 to 2 g. The
findings revealed that increasing the adsorbent dose led to an increase in the percentage
removal of oil and a decrease in the adsorption capacity of the adsorbent, as illustrated in
Figure 11. The rise in the percentage removal of oil with the increase in the adsorbent dose
is due to an increase in the number of active sorption sites available on the adsorbent’s
surface. Furthermore, an increase in the adsorbent dose led to an increase in the number of
unsaturated sites, which, in turn, caused lower adsorption capacity with an increase in the
adsorbent dose. This observation aligns with the outcomes of earlier studies. [8,19,21,22].
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Figure 11. The impact of adsorbent dosage on the adsorption of oil onto adsorbent (400 mg/L
oil–water solution, pH 6.5, Temp. 25 ◦C, 60 min).

The maximum adsorption capacities of ABs and ARs obtained were 45 and 30 mg/g,
respectively, at 1 g of each adsorbent. The optimum percentage removal was 94% and
70% at 1 g of ABs and ARs, respectively. From these results, it can be concluded that AB
adsorbent gives more efficiency than ARs for removing oil from water.

3.5. Impact of Oil Concentration

The impact of oil concentration in the oil–water mixture has been investigated, as
shown in Figure 12. This study was conducted using different initial oil concentrations
(200, 400, 600, 800, and 1000 mg/L), 1 g of ABs and AR adsorbents, 6.5 pH of the solution,
25 ◦C temperature, and 60 min contact time. The figure shows that the percentage removal
of oil decreases with an increase in the initial concentration of oil for both adsorbents
used. This can be explained by the fact that the surface of the adsorbent contains a limited
number of adsorbent sites and, therefore, insufficient to accommodate the increase in oil
concentration [20,21].
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Table 3 highlights the removal efficiency and adsorption capacity some of the synthe-
sised and natural adsorbents for oily water treatment.

Table 3. Synthesised and natural adsorbents for oily water treatment.

Adsorbent Adsorbate %Removal qe (mg/g) Ref

Textile fiber (TF) Oil 95.2 4400 [1]
Walnut shells and date pits Oil 80 and 87 - [6]

Papyrus reed Oil 94.5 229.726 [6]
Banana peel Oil 97.45 [18]

Eggshell Oil 100 108.69 [19]
Modified oil palm leaves (OPL) Oil - 1176 [20]

Sawdust Oil - 1282 [22]
Coconut coir Oil - 360 [22]

Anise residues Oil 70 30 Present work
Animal bone Oil 94 45 Present work

3.6. Adsorption Isotherm

An adsorption isotherm is important to identify the equilibrium relationships between
the adsorbate and adsorbent molecules. This relationship can be expressed graphically
by plotting the adsorption capacity (qe) versus the concentration of the adsorbate remain-
ing in the liquid phase (Ce) at equilibrium and at a constant temperature, as shown in
Figures 13 and 14. The experimental value of qe for adsorption of oil on the surface of the
ABs and AR adsorbent was determined using Equation (1). From Figures 13 and 14, it
can be said that the adsorption capacity increased with increasing the initial concentration
of the oil. The increase in the adsorption capacity was rapid at low oil concentrations,
then converged and became almost constant due to reaching the equilibrium stage at high
oil concentrations. The lower adsorption capacity at lower oil concentrations is due to
the presence of an excess of unsaturated adsorption sites at the surface of the adsorbents.
At higher concentrations of oil, the adsorption sites become saturated and reach their
equilibrium stage.
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The adsorption isotherm data in the present work was described using two common
isotherm models, the Langmuir [32], and the Freundlich as shown in Figures 13 and 14 for
ARs and ABs, respectively.

The following equations, respectively, represent the non-linear form of Langmuir
model (Equation (2)) and three linear forms of the Langmuir model (Equations (3)–(5)):

qe =
qm KL Ce

1 + KL Ce
qe =

V
m
(Co − Ce) (2)

Ce

qe
=

1
qmKL

+
1

qm
Ce(Linear-1) (3)
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1
qe

=
1

qmKL

1
Ce

+
1

qm
(Linear-2) (4)

qe = qm − qe

KLCe
(Linear-3) (5)

where qm (mg/g) is the maximum amount of adsorption capacity to form a complete monolayer
on the surface, and KL (L/mg) is the adsorption constant for the Langmuir isotherm.

The following equations, respectively, represent the non-linear and linear versions of
the Freundlich equation:

qe = K f C1/n
e (6)

ln(qe) =
1
n

ln(Ce) + ln
(

K f

)
(7)

where Kf (mg/g) (L/mg)1/n and n are the Freundlich constants. Kf refers to the extent of
the adsorption capacity, and n refers to the non-linearity of the relationships between the
concentration of oil in the solution and the adsorption capacity and to the strength of the
adsorption process [20,21].

The correlation coefficient of the fitting of the experimental data with Langmuir and
Freundlich isotherm and their parameters are illustrated in Table 4.

Table 4. Correlation coefficient and isotherm parameter values of different isotherm models.

Adsorbents Isotherm Model
Isotherm Parameter

Symbol Unit Values

ABs

Langmuir

Linear-1
qm mg/g 48.0769
KL L/mg 0.0244
R2 ——- 0.9983

MPSD ——- 3.2762

Linear-2
qm mg/g 46.5116
KL L/mg 0.0267
R2 ——- 0.9920

MPSD ——- 4.0258

Linear-3
qm mg/g 47.121
KL L/mg 0.0258
R2 ——- 0.9752

MPSD ——- 3.8978

Freundlich

Kf (mg/g)(L/mg)1/n 5.9038
n ——– 2.7064

R2 ——– 0.9736
MPSD ——- 5.3534

ARs

Langmuir Linear-1

qm mg/g 29.4985
KL L/mg 0.0071
R2 —– 0.9991

MPSD —– 1.7490
Linear-2 qm mg/g 29.1545

KL L/mg 0.0073
R2 —– 0.9998

MPSD —– 1.4910
Linear-3 qm mg/g 29.395

KL L/mg 0.0072
R2 —– 0.9988

MPSD —– 1.5277

Freundlich

Kf (mg/g)(L/mg)1/n 1.3464
n —– 2.1450

R2 —– 0.9797
MPSD —– 8.7582
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The correlation coefficient R2 and Marquardt’s percent standard deviation, MPSD [33]
as an error function was used to determine the compatibility of the experimental data with
the isothermal models as given in equation 8. The values of R2 and MPSD are listed in
Table 4.

MPSD = 100

√
1

n − p ∑n
i=1

(
qe,meas − qe,calc

qe,meas

)2
(8)

The experimental data using AB adsorbent give good fitting with Langmuir and
Freundlich model The correlation coefficient R2 of the Langmuir using the three linear
forms are 0.9983, 0.9920 and 0.9752 for linear 1, linear 2 and linear 3, respectively, while the
R2 of the Freundlich model is 0.9736.

The R2 for Langmuir is slightly higher than Freundlich, but the value of MPSD of the
Langmuir model using three forms of its linear equations (3.2762, 4.0258, and 3.8978) is
lower than that of the Freundlich model (5.3534) as shown in Table 4. The lower values of
MPSD indicate that the adsorption of oil onto ABs can be described better by the Langmuir
model. The experimental data using AR adsorbent gives good matching with the Langmuir
model with R2 of 0.9991, 0.9998, and 0.9988 (using the three of linear Langmuir model)
greater than for Freundlich model with R2 of 0.9797, and the value of MPSD of the Langmuir
model (1.7490, 1.4910, and 1.5277) is lower than that of the Freundlich model (8.7582). The
agreements of the experimental data with Langmuir isotherm for both adsorbents indicates
that the adsorption process of oil onto ABs and ARs is carried out by forming a monolayer
on the adsorbent surface, which contains a finite number of active sites. The value of Kf
refers to the maximum adsorption capacity of the adsorbent, and n refers to the level of the
non-linearity between the concentration of solute and the adsorption capacity [20,34] as:
(1) If n < 1, the adsorption process is chemical; (2) if n = 1, the adsorption is linear; and (3) if
n > 1 the adsorption is physical and it is favourable. In the present work, the value of Kf
is 5.9038 and 1.3464 (mg/g)(L/mg)1/n for ABs and AR adsorbents, respectively, and the
value of n is 2.7064 and 2.1450 for ABs and AR adsorbents, respectively. The higher values
of Kf and n for ABs indicate that ABs are more favourable for the removal of oil because the
adsorption process is physical. The feasibility of the adsorption process can be determined
by using the separation factor RL [35,36]. The value of RL is calculated as:

RL =
1

1 + KLCo
(9)

where Co is the initial concentration of the oil and KL the Langmuir constant. The nature of
the adsorption process can be determined based on the value of RL calculated as specified
in Table 5.

Table 5. The nature of the adsorption process.

RL Value Adsorption Nature

RL > 1 Unfavourable
RL = 1 Linear

0 < RL < 1 Favourable
RL = 0 Irreversible

The values of RL at different initial concentrations as illustrated in Figure 15.
In the present work, the values of RL are greater than zero and less than one, indicating

that the adsorption process is favourable by using ABs and ARs to remove oil from water.

3.7. Adsorption Kinetic Study

The investigation of adsorption kinetics is crucial in providing insight into the adsorp-
tion process, which encompasses the transfer of the solute from the aqueous solution to
the external surface of the adsorbent, followed by diffusion within the adsorbent surface
and binding to the active pores of the sorbents [21,37,38]. Assessing the rate at which
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the desired contaminant is absorbed by the adsorbent is a critical step in designing an
efficient and scalable adsorption process, from laboratory to industrial scale (e.g., water
treatment plant). To achieve this, experimental kinetic data must be analysed to match
established kinetic models. Furthermore, these models are valuable in estimating other
vital parameters such as activation energy, which can be determined using the Arrhenius
equation [37,38]. The experimental investigation of adsorption kinetics involved moni-
toring the adsorption capacity of the adsorbent over time, as presented in Figure 16. The
experiments were conducted at a temperature of 25 ◦C using 1g of adsorbent in 100 mL
conical flasks, containing 50 mL of an oil–water mixture with a concentration of 400 mg/L
and pH of 6.5. Six conical flasks, labeled as 1, 2, 3, 4, 5, and 6, were utilized to study the
effect of various contact times of 5, 30, 60, 90, and 120 min, respectively. At the end of each
time interval, the adsorbent was separated using a separating funnel, and the mixture was
extracted with hexane and then analysed using atomic absorption spectrophotometry. Both
adsorbents were tested using this methodology.
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The kinetics of adsorption process is strongly influenced by time, which is an important
parameter to describe the process. Figure 16 illustrates the trend of adsorption capacity for
ABs and AR adsorbents as a function of time. It is evident from the figure that the adsorption
capacity of both adsorbents increased with increasing time. The initial adsorption rate was
fast, and the adsorption capacity reached a maximum within the first 30 min. However, a
gradual decrease in the rate of adsorption capacity was observed between 30 and 60 min.
After 60 min, the adsorption capacity became constant with the progression of time. This
equilibrium state in adsorption capacity after 60 min may be attributed to the occurrence
of a balance between the adsorption and desorption processes after the surface of the
adsorbent material became saturated with oil.

There are several models used to describe the kinetic of the adsorption [38–40]. The
most common models used are The pseudo-first-order model [41] and pseudo-second-order
model [42].

The pseudo-first-order model is described by the following equation:

dqt

dt
= k1(qe − qt) (10)
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where qe (mg/g) and qt (mg/g) are the sorption capacity at equilibrium and at time
t, respectively, k1 (1/min) is the rate constant of pseudo-first order. The integrating of
Equation (8) and applying the boundary conditions qt = 0 at t = 0 and qt = qt at t = t gives
the following linear equation:

log(qe − qt) = log(qe)−
k1

2.303
t (11)

The pseudo-second-order model is described by the following equation:

dqt

dt
= k2(qe − qt)

2 (12)

where k2 (g/mg.min) is the rate constant of pseudo-second order. The integrating of
Equation (12) and applying the boundary conditions qt = 0 at t = 0 and qt = qt at time t = t
gives the following different for of linearized equations:

t
qt

=
1

k2q2
e
+

1
qe

t(Linear-1) (13)

1
qt

=
1

k2q2
e

1
t
+

1
qe
(Linear-2) (14)

qt = qe −
(

1
k2qe

)
q
t
(Linear-3) (15)
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In the present adsorption, kinetics data of adsorption of oil onto ABs and ARs were
analysed using pseudo-first-order (Equation (11)) and pseudo-second-order (Equation (13))
models, as shown in Figures 17 and 18, respectively.

Table 6 presents the kinetics parameters and corresponding linear correlation coef-
ficients that were calculated and recorded. The data demonstrate that the experimental
results are best fitted by the pseudo-second-order kinetic model, with R2 values of 0.9987
and 0.9992 for ABs and ARs, respectively, as compared to the pseudo-first-order model.
Thus, the adsorption process for oil removal using ABs and AR adsorbents does not conform
to the pseudo-first-order kinetics model, but rather to the pseudo-second-order kinetics
model. As per the pseudo-second-order kinetic model, the adsorption process involves
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chemisorption, which entails a chemical reaction that occurs by the formation of covalent
bonds via electronic sharing or exchange between oil molecules and the adsorbent’s surface.
These findings align with those of previous studies investigating the adsorption of oil from
oil–water mixtures using banana pseudostem fibres [36] and adsorption of oil onto powder
and flake chitosan [43].
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Figure 17. The pseudo-first-order kinetics model for adsorption of oil onto adsorbents: (a) ABs and
(b) ARs (1g adsorbents, pH 6.5, Temp. 25 ◦C).
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Figure 18. The pseudo-Second-order kinetics model for adsorption of oil onto adsorbents: (a) ABs
and (b) AR adsorbent (1g adsorbents, pH 6.5, Temp. 25 ◦C).

Table 6. The parameter of kinetic models and correlation coefficient.

Pseudo-First Order Pseudo-Second Order

Adsorbent qe
mg/g

k1
min−1 R2 qe

mg/g
k2

mg/g.min R2

ABs 48.5400 0.0666 0.9045 47.1698 0.00395 0.9987
ARs 29.4239 0.0765 0.9558 35.4610 0.0112 0.9992

The non linear and linearized for of first and second-order pseudo-kinetic models
are presented in Figures 19 and 20 for AB and AR adsorbents, respectively. These figures
show that various linearized forms of pseudo-second-order equations give good and
approximately the same fitting with experimental data.
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of oil onto ARs.

The parameters of different linearized form of second-order pseudo-kinetic model are
shown in Table 7.

Table 7. The parameters of the pseudo-second-order of kinetic models using different linearized form.

Pseudo-Second Order

Adsorbent qe
mg/g

k2
mg/g.min R2

ABs
Linear-1 47.1698 0.00395 0.9987
Linear-2 47.6190 0.00352 0.9965
Linear-3 47.751 0.00349 0.9861

ARs
Linear-1 35.7143 0.0112 0.9992
Linear-2 36.2319 0.00829 0.9995
Linear-3 36.169 0.0083 0.9861
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3.8. BET Analsysis

Micropore, and external surface area have been measured for the tested adsorbents
using BET analysis as shown in Table 8. Determining the surface area and pore size of the
aniseed residue proved to be a challenging task.

Table 8. Surface area, pore volume and pore size of both adsorbents.

Adsorbent Surface Area (Micropore
Surface Area), m2/g

Pore Volume (Micropore
Volume), cm3/ g Pore Size (nm) Particle Size (mm)

Anise Residue (AR) —- 0.00115 —— 0.6

Animal Bond (AB) 5.5389 0.005477 3.95534 0.6

3.9. Regeneration of Adsorbents

The process of regenerating adsorbent involves eliminating oil or impurities from spent
adsorbent by utilizing a specific solvent that can remove oil and impurities. Regeneration
is an environmentally and economically beneficial process since it decreases the volume
of waste by reducing the disposal issues of spent adsorbents and the requirement for new
adsorbents [44]. Various methods, such as biological, thermal, chemical, and photochemical
methods [45], are utilized to desorb pollutants from the adsorbent. In this study, the
regeneration process was conducted using hot water as a thermal method. The spent
adsorbent was rinsed several times with hot water at 100 ◦C to release oil from spent
adsorbent, and then the rinsed adsorbent was dried and used for oil adsorption to evaluate
its oil removal capacity after regeneration. Multiple regeneration attempts were conducted
after each adsorption process, and the regeneration conditions were 50 mL of 400 mg/L
oil–water mixture and 2 g of adsorbent. Figure 21a,b demonstrate the regeneration process
of AR and AB after four attempts. The results indicate that for AR, the percentage removal
(%R) decreased from 93.6% for the first use to 69.9% for the fourth regeneration attempt, as
depicted in Figure 21a. Similarly, for AB, the %R declined from 96.5% for the first use to
49.6% for the fourth regeneration attempt, as shown in Figure 21b.
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Figure 21. Regeneration of (a) AR adsorbent and (b) AB adsorbent.

4. Conclusions

The results of the experiment illustrate the potential of natural residues, namely animal
bones (ABs) and anise residues (ARs), to serve as adsorbents in the treatment of oily water
through adsorption. The utilisation of natural waste as absorbent materials offers both
economic and environmental benefits by utilizing a low-cost adsorbent and converting
waste into useful materials, thereby reducing environmental issues. This research intro-
duces AB and ARs as new sorbent materials for oily water treatment. The efficacy of
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these adsorbents in removing oil from water is found to be influenced by various factors,
including adsorbent dosage, oil concentration, and contact time. The findings indicate
that ABs exhibit higher oil removal capacity than ARs, with removal capacities of 45 and
30 mg/g for ABs and ARs, respectively, and percentage removal of 94% and 70% for ABs
and ARs, respectively. Additionally, TGA analysis reveals that there is a sharp decrease
in mass for AR between 200 and 500 ◦C, while for AB, this phenomenon occurs between
220 and 550 ◦C. This study expands to include kinetic and adsorption models for a more
in-depth understanding of the adsorption mechanism. The Langmuir isotherm model
provides an excellent fit for all experimental data on oil adsorption onto ABs and AR adsor-
bents, while the pseudo-second-order kinetics model is used to describe the adsorption
model. According to the pseudo-second-order kinetic model, the adsorption process is
chemisorption, which involves a chemical reaction through electronic sharing or exchange
between oil molecules and the adsorbent’s surface. The regeneration study demonstrates
that the percentage removal (%R) for AR decreases from 93.6% after the first use to 69.9%
after the fourth regeneration attempt, while for AB, the %R decreases from 96.5% after the
first use to 49.6% after the fourth regeneration attempt.
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