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Abstract: This study calibrated the Soil Conservation Service Curve Number (SCS-CN) model to
predict decadal runoff in Peninsula Malaysia and found a correlation between the reduction of forest
area, urbanization, and an increase in runoff volume. The conventional SCS-CN runoff model was
found to commit a type II error in this study and must be pre-justified with statistics and calibrated
before being adopted for any runoff prediction. Between 1970 and 2000, deforestation in Peninsula
Malaysia caused a decline in forested land by 25.5%, resulting in a substantial rise in excess runoff
by 10.2%. The inter-decadal mean runoff differences were more pronounced in forested and rural
catchments (lower CN classes) compared to urban areas. The study also found that the CN value is a
sensitive parameter, and changing it by ±10% can significantly impact the average runoff estimate by
40%. Therefore, SCS practitioners are advised not to adjust the CN value for better runoff modeling
results. Additionally, NASA’s Giovanni system was used to generate 20 years of monthly rainfall
data from 2001–2020 for trend analysis and short-term rainfall forecasting. However, there was no
significant uptrend in rainfall within the period studied, and occurrences of flood and landslide
incidents were likely attributed to land-use changes in Peninsula Malaysia.

Keywords: deforestation and decadal runoff predictions; urbanization; non-homogenous catchments;
Peninsula Malaysia

1. Introduction

Humans have significantly altered the earth’s surface over time by transforming
natural areas into industrial or agricultural regions. In the case of Malaysia, as a developing
country, there has been extensive land-use and land-cover change since the 1970s. The
rapid pace of development in Peninsula Malaysia has resulted in changes to the landscape
and vegetation. These activities have had an uneven impact on the drainage basins, leading
to changes in runoff patterns. Human activities, especially deforestation, have a greater
impact on vegetation cover and the environment at local, regional, and global levels. Land-
use and water cycle patterns are also influenced by anthropogenic activities, particularly
deforestation, which has cleared the way for urban development. As a result, it is crucial
to explore and estimate the impact of development activities on runoff patterns in rural
catchments in Malaysia [1–3].

Forests are an essential element in sustaining our supply of water [4–8]. However,
to make room for development, many forested areas have been cleared [9–15]. Between
2002 and 2020, Malaysia lost 27,000 km2 (roughly 2/3 of Switzerland or nearly 39 Sin-
gapores) [16] of humid primary forest area at the clearing rate of 1421 km2/year within

Water 2023, 15, 1162. https://doi.org/10.3390/w15061162 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15061162
https://doi.org/10.3390/w15061162
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-8699-9772
https://orcid.org/0000-0002-3790-6485
https://doi.org/10.3390/w15061162
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15061162?type=check_update&version=1


Water 2023, 15, 1162 2 of 24

19 years. This had resulted in a 17% reduction of humid primary forest in Malaysia
within the given time period [17]. Compared to the deforestation of an area of 13,000 km2

from 1978 to 1994 [18], the forest-clearing rate in Malaysia has doubled in recent decades.
Deforestation challenged the quality and quantity of water [19] and caused significant
hydrological changes which included an increase in runoff [20,21].

Interception losses in tropical and subtropical rainforests have been shown to vary
from 6 to 42% of rainfall [22–24]. Meanwhile in Malaysia and Indonesia, forest interception
loss was reported from 12.7% to 21% [25,26]. Forest removal will convert the interception
losses into a contributing factor to increase surface runoff. Past research studies have inves-
tigated rainforest conversion and its hydrological impact [27–34]. Zhang et al. [35] reported
that a reduction of forest cover from 22% to 10% caused changes in river discharge in China.
Sharma et al. [36] concluded that under projected land-use scenarios, runoff would increase
when forest areas were converted into agricultural land in the central Himalayas.

The conversion of natural land has increased the surface runoff while rapid urban-
ization and industrialization have been cited as the main causes of major flooding in
Malaysia [37,38]. Many researchers quantified the effects on hydrological parameters as
due to changes in vegetation cover or forest logging activities [39–44], while urbaniza-
tion was also identified to be a key factor in landscape alteration, causing an increase
in runoff. River discharge can also be affected by human interventions. The landscape
alteration caused faster runoff from storms, increased peak flows and changed hydrologic
cycles [45–47]. Sahin and Hall [48] reported that a 10% reduction in canopy cover resulted
in a 20 to 25 mm increase in annual water yield while Bosh and Heewlett [39] found that
a 10% removal increased the water yield by an average of 40 mm. Although flooding
is a response to the complex hydrological system, the dynamic changes are caused by
anthropogenic factors to mother nature.

The Soil Conservation Services (SCS) of the United States has developed a widely
accepted methodology, called the Curve Number (CN), to estimate the direct runoff from
rainfall in hydrological studies. This method is based on the concept that the amount
of runoff produced by a rainfall event depends on various factors, such as land use, soil
type, and the antecedent moisture condition of the soil. The SCS-CN method uses a CN
value that represents the combined effect of these factors on runoff generation, ranging
from 0 to 100. This value is used in an equation to estimate the amount of direct runoff
from rainfall. The SCS-CN method is commonly used in watershed management, flood
forecasting, and erosion control planning, and has been widely adopted by government
agencies worldwide, integrated into software, and taught in hydrology courses.

However, studies around the world in recent decades reported runoff prediction
accuracy problems with the conventional SCS-CN model [49,50]. Previous studies have
utilized the SCS Curve Number (CN0.2) to demonstrate variations in runoff response
due to agricultural land-use and seasonal changes [51]. This paper applied the SCS-CN
model calibration methodology with inferential statistics that was developed by authors
in a previous study [50] and demonstrated the extended application to model decadal
rainfall-runoff conditions in Peninsula Malaysia. The correlation between deforestation
and urbanization on runoff increment in Peninsula Malaysia was also established.

2. Materials and Methods
2.1. Study Site and Data Collection

Peninsula Malaysia, with a land area of 132,265 km2, is slightly larger than England
(130,395 km2). It is bordered by Thailand to the north and Singapore across the strait of
Johor to the south. This study utilized the calibrated SCS lump rainfall-runoff model in
conjunction with the most recent rainfall-runoff dataset published by the Malaysian federal
agency. The dataset, which can be located in the appendix of the Department of Irrigation
and Drainage’s Hydrological Procedures no. 27 (DID HP 27), documented 227 storm events
across 41 distinct catchments between 1970 and January 2000 in Peninsula Malaysia [52].
The smallest recorded storm event had a rainfall depth of 19 mm, with a measurable runoff
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depth of 4.8 mm, while the largest event measured 420 mm in rainfall depth and 258 mm
in runoff depth.

In this study, the DID HP 27 dataset was divided into three periods to investigate
the potential relationship between decadal runoff conditions, urban population growth in
Peninsula Malaysia, and deforestation data provided by the Forestry Department Peninsula
Malaysia [53–59]. This study grouped 58 recorded storm events from 1970 to 1979 as the
M70 dataset, 81 events from 1980 to 1989 as the M80 dataset, and 88 events from 1990 to
January 2000 as the M90 dataset for runoff analyses and comparison.

2.2. Calibration of SCS-CN Model

The SCS initially developed the CN rainfall-runoff model (Equation (1)) for the federal
flood control program in 1954, and it has since become the basic model for runoff estimation.

Q =
(P − Ia)

2

P − Ia + S
(1)

Q = Runoff depth (mm)
P = Rainfall depth (mm)
Ia = Rainfall initial abstraction amount (mm)
S = Catchment maximum water retention potential (mm)
where Ia = λS. If P < Ia, Q = 0.
The SCS also put forth the hypothesis that Ia = λS = 0.2S, where λ represents the

initial abstraction ratio coefficient, which was proposed as a constant value of 0.2. The
justification for Equation (1) was based on daily rainfall and runoff data, rather than event
measurements, and its only official documentation source can be found in the National
Engineering Handbook, Section 4 (NEH-4) [60,61]. By substituting Ia = 0.2S, Equation (1) is
simplified into Equation (2):

Q =
(P − 0.2S)2

P + 0.8S
(2)

DID HP 27 dataset was used to assess the SCS-CN rainfall-runoff model in authors’
previous study [50] with inferential statistics and concluded that the existing SCS-CN
model is not even statistically significant at alpha = 0.05 level for runoff predictions in
Peninsula Malaysia. Therefore, it must be calibrated according to the local rainfall-runoff
dataset and the key parameter λ must be derived to formulate a statistically significant
rainfall-runoff model for Peninsula Malaysia. All statistical analyses were performed using
the IBM SPSS software version 26.0 in this study [62].

The SCS model was calibrated according to each decadal rainfall-runoff data batch
and the calibrated runoff predictive models were formulated with the newly derived λ
value to represent the aforementioned decadal rainfall-runoff conditions. Inter-decadal
runoff difference can then be mapped with the runoff difference between newly formu-
lated decadal rainfall-runoff models while non-parametric statistics were used for runoff
trend analyses.

This study also re-assessed the validity of Equation (1) on the entire M70, M80, and
M90 datasets through the reverse derivation of the λ value. Equation (2) will be discarded
if the inferential statistics of the P-Q dataset reject the validity of λ = 0.2. Equation (1) will
then be calibrated according to the P-Q data pairs of M70, M80, and M90. Non-parametric
inferential statistics, bootstrapping, and Bias Corrected and Accelerated (BCa) procedure
(2000 samples with replacement) were conducted in SPSS on each batch of derived λ and
S values in order to search for optimum values within the confidence intervals at alpha
0.01 level. The λ confidence intervals’ span can be used to assess the null hypothesis H0 as
shown below:

Null Hypothesis (H0): Equation (2) (λ = 0.2) is valid to model runoff estimates with
DID HP 27 dataset.

The SCS-CN model calibration of this study consists of the following steps:
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1. Rearrange Equation (1) into: S = (P−Ia)
2

Q + Ia − P
2. For each P-Q event pair, calculate the corresponding S value with the above equation

under the SCS constraint that Ia < P value and calculate the λ value with λ = Ia/S.
3. Conduct bootstrap, BCa (at α = 0.01 level) inferential statistical analyses (2000 samples

with replacement) for the calculated λ and S datasets separately for each decadal model.
4. Generate 99% confidence intervals for λ and S datasets for each decadal model.
5. Test the null hypothesis (H0) by referring to the λ confidence intervals’ span and its

standard deviation for each decadal model. If the λ = 0.2 value exists within the λ
confidence interval, use Equation (2) to model rainfall-runoff. Otherwise, move to
step 6.

6. Find the optimum λ and S values from BCa confidence intervals and calculate Ia
for each decadal model using supervised optimization technique by minimizing the
overall model bias (BIAS) near to the value of zero.

7. Formulate the calibrated SCS model by substituting Ia and S into Equation (1).
8. According to a group of researchers [63], when λ value other than 0.2 is detected,

its corresponding S value (denoted by Sλ) must be correlated to the S0.2 values for
CN calculation. As such, correlate Sλ and S0.2 with the S general formula which was

derived by a past researcher [50]: Sλ =

[
P− (λ−1)Q

2λ

]
−
√

PQ−P2+
[

P− (λ−1)Q
2λ

]2

λ
9. Substitute optimum λ and Sλ into Equation (1) to formulate the decadal model.
10. Lastly, substitute S0.2 = 25,400

CN0.2
− 254 into each decadal model to express Q in term of

P and CN0.2.

Note: Appendix B shows step 9 and 10 using an example.

2.3. IMERG Satellite Rainfall Trend Analysis

The Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG) [64]
is a unified satellite product that has been launched by NASA and JAXA. This product combines,
calibrates, and integrates satellite microwave precipitation estimates with microwave-calibrated
infrared satellite estimates, precipitation gauge analyses, and other precipitation estimators, in
order to provide precipitation measurements at fine time and space scales across the globe. There
are three types of IMERG systems: Early (IMERG-E), Late (IMERG-L), and Final (IMERG-F)
runs, with latency times of 6 h, 18 h, and 3 months, respectively. All IMERG runs are available
at half-hourly, daily, and monthly temporal resolutions, and have global coverage at a spatial
resolution of 0.1◦.

In this study, the IMERG-F monthly version 6 product at a spatial resolution of 0.1◦

was employed, as it has been bias-corrected using precipitation gauges from the Global
Precipitation Climatology Centre (GPCC) and is considered more accurate for scientific
research compared with other IMERG products. The data can be accessed through NASA’s
Giovanni system [65]. Monthly rainfall data from 2001 to 2020 (Appendix A) was obtained
from the Giovanni system to demonstrate the annual rainfall distribution across Malaysia.

Trend analysis was conducted on the monthly rainfall data in Malaysia. Before
conducting the analysis, a normality test was performed to determine which central of
tendency (mean or median) was to be used. If a dataset has less than 2000 samples, the
Shapiro-Wilk test is recommended instead of the Kolmogorov-Smirnov test. This study
used a dataset with less than 2000 samples; therefore, the Shapiro-Wilk test was employed.
If the p-value is greater than 0.05, the dataset is considered to be normally distributed,
and therefore, mean is used to measure the central tendency of the dataset [50]. The non-
parametric inferential statistics using the BCa bootstrapping method was conducted on
2000 random samples (with replacement) to calculate the 99% confidence intervals of the
mean or median for each interval.

Rainfall time series forecasting models were created using monthly rainfall data in
Malaysia from January 2001 to December 2020 (N = 240) with the Expert Modeler in SPSS.
The rainfall amount was forecasted for the next 24 months, from January 2021 to December
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2022 in Malaysia, to determine if there will be a significant change in rainfall pattern in the
near future that could affect runoff prediction.

3. Results and Discussion
3.1. The Optimum λ and S of Decadal Models

Tables 1–3 display the BCa 99% confidence intervals of λ for the M70, M80, and
M90 decadal datasets. The BCa 99% confidence intervals of both the mean and median
for each decadal dataset do not include the value of 0.2, leading to the rejection of the null
hypothesis (H0) at the alpha = 0.01 level. Equation (2) was found to be statistically invalid
and, thus, cannot be utilized to model runoff conditions in Peninsula Malaysia for the
M70, M80, and M90 decadal datasets. The rejection of H0 necessitates the search for a new,
optimal value of λ to develop a new rainfall-runoff prediction model.

Table 1. Inferential statistics results of derived λ for M70 decadal dataset at α = 0.01.

λ Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Intervals

Lower Upper

Skewness 3.815
Kurtosis 19.768

Mean 0.098 0.0003 0.014 0.069 0.142
Median 0.065 0.0006 0.00294 0.049 0.089

Table 2. Inferential statistics results of derived λ for M80 decadal dataset at α = 0.01.

λ Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Intervals

Lower Upper

Skewness 3.217
Kurtosis 13.028

Mean 0.095 0.0002 0.014 0.066 0.135
Median 0.047 0.0022 0.007 0.034 0.064

Table 3. Inferential statistics results of derived λ for M90 decadal dataset at α = 0.01.

λ Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Intervals

Lower Upper

Skewness 5.393
Kurtosis 34.674

Mean 0.076 0.00005 0.013 0.051 0.115
Median 0.042 0.00183 0.007 0.031 0.063

The λ dataset is skewed and tested to be non-normally distributed in SPSS for all three
decadal groups and therefore, the search for an optimal representative λ value using a
supervised optimization technique will be concentrated on the range of median confidence
intervals. These intervals are [0.049, 0.089] for the M70 dataset (Table 1), [0.034, 0.064] for
the M80 dataset (Table 2), and [0.031, 0.063] for the M90 dataset (Table 3).

The BCa 99% confidence intervals of Sλ for the M70, M80, and M90 decadal datasets
are presented in Tables 4–6. The normality of the Sλ dataset was tested using SPSS for all
three decadal groups, and found to be normally distributed. Therefore, the optimal Sλ

value was searched for within the range of the mean confidence intervals. There intervals
are [117.083, 187.008] for M70 dataset (Table 4), [141.892, 231.088] for M80 dataset (Table 5),
and [131.989, 192.939] for M90 dataset (Table 6).
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Table 4. Inferential statistics results of derived Sλ for M70 decadal dataset at α = 0.01.

Sλ Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Intervals

Lower Upper

Skewness 1.298
Kurtosis 0.975

Mean 151.592 −0.482 14.954 117.083 187.008
Median 123.615 −0.166 11.367 91.255 157.815

Table 5. Inferential statistics results of derived Sλ for M80 decadal dataset at α = 0.01.

Sλ Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Intervals

Lower Upper

Skewness 1.794
Kurtosis 5.201

Mean 180.994 −0.339 14.954 141.892 231.088
Median 147.950 −3.921 19.112 113.890 183.670

Table 6. Inferential statistics results of derived Sλ for M90 decadal dataset at α = 0.01.

Sλ Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Intervals

Lower Upper

Skewness 1.132
Kurtosis 1.407

Mean 161.827 0.221 11.934 131.989 192.939
Median 142.610 −2.566 21.298 95.236 189.506

The optimal λ and Sλ values for the M70, M80, and M90 decadal datasets using a
supervised optimization technique are presented in Table 7. The product of the optimal λ
and Sλ values gives the representative initial abstraction value for each dataset, which can
be calculated as Ia = λSλ.

Table 7. Optimal λ, Sλ and Ia for M70, M80 and M90 decadal datasets.

Dataset Optimal λ Optimal Sλ Ia = λSλ

M70 0.049 160 mm 7.904 mm
M80 0.034 190 mm 6.431 mm
M90 0.031 160 mm 4.956 mm

3.2. The Decadal Rainfall-Runoff Models

The decadal rainfall-runoff models for Peninsula Malaysia are presented in Table 8 by
substituting the respective Ia and Sλ values from Table 7 into Equation (1). Equations (3)–(5)
were then formulated to model the decadal rainfall-runoff conditions in Peninsula Malaysia.
To further analyse decadal runoff trend across multiple rainfall depths and CN0.2 scenarios
in Peninsula Malaysia, Equations (3)–(5) need to be re-expressed in terms of CN0.2 to benefit
SCS practitioners as they are more familiar with the use of curve number [50].



Water 2023, 15, 1162 7 of 24

Table 8. Decadal rainfall-runoff models for M70, M80 and M90 decadal datasets.

Dataset Runoff Predictive Model Nash-Sutcliffe Index Equation Number

M70 Q = (P−7.904)2

P−152.096
0.958 (3)

M80 Q = (P−6.431)2

P−183.569
0.910 (4)

M90 Q = (P−4.956)2

P−155.044
0.907 (5)

Q = runoff depth (mm), P = rainfall depth (mm).

To calculate Sλ and S0.2 for each decadal dataset, the general Sλ formula (step 8 in
methodology Section 2.2) can be used with the optimum λ values. Through SPSS, this
study identified statistically significant power function correlation between Sλ and S0.2
for the M70, M80, and M90 decadal datasets, which is consistent with previous research
findings [66–68]. The final equations are listed in Table 9.

Table 9. Correlation equations between Sλ and S0.2 for M70, M80 and M90 decadal datasets.

Dataset Correlation Equation Adjusted
R-Squared

Standard Error
of Estimate

Equation
Number

M70 S0.049 = 1.184S0.2
1.081 0.939 0.134 (6)

M80 S0.034 = 1.107S0.2
1.094 0.910 0.201 (7)

M90 S0.031 = 1.179S0.2
1.069 0.907 0.165 (8)

All correlations are significant at p < 0.001.

Equations (6)–(8) played a crucial role in converting Sλ to S0.2, enabling SCS practition-
ers to use a rainfall-runoff model with CN0.2, which they are more familiar with. Further-
more, by establishing a correlation between the newly derived Sλ and S0.2, Equations (3)–(5)
were modified to be expressed in CN0.2 terms, facilitating decadal trend analyses with CN0.2.

Equations (3)–(5) can be expressed in CN0.2 by substituting Sλ in Equation (1) with
Equations (6)–(8), as well as the SCS-CN formula (Step 10 in methodology Section 2.2). By
doing so, the decadal runoff predictive models can be re-expressed as shown in Appendix B.
The resulting alternate representations for decadal runoff predictive models in Peninsula
Malaysia are presented in Table 10 in term of CN0.2.

Table 10. Alternate form of decadal rainfall-runoff models for M70, M80 and M90 decadal datasets.

Dataset Runoff Predictive Model Equation Number

M70
Q0.049 =

[
P−23.077

(
100

CN0.2
−1
)1.081

]2

[
P+447.876

(
100

CN0.2
−1
)1.081

] (9)

M80
Q0.034 =

[
P−15.992

(
100

CN0.2
−1
)1.094

]2

[
P+456.589

(
100

CN0.2
−1
)1.094

] (10)

M90
Q0.031 =

[
P−13.618

(
100

CN0.2
−1
)1.069

]2

[
P+425.963

(
100

CN0.2
−1
)1.069

] (11)

3.3. The Decadal Runoff Trend Analyses

The decadal runoff models (Equations (9)–(11)) enable the quantification of runoff
conditions for various decades under different rainfall depths (P) and CN0.2 scenarios,
facilitating the analysis of runoff changes. The DID HP 27 dataset contains the lowest and
highest recorded rainfall depths, ranging from 20 mm to 430 mm across CN0.2 classes from
46 to 94. Runoff difference tables can then be calculated between any two decadal models.

This study evaluated the inter-decadal runoff differences between M70 and M80,
M80 and M90, and M70 and M90 in Peninsula Malaysia. The runoff amount of the earlier
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decade was subtracted from the latter to determine the inter-decadal runoff difference.
For instance, the inter-decadal runoff difference between M70 (Equation (9)) and M80
(Equation (10)) was calculated by subtracting the runoff amount of M70 from that of M80.
A positive inter-decadal runoff difference amount indicated a larger runoff amount in
M80 compared to M70 and vice versa. Statistical analyses were performed to determine
significant runoff trends between different decades. This study also correlated decadal
runoff changes with deforestation and urbanization data in Peninsula Malaysia.

Non-parametric Kendall’s Tau b and Spearman’s Rho statistics were used to evaluate
the inter-decadal runoff trend in SPSS. Both statistics showed a significant positive correla-
tion (2-tailed) at alpha = 0.01 for all inter-decadal periods, rainfall depths, and CN0.2 classes
mentioned above. This positive correlation indicates an upward trend in inter-decadal
runoff, which can be visually represented in Figures 1–3. To assess the magnitude of
this upward trend in each inter-decadal scenario and CN0.2 class (ranging from 46 to 94)
according to rainfall depths from 20 mm to 430 mm, Sen slopes and its collective inferential
statistics were calculated. The Sen slopes and inferential statistics of all CN0.2 classes were
then analysed collectively for each inter-decadal scenario at the alpha = 0.01 level, and the
results are tabulated in Tables 11–13.

Table 11. Inferential statistics of Sen Slopes for inter decadal runoff difference between M80 and M90.

Sen Slopes
M80 to M90

Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Intervals

Lower Upper

Skewness −0.022
Kurtosis −1.512

Mean 0.0121 −0.00002 0.00225 0.00701 0.01720
Median 0.0127 −0.00029 0.00422 0.00439 0.02119

Std. Deviation 0.0087 −0.00039 0.00103 0.00588 0.01032
Range 0.0247
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Table 12. Inferential statistics of Sen Slopes for inter decadal runoff difference between M70 and M80.

Sen Slopes
M70 to M80

Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Intervals

Lower Upper

Skewness 0.272
Kurtosis −0.940

Mean 0.0051 −0.00001 0.00081 0.00313 0.00713
Median 0.0048 0.00008 0.00126 0.00230 0.00824

Std. Deviation 0.0031 −0.00015 0.00046 0.00178 0.00396
Range 0.1000
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Table 13. Inferential statistics of Sen Slopes for inter decadal runoff difference between M70 and M90.

Sen Slopes
M70 to M90

Statistics

Bootstrap, BCa 99%

Bias Std. Error
Confidence Intervals

Lower Upper

Skewness 0.065
Kurtosis −1.473

Mean 0.0178 −0.00003 0.00322 0.01049 0.02506
Median 0.0175 0.00015 0.00589 0.00712 0.03125

Std. Deviation 0.0124 −0.00057 0.00149 0.00823 0.01479
Range 0.0353

Calculated Sen slope values were tested as normally distributed in SPSS. Therefore,
the mean Sen slope value was used to represent each inter-decadal runoff scenario. On
average, the collective Sen slope value was 0.0121 (p = 0.01, 99% confidence interval from
0.00701 to 0.01720) to indicate the runoff incremental trend between M80 and M90. The Sen
slope between M70 and M80 was 0.0051 (p = 0.01, 99% confidence interval from 0.00313 to
0.00713), while between M70 and M90 it was 0.0178 (p = 0.01, 99% confidence interval from
0.01049 to 0.02506). The Sen slope values also estimated the percentage of rainfall depth
that becomes incremental runoff. For instance, the average expected runoff increment from
a rainfall depth of 100 mm across CN0.2 classes from 46 to 94 can be estimated to be 1.21 mm
between M80 and M90 (i.e., 0.0121 × 100 mm).

The study conducted a repetition of all statistical analyses with a CN0.2 range of 46 to
70 to assess the runoff changes across lower CN0.2 classes, which correspond to rural and
forested catchments. This was done to obtain a more accurate estimate of the inter-decadal
runoff increment conditions in these areas. The results showed that the runoff incremental
trend between M80 and M90 of CN0.2 (46 to 70) had a Sen slope value of 0.0190 (p = 0.01,
99% confidence interval from 0.01595 to 0.02216). The Sen slope value between M70 and
M80 was 0.0075 (p = 0.01, 99% confidence interval from 0.00606 to 0.00898), and between
M70 and M90, it was 0.0276 (p = 0.01, 99% confidence interval from 0.02262 to 0.03239). For
example, the expected runoff increment from rainfall of 100 mm across CN0.2 classes from
46 to 70 was estimated to be 1.90 mm between M80 and M90. The study found that runoff
increments were significant (p = 0.01) between all inter-decadal scenarios and were more
apparent in forested and rural areas (highlighted area in Figure 4).

Positive inter-decadal runoff difference in Peninsula Malaysia is depicted in Figures 1–3.
High rainfall depths and low CN0.2 groups, which are associated with forested catchments,
are particularly affected. These study outcomes are in line with previous studies [67–70].
Inter-decadal runoff differences are more pronounced under high rainfall depths. The mean
runoff of different decades across different CN0.2 classes was calculated and compiled, as
shown in Figure 5. M90 had the highest runoff, while M70 had the lowest. Greater percentage
changes in mean runoff were observed in lower CN0.2 classes (forested catchments) compared
to higher CN0.2 classes (urban area). The largest mean runoff incremental percentage was
12.6% (6.6 mm) from M70 to M90 at CN0.2 = 46, while the smallest change was 0.1% (0.1 mm)
from M80 to M90 at CN0.2 = 94.
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percentage of rainfall depths by Sen slope calculation were compared between all scenarios to contrast
the inter-decadal runoff incremental percentage.
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3.4. The Impact of CN0.2 Variation on Runoff

According to [71], due to variation in hydrological conditions, CN0.2 value is often
calibrated to match observed runoff dataset in modelling practice. Researchers observed
that a variation of ±10% in CN0.2 might lead to ±50% runoff variation [72] while [73] it
was reported that even 1% increase in CN0.2 with rainfall depth of 175 mm had caused
2.03% increase in runoff. References [73,74] concluded that CN0.2 variations will have a
larger impact on runoff than other parameters in Equation (1).
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CN0.2 tweaking becomes a convenient way to calibrate and validate hydrological
models. However, other studies reported that CN0.2 value of a catchment was unstable and
decreased when rainfall increased [74–76]. The error and sensitivity analysis results by some
researchers stated that CN0.2 variations would induce a larger impact on runoff calculation
with inherent error rather than rainfall depth variations [72,74,77]. CN0.2 tweaking might
achieve or improve temporal hydrological modelling accuracy through the trial-and-error
technique, but the practicality of the end result was often uncertain and lack of statistical
justification.

This study modelled the impact of CN0.2 variation with the DID HP 27 dataset. Ac-
cording to [78], the practical CN values were likely to be within the range of 40 to 98. The
optimum best collective CN0.2 was 71 for the entire DID HP 27 dataset, thus, CN0.2 variation
up to 40% was chosen to cover the range of CN0.2 from 43 to 99 and rainfall from 20 mm
to 430 mm. CN0.2 upscaling induced larger runoff change than downscaling while both
effects were largely felt at rainfall depths below 100 mm. On average, runoff would reduce
by 37% when CN0.2 was downscaled up to 40% between 20 mm and 430 mm. On the other
hand, the average runoff increased by 306% when CN0.2 was upscaled up to 40%. The
average runoff for both scenarios was almost identical when rainfall depths were limited
to higher rainfall depths (100 mm to 430 mm). The average runoff reduced by 34% when
CN0.2 was downscaled up to 40%, while average runoff increased by 35% when CN0.2
was upscaled to the same range. Varying the CN0.2 value by ±10% resulted in an average
runoff change of 40%, which is consistent with the findings reported in [72]. Similarly,
upscaling the CN0.2 value by 1% with a rainfall depth of 175 mm caused a 2% increase in
runoff, which matches the range reported by [73]. Sen slope analyses showed that in both
CN0.2 upscaling and downscaling scenario, runoff reduction and incremental rates reduced
toward the high rainfall depths but increased according to the CN0.2 variation percentage.
Lower rainfall depths (20 to 100 mm) had higher runoff variation percentages than higher
rainfall depths (100 to 430 mm), as reported by previous studies [67–70]. Figures 6 and 7
present the overview of the impact of CN0.2 variation on runoff with equations to estimate
the percentage change in runoff.
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Figure 6. Effects of upscaling and downscaling of CN0.2 on runoff. CN0.2 upscaling caused runoff
incremental change and vice versa. Note: CN0.2 upscaling data points refer to primary axis. CN0.2

variations start from CN0.2 = 71, variation range (43 to 99) across rainfall depth range from 25 mm
to 425 mm. The blank circle and triangular data point are benchmark points of CN0.2 ± 10%, the
indicated 19.1% and 61% are runoff reduction and incremental due to CN0.2 variations.
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Figure 7. Response of runoff change to variation of CN0.2. Runoff change % data points are the
averaged runoff change due to CN0.2 upscaling and downscaling of a specific variation %. The blank
data point shows the average runoff change % due to CN0.2 ± 10% variation.

3.5. The Impact of Deforestation and Urbanization on Runoff in Peninsula Malaysia

According to statistics from the Malaysia Department of Forestry, Peninsula Malaysia
went through extensive deforestation from the 1970s. Forest area decreased at fast rates in
the 1980s and started to stabilise in the 1990s. Forest area had reduced by 21.1% from M70 to
M80 and 25.5% from M70 to M90 (Figure 8). Figure 9 was created to show the relationship
between these decadal forest area reduction rate and its corresponding mean inter-decadal
incremental runoff difference (Qv%) across different CN0.2 classes in Peninsula Malaysia.
During the period between M70 and M90 in Peninsula Malaysia, the mean excess (incre-
mental) runoff volume difference for CN0.2 classes ranging from 46 to 70 was calculated
to be 6.8 mm, equivalent to 6.8 million litres per square kilometre. This corresponds to a
10.2% increase in excess runoff, and it occurred simultaneously with a 25.5% decrease in
forest area. These findings provide insights into the hydrological impacts of deforestation
on non-homogeneous catchments. In general, inter-decadal mean runoff differences were
more pronounced in forested and rural catchments (lower CN0.2 classes) than urban areas.
Inter-decadal runoff difference between M70 and M90 is significantly greater than runoff
difference between M70 and M80 (Figure 9).

According to the published data and figures from the Department of Statistics Malaysia [79–87],
the urban population in Peninsula Malaysia had been increasing rapidly (Table 14). In comparison
to the forest area statistics from the Department of Forestry [53–59], an inverse correlation was
identified in SPSS as:

FA = 5.533 + (4.922/Urb-pop) (12)

R2
adj = 0.964, SE = 0.175, p < 0.012

FA = Forest area (Million hectare)
Urb-pop = Urban population in Peninsula Malaysia (Millions)
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Figure 9. Mean inter-decadal runoff incremental % across different CN0.2 classes (46 to 70) between
1970 (M70) and 2000 (M90). Note: The graph was created with decadal runoff models and Malaysia
Department of Forestry data to coincide with the total forest area loss within the same period. On
average, runoff volume for CN0.2 classes ranging from 46 to 70 increased by 10.2% in Peninsular
Malaysia while forest area reduced by 25.5% from 1970 to 2000.

The inverse correlation between urban population and the forest area in Peninsula
Malaysia implies that urban development has significant correlations with deforestation
(Figure 8). On the other hand, the deforestation has a direct impact on runoff amount as
shown in Figure 9.
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Table 14. Decadal urban population and forest area in Peninsula Malaysia [12,80–87].

Year Urban Population (Millions) Forest Area (Millions Hectare)

1970 2.03 8.01
1980 4.81 6.35
1990 7.97 6.27
2000 12.26 5.97

3.6. Decadal λ and Ia

In recent decades, urbanization in Peninsula Malaysia has caused uneven land de-
velopment, leading to non-homogeneity in catchments. This study aimed to address this
issue by calibrating the SCS-CN model using rainfall-runoff data from different decades
to develop decadal models. The models demonstrated a strong ability to estimate runoff
amounts, achieving a Nash-Sutcliffe Index ranging from 0.907 to 0.958 (Table 8), even in
non-homogeneous catchments. These findings suggest that recalibrating the SCS-CN mod-
els based on regional and decadal specific rainfall-runoff conditions could be an effective
approach for estimating runoff in non-homogeneous catchments.

In a previous study by the authors, the optimum λ value for the entire DID HP
27 dataset was identified as 0.051 to model overall runoff conditions. However, in this
study, different optimum λ values were derived for the decadal datasets of M70, M80, and
M90, which also led to changes in the corresponding initial abstraction (Ia) values (Table 7).
Over time, the optimal λ and Ia values for each decade were found to decrease, indicating
changes in land cover resulting from deforestation and urbanization that impact runoff
conditions in rural catchments. The decreasing trend in λ leads to a corresponding increase
in runoff over time in Peninsula Malaysia.

SCS practitioners commonly calibrate CN0.2 with one batch of runoff data and validate
the final results against another batch to determine the optimum CN0.2 value for modelling
a combined dataset. However, this study highlights concerns with this practice due to
land-use and land-cover changes in Peninsula Malaysia, which directly affect catchment
runoff conditions over time.

There is a statistically significant upward trend in runoff (at alpha = 0.01) across all
CN0.2 classes from M70 to M90 due to changes in land use. Therefore, SCS practitioners
must be cautious and aware that blindly accepting the λ value as 0.2 is not advisable, and
it is strongly recommended to derive a regional-specific λ value. Although an optimum
λ value of 0.051 was used in a previous study [50] to model the entire dataset with a
Nash-Sutcliffe value of 0.92, it differed significantly from the optimum λ values of different
decades. Hence, runoff predictive models formulated with different optimum λ values will
yield differences in runoff predictions.

3.7. Rainfall Trend Analyses

The BCa bootstrapping method with a 99% confidence interval was used to analyse
the monthly rainfall trend in Peninsula Malaysia (Figure 10), which revealed that there
has been no significant trend in the monthly rainfall over the past 20 years. The forecasted
rainfall from 2021 to 2022 was consistent with the current trend. The results were supported
by the model generated by Expert Modeler (Figure 11), which indicated that there would
be no significant alteration in the rainfall trend in the near future.
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Figure 11. Monthly rainfall time series forecasting model for Peninsula Malaysia using Expert
Modeler. Modelled period: 2001–2020 (N = 240, see Appendix A). Forecasted period: 2021–2022
(N = 24).

Flood occurrences are strongly influenced by changes in land use, including defor-
estation, agricultural activities, and urbanization. The conversion of natural land cover to
urban and other developed land use can significantly alter the hydrological cycle, resulting
in increased surface runoff and reduced infiltration. This alteration of the landscape can
lead to changes in the frequency, magnitude, and timing of floods, as well as increased
erosion and sedimentation in rivers and streams [37].
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The increase in surface runoff resulting from the conversion of natural land for human
use has caused major flooding in Malaysia [88]. Floods are the most destructive natural
disasters in the country, with an estimated 85 river basins, mainly in Peninsula Malaysia,
prone to recurrent flooding. Based on a study in 2014, approximately 9% of the total area of
Malaysia, covering 29,800 km2, is vulnerable to flood disaster, affecting almost 4.82 million
people, equivalent to 22% of the total population [89]. In 2014, the states of Johor, Kelantan,
Pahang, Perak, and Terengganu in Peninsula Malaysia, which were severely affected by
floods, also recorded high rates of forest loss [38].

Recent floods and landslides in Malaysia have been attributed to deforestation, which
results in the release of sediment and weakened soil. Trees help to prevent sediment runoffs
and hold water, making them an essential factor in maintaining a stable environment. The
excessive clear-cutting of trees for oil palm plantations has been identified as the primary
cause of mudslides in recent times, with poor construction standards also contributing
to the problem. Therefore, it can be inferred that deforestation and poor construction
standards are the key factors responsible for these events, rather than El Niño or global
warming, as suggested by studies [90–94].

4. Conclusions

This study adopted the CN hydrological model calibration technique developed by
the authors in a previous study [50] and applied it in decadal runoff prediction study
in Peninsula Malaysia. The correlation between forest area reduction, urbanization, and
runoff volume increment was established. Highlights of the study are summarized as
below:

1. The use of the conventional SCS-CN runoff model will commit type II error in this
study to predict runoff conditions of different study periods. It must be pre-justified
with statistics and calibrated prior to adoption for any runoff prediction. It is also not
recommended to conduct calibration and validation on the entire DID HP 27 dataset of
this study as each demarcated decade was represented with its unique and statistically
significant runoff predictive model. Calibration and validation methodology based
on the conventional SCS-CN runoff model fail to quantify accurate runoff conditions
spanning across different time periods with significant land-use and cover change.

2. CN adjustment practice to formulate a hydrological model can have a large inherent
error as small adjustments on the curve number can lead to large variation in the
runoff. Given sufficient sample size, SCS-CN runoff model should be calibrated and
formulated according to its unique optimum λ values to represent rainfall-runoff
conditions of different time periods. In this study, when CN value was varied ± 10%,
the average runoff changed by 40%. This study found a significant increase in runoff
across all CN0.2 classes in Peninsula Malaysia due to changes in land use, emphasizing
the importance of deriving a regional-specific λ value and cautioning that different
optimum λ values for different decades will yield differences in runoff predictions.

3. This study emphasizes the significance of accounting for regional and decadal-specific
rainfall-runoff conditions to estimate runoff in non-homogeneous catchments effec-
tively. The calibrated SCS-CN model using data from different decades showed a
remarkable ability to accurately estimate runoff amounts, even in non-homogeneous
catchments. The models achieved a strong ability to estimate runoff amounts, attain-
ing a Nash-Sutcliffe Index ranging from 0.907 to 0.958, even in non-homogeneous
catchments.

4. Calibrated SCS decadal (lump) runoff models show significant decadal runoff uptrend
which coincides with the overall deforestation rate in Peninsula Malaysia. The pre-
sented methodology may become more apparent with regional specific deforestation
rate and its corresponding rainfall-runoff dataset. The reduction of forest area by
25.5% in Peninsula Malaysia between 1970 and 2000 was found to be directly propor-
tional to an increase in excess runoff volume of 10.2%. In general, inter-decadal mean
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runoff differences were more pronounced in forested and rural catchments (lower CN
classes) than urban areas.

5. NASA’s Giovanni system was used to generate 20 years of annual rainfall maps
while monthly rainfall data (2001 to 2020) was also extracted for trend analysis and
short-term forecast. This study found no significant uptrend in the rainfall within the
period, and the occurrence of flood and landslide incidents can likely be attributed to
land-use changes in Peninsula Malaysia.
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Appendix A

Table A1. Monthly rainfall in Peninsula Malaysia from 2001 to 2009 [64].

Year Month Rainfall
(mm/Month) Year Month Rainfall

(mm/Month) Year Month Rainfall
(mm/Month)

2001

1 326

2004

1 206

2007

1 323
2 117 2 80 2 92
3 224 3 185 3 179
4 231 4 174 4 210
5 162 5 178 5 211
6 132 6 127 6 191
7 132 7 211 7 226
8 163 8 163 8 183
9 214 9 259 9 221
10 314 10 374 10 332
11 285 11 285 11 229
12 367 12 270 12 452

2002

1 114

2005

1 94

2008

1 223
2 58 2 73 2 160
3 129 3 142 3 278
4 223 4 155 4 236
5 200 5 230 5 169
6 144 6 152 6 185
7 159 7 183 7 210
8 191 8 172 8 242
9 216 9 195 9 220
10 217 10 318 10 310
11 298 11 401 11 443
12 330 12 406 12 370

https://www.water.gov.my/jps/resources/PDF/Hydrology%20Publication/Hydrological_Procedure_No_27_(HP_27).pdf
https://www.water.gov.my/jps/resources/PDF/Hydrology%20Publication/Hydrological_Procedure_No_27_(HP_27).pdf
https://giovanni.gsfc.nasa.gov/giovanni


Water 2023, 15, 1162 19 of 24

Table A1. Cont.

Year Month Rainfall
(mm/Month) Year Month Rainfall

(mm/Month) Year Month Rainfall
(mm/Month)

2003

1 263

2006

1 194

2009

1 248
2 122 2 244 2 107
3 193 3 142 3 330
4 204 4 208 4 208
5 14 5 243 5 221
6 181 6 201 6 120
7 209 7 167 7 162
8 220 8 160 8 232
9 205 9 210 9 209
10 370 10 242 10 257
11 345 11 310 11 407
12 369 12 372 12 335

Table A2. Monthly rainfall in Peninsula Malaysia from 2010 to 2018 [64].

Year Month Rainfall
(mm/Month) Year Month Rainfall

(mm/Month) Year Month Rainfall
(mm/Month)

2010

1 151

2013

1 204

2016

1 137
2 73 2 289 2 124
3 147 3 88 3 57
4 206 4 188 4 77
5 232 5 191 5 237
6 231 6 126 6 185
7 213 7 159 7 182
8 181 8 171 8 162
9 202 9 230 9 215
10 218 10 315 10 275
11 333 11 287 11 305
12 363 12 432 12 370

2011

1 327

2014

1 166

2017

1 408
2 50 2 23 2 149
3 368 3 90 3 203
4 158 4 153 4 259
5 193 5 264 5 245
6 151 6 136 6 156
7 114 7 150 7 169
8 198 8 217 8 248
9 220 9 179 9 281
10 388 10 292 10 247
11 384 11 355 11 433
12 392 12 643 12 271

2012

1 238

2015

1 134

2018

1 442
2 146 2 71 2 74
3 262 3 11 3 140
4 230 4 201 4 164
5 239 5 181 5 236
6 97 6 163 6 172
7 152 7 133 7 149
8 187 8 242 8 123
9 239 9 210 9 218
10 254 10 247 10 330
11 260 11 340 11 279
12 492 12 226 12 360
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Table A3. Monthly rainfall in Peninsula Malaysia from 2019 to 2020 [64].

Year Month Rainfall (mm/Month)

2019

1 164
2 68
3 92
4 167
5 236
6 210
7 108
8 148
9 149

10 320
11 274
12 261

2020

1 108
2 121
3 110
4 262
5 241
6 249
7 275
8 142
9 246

10 213
11 401
12 360

Appendix B

Using M70 dataset as a calculation example, the optimum λ value was identified to be
0.049 (Table 7). Substituting it into Equation (1) to obtain:

Q0.049 =
(P − 0.049S0.049)

2

P − 0.049S0.049 + S0.049

Substituting Equation (6) into S0.049 in above will yield:

Q0.049 =

[
P − 0.049

(
1.184S0.2

1.081
)]2

P + 0.951
(

1.184S0.2
1.081

)
Substituting S0.2 = (25,400/CN0.2) − 254 into S0.2 in above to obtain:

Q0.049 =

[
P − 0.049

{
1.184

(
25,400
CN0.2

− 254
)1.081

}]2

P + 0.951
{

1.184
(

25,400
CN0.2

− 254
)1.081

}

Q0.049 =

[
P − 23.077

(
100

CN0.2
− 1
)1.081

]2

[
P + 447.876

(
100

CN0.2
− 1
)1.081

] (A1)

Equation (A1) is also subject to the constraint P > 0.049S0.049

Or P > 23.077
(

100
CN0.2

− 1
)1.081

else Q0.049 = 0
P = Rainfall depth (mm)
CN0.2 = Conventional SCS tabulated curve number
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Q0.049 = Runoff depth (mm) of λ = 0.049 for M70 dataset.
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