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Abstract: For socioeconomic development in arid regions, there is an increasing need for groundwater
resources due to rapid population expansion. It is necessary to apply innovative approaches for
managing the sustainability of groundwater resources. Thus, remote sensing, geologic, climatic,
and hydrologic data are integrated through the GIS-based frequency ratio and overlay analysis
for assessing the spatial distribution of groundwater potential zones (GWPZs) of Wadi Al Hamdh,
Saudi Arabia. Twelve factors controlling groundwater’s existence and infiltration were identified,
normalized using the frequency ratio technique and combined through GIS techniques. To accomplish
this, 313 well locations in the study area were used for training (70%) and 137 well locations were
utilized for validation (30%). Using receiver operating characteristic (ROC) curves and field data,
the model predictions were validated and showed very good performance (AUC: 0.893). The five
zones on the GWPZs map correspond to 2.24, 5.81, 13.39, 53.90, and 24.65% of the entire area. These
are: excellent, good, moderate, low, and very low perspectivity. As a good example, the applied
approaches provided very good results that are significant to planning and sustainable development
as well as managing groundwater resources in arid regions.

Keywords: modeling; groundwater; GIS; remote sensing; Al Madinah; Wadi Al Hamdh

1. Introduction

More than two billion people worldwide suffer from limited access to fresh water,
according to The United Nations World Water Development Report [1]. By around 2050,
over one-third of the global population would suffer a significant water crisis if the present
level of water contamination and use are still not lowered [1]. Surface water supply systems
have been facing difficulties due to rapid urbanization, a growing population, ecological
pollution, and factors such as climate change and water insufficiency [2]. Such surface
freshwater represents less than 1% of the world’s freshwater in lakes and rivers, while over
30% of it is preserved underground as aquifers [3]. Freshwater supplies are under great
stress everywhere in the globe, particularly in emerging nations [4,5].

In dry and semi-arid areas, groundwater represents the most valuable natural resource.
The supply of groundwater contributes roughly 50% of the water used for potable use,
40% for industry, and 20% for agriculture [6]. As compared to surface water, groundwater
is less exposed to contamination and evapotranspiration. Groundwater can also be drawn
during any part of the year, and unexpected droughts have a lower effect [7–9]. Due to
the over exploitation of groundwater, its levels are decreasing. Daily losses are being
recorded in the underground water supply [10]. For the best use and preservation of this
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priceless commodity, it is crucial to identify groundwater potential areas [11]. Drilling
and geoelectric monitoring are two conventional techniques for finding groundwater;
they are exceedingly time-consuming and expensive. Recent techniques can estimate the
groundwater potential depending on the watershed’s characteristics, and the data they
produce are more reliable [12–14].

Wadi Al Hamdh, as a part of arid-semi arid regions in the west of the Arabian Penin-
sula, was chosen in the present study due to its significant area (108,457 sq km) that catches
rainfall, location (east of the Red Sea), extension mainly through at five territories (e.g., Al
Madinah, Makkah, Riyadh, Ha’il, and Tabuk), and prominent climatic and hydrologic
conditions in Saudi Arabia (Figure 1).
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Figure 1. Location map of the Wadi Al Hamdh watershed. (a) A watershed of the study area in red
overlain the Rainfall map; (b) A red polygon of the study area overlain the Saudi Administrative
map; (c) Points showing farms, and wells.

Mapping groundwater resources, using remote sensing (RS) and geographic infor-
mation systems (GIS), has become an increasingly popular technique [15,16]. Numerous
elements, including geology, topography, climatic conditions, soil, land use, land cover,
slopes, distances from rivers, and precipitation levels, have an impact on groundwater
dispersion [7,17]. During the past few years, numerous scientists have employed a variety
of cutting-edge analysis techniques and simulation approaches to pinpoint places with
groundwater potential [7,18–20].

Frequency ratio (FR), for example, is a data-driven model that is frequently used
in groundwater prospection [21]. This method improved the prediction output and was
adopted for the groundwater potential zone, which helps decision-makers [22–26]. In
order to assign rating (r) values to each class, the FR technique establishes the geographical
linkages between the dependent variable, existing wells (spring wells, observation wells),
and the independent variables, classes of thematic layers [27–30]. The FR is frequently used
to map groundwater potential in a wide range of different circumstances [26,31–33]. In this
model, the value of FR is computed from the thematic layers of the utilized factors that
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identify groundwater availability [34]. This method uses a variety of criteria, derived from
remote sensing data for the purpose of predicting groundwater occurrences. The study
area was not undergoing extensive exploration using recent techniques of remote sensing
and GIS. Therefore, the present study employs remote sensing data, field data, a GIS-based
frequency ratio, and overlay analysis techniques to identify and combine data (twelve
factors) derived from hydrologic, geological, climatic, and topographic factors in the Wadi
Al Hamdh watershed area of Saudi Arabia in order to estimate the groundwater-promising
zones, and to identify appropriate locations for artificial groundwater recharge.

2. Geologic and Hydrogeological Setting of the Study Area

The Wadi Al Hamdh basin includes Al-Madinah Governorate, while a few tributaries
extend to Ha’il, Tabuk, and Makkah regions (Figure 1). Al-Madinah Al-Munawarah lies in
the western part of the Arabian Peninsula that is considered a part of the Arabian Shield,
comprising of Precambrian crystalline rocks, and underlying the alluvial sediments of
the Quaternary age. Neoproterozoic basement rock units that comprise two groups of
volcanic and sedimentary rocks [35] extend in the northern part of the Hijaz terrane [36] that
comprises the Al Ays Group and Furayh Groups. The Saudi Arabian Paleozoic Sedimentary
Strata (Paleozoic Sandstones) are known to crop out in a limited zone encompassing the
Arabian Shield from the East and edge it to create the base of the Arabian Platform’s
enormous sedimentary strata from the West. The most significant and prolific “tight gas”
and “shale gas” unconventional reservoirs are represented by it [37]. They have a thickness
of roughly 500 m on the surface. Paleozoic sedimentary rocks are more than 4500 m thick
in Saudi Arabia’s subsoil [38].

Tertiary and Quaternary basalt are Neogene-Quaternary volcanics that make up the
Cenozoic (Neogene-Quaternary) volcanics. The volcanic provinces of Neogene to Quater-
nary flood basalt known as the Harrat Rahat contain volcanic units. These Cenozoic basalts
are unconformably deposited over both Precambrian rocks and wadi sediments close to
Al-Madinah [39]. The uppermost weathered basalt flows are hydrologically connected
units where groundwater is plentiful in the study region. Unconfined to semi-confined
conditions are present in the groundwater. The Quaternary deposits (clay sand and gravel)
in the Harrat Rahat were produced by the weathering of Precambrian rocks with exposures
of basalt from the late Tertiary and Quaternary. The water table is between 28 and 93 m
below the surface, while the sub-basaltic alluvial aquifer’s groundwater level is from 535
to 594 m deep [40,41]. Instead of other sections in Al-Madinah, the direction of the water
drain is from the west (Wadi Al Aqiq) towards the central and southern parts.

3. Data and Methods

To reveal potential prospective areas of groundwater in the Al-Madinah area, west
of Saudi Arabia, a variety of satellite radar and optical data were gathered. To map the
topographic features and determine the catchment characteristics, the SRTM DEM data
were applied. Additionally, optical data were used to characterize the study area’s land-use
and cover (Figure 2). During the field study, groundwater data were collected, including
the locations of groundwater wells, the density and distribution of irrigated farms, and
flow discharge.

The USGS data resource center offers downloads of the SRTM DEM data with a
spatial resolution of about 90 m. The watershed, stream networks, altitudes, slope, surface
curvature, topographic wetness index (TWI), terrain roughness index (TRI), drainage
density, and distance to river factors are used to define them using ArcGIS. The automatic
delineation of stream extractions was carried out using the D8 approach [42]. For the
purpose of determining other characteristics, the stream ordering was identified.

On 11 February 2013, Landsat 8 launched with the Landsat- OLI, an optical sensor with
nine spectral bands. On 29 October 2022, two Level 1 scenes (path/row 170/043) of OLI
data were obtained. The acquired images were masked and connected to the UTM Zone
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37 N coordinate system. In this study, image enhancement and transformation methods
were carried out using the OLI bands 2, 3, 4, 5, and 7.
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Figure 2. Diagram showing data and methods used in this study.

Multiple advanced very high-resolution radiometer (AVHRR) daily observations are
computed to generate a nearly cloud-free image that exhibits the maximum amount of
greenness. This is how the NDVI composites are created. A derived NDVI band composite
is created by combining the NDVI ratio from bands one and two of the AVHRR composite.
The data were downloaded from USGS EROS Archive-AVHRR NDVI Composites.

TRMM satellite recordings were used to obtain information on average rainfall. The
obtained average rainfall statistics spanned from 1 January 1998 to 30 November 2015. They
were spatially distributed using kriging interpolating tool. All such data are accessible at
this URL: https://giovanni.gsfc.nasa.gov/giovanni/ (accessed on 30 November 2016).

The Sentinel-2A satellite was launched on 23 June 2015, and the first data was collected
a few days later. Sensors on Sentinel-2 collect information in the VIS/NIR, SWIR, and TIR
wavelength ranges. The spatial resolution of these bands is 10–60 m. In total, 13 bands in
the VIS/NIR and SWIR spectrum are recorded by Sentinel-2. The coastal band B1 (443 nm)
has a 60 m pixel geometry, while the VIS/NIR bands have pixel sizes of 10 m for the blue B2
(490 nm), green B3 (560 nm), red B4 (665 nm), and infrared B8 (842 nm). The SWIR bands
(B11: 1610 nm, B12: 2190 nm) have 20 m-wide pixels. Sentinel-2 scenario is provided in
Sentinel’s proprietary SAFE format as zip-compressed files. JPEG files are used to preserve
the spectral bands. In this SAFE file, the spectral bands are saved as jpg images with
three distinct geometric resolutions (10 m, 20 m, and 60 m). A single GeoTIFF file with a
uniform pixel size of 10 m is created by stacking the jpg files of bands B2, B3, B4, and B8
with a spatial resolution of 10 m and B11 and B12 with a resolution of 20 m. To minimize
time and data calculation, a portion of these data were processed using SNAP software
during preprocessing.

The classes of each thematic layer were done using the “Natural breaks classifier,”
designed to optimally group similar values together and maximize the contrasts between
classes (Jenks). A data clustering technique known as the Jenks optimization model, often
known as the Jenks natural breaks classification method, aims to find the optimal grouping
of values into several groups. Every thematic layer’s pixel was compared with the same
spot in the applied overlay analysis. This means that several elements of the input eleven

https://giovanni.gsfc.nasa.gov/giovanni/


Water 2023, 15, 1154 5 of 21

layers should be combined to create a GWPZs map as the output. Noteworthy, each
layer and subclass has a numerical rank assigned to it. This gives the user the ability to
mathematically merge the layers and assign a new rank to each pixel in the final GWPZs
map. The minimal input cell size (90 m) was integrated with the research area’s GWPZs
map, which represents the weighted average of the combined data-based maps (multi-
criteria), in this model utilizing a weighted overlay method based on GIS. The below
formula was used to do this.

GWPZs =
n

∑
i=1

Li × Fi (1)

where Fi refers to the strength of the inter-map (sub-class) features and Li denotes the
normalized weight of an evidentiary layer of the i parameter. This enables the eleven
thematic maps to be blended according to the equation on a pixel basis.

4. Results
4.1. Elevation

Groundwater and surface runoff are influenced by altitude in terms of their direction
and speed [43]. Elevation has a significant effect in revealing GWPZs [44]. As opposed
to how it relates to the groundwater resource [45]. The areas of high altitude cannot hold
precipitation that accumulates in areas of low topography in the downstream [14]. The
study area’s elevation map (Figure 3a) has been divided into five zones: 0–485, 485–756,
756–972, 972–1219, and 1219–2335 m, which cover, respectively, 7.81, 15.12, 38.89, 28.25, and
9.92% of the basin.
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4.2. Slope

Slope is a prominent factor that controls groundwater potentiality and has a direct
effect on the passage of rainwater [46]. Additionally, it can act as a broad guide to the
direction of groundwater movement [47]. The amount of groundwater recharge is less at
higher, steeper slopes because the water does not have enough time to percolate into the
water table, and instead quickly spills over the surface. Conversely, the gentle slope plain
areas can discharge the runoff water and increase the groundwater accumulation [48]. By
affecting rates of surface infiltration and runoff as well as subsurface drainage, the slope
angle regulates recharge [49]. The elevation map of the study area (Figure 3b) has been
divided into five zones: 0–3.7, 3.7–9.49, 9.49–17.4, 17.14–26.90, and 26.90–67.25, which cover,
respectively, 2.26, 5.74, 9.81, 16.57, and 65.64% of the basin.

4.3. Terrain Roughness Index (TRI)

The terrain roughness index (TRI) is one of the geomorphic features that is related
to the occurrence of groundwater potentiality. It was designed to evaluate landscape
variability and can be used to explore for groundwater [50,51]. This variable can be
determined using the following equation:

TRI =
√
(max2 − min2) (2)
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According to the buildup and infiltration of groundwater, the resulting TRI map was
classified into five zones: 0.11 to 0.41 (low), 0.41 to 0.56 (moderate), and 0.56 to 0.89 (high)
and 28.71, 46.17, and 25.12% of the basin are taken up by these regions.

4.4. Curvature

The curvature of the land-surface is an important factor in water accumulation, perco-
lation, and runoff [52,53]. It serves as a representation of the geometry of the land surface.
The curvature layer, which is divided into three kinds: concave, convex, and flat, is pro-
duced using the DEM (Figure 3d). The land surface curvature can be used to locate areas
that will capture rainwater runoff. Convex surfaces are less effective in collecting water
than curved and flat areas, which also have a higher infiltration rate. An area with a high
value of curvature is considered of high-grade value because water prefers to occur on flat
and concave land surfaces [53]. The results were divided into three categories: low (−9.3 to
−0.62), moderate (−0.61 to −0.5), and high (0.51–9.6).

4.5. Drainage Density (Dd)

The Dd is one of the key indications of both the incidence and replenishment of ground-
water [54]. It is the sum of all drainages in a basin divided by the sum of all its areas [55].
The Dd shows how the formation of the surface to the subsurface is distinct and it alludes
inadvertently to the soil properties that determine soil infiltration ability [56]. Areas with
low drainage density have higher levels of penetration and lower levels of runoff [16]. This
implies that areas with lower drainage density are favorable for groundwater infiltration
and productivity [57]. Therefore, the automatically extracted stream-networks (Figure 4a)
in the study area are grouped into five classes: 0.028–0.14, 0.15–0.2, 0.21–0.24, 0.25–0.29,
0.30–0.39 that cover 9.47, 20.32, 27.19, 26.69, and 16.34, respectively (Figure 4b).
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4.6. Topographic Wetness Index (TWI)

The TWI is one of the crucial secondary terrain parameters that determine the availabil-
ity of groundwater [58]. TWI identifies the connection-relationship between earth surface
wetness and slope variation [59]. This index depicts how geography affects the amount of
water that accumulates in an area. Therefore, steep slopes and higher elevations have more
runoff, which reduces their ability for water storage. In contrast, low-lying areas have more
ability for topographical wetness or water storage in the studied region [60]. The results of
the TWI map were divided into three categories: low (3.8 to 8.1), moderate (8.1 to 12), and
high (12 to 28), covering areas of 38.45, 49.24, and 12.30%, respectively (Figure 4c).

4.7. Distance to River

Groundwater recharge in arid and mountainous terrain primarily results from infil-
tration from streams [61] during rainstorms. The separations between sites and streams
are crucial signs indicating the possibility of groundwater extraction [62]. Groundwater
recharge often declines the farther distance it is from streams. Therefore, the bedrock reser-
voirs in valleys contribute through stream leakage [58]. We used the Euclidean distance tool
from the spatial analyst tools in Arc GIS 10 to extract the distance to river categories [21].
The resulted map (Figure 4d) is classified into three classes are 0–500, 500–2900, 2900–8200,
which cover 15.45, 36.05, and 48.50, respectively.
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4.8. Lithology

Rock units have a direct correlation to recharge capability, where each type has a
unique water body and rate of water recharge [63]. Porosity, permeability, and ground-
water flow within the surface material are all impacted by the many forms of lithology
and their properties, including texture and pore spaces [9,24,64]. Due to its recent de-
position, higher permeability, and higher productivity, the Quaternary alluvial has good
promise [65,66]. Therefore, the studied basin is classified into Precambrian, Cenozoic vol-
canics, Paleozoic sediments, and Quaternary deposits, which cover 61.63, 24.37, 9.83, and
4.17, respectively. It is noteworthy that Precambrian and Cenozoic volcanics cover most of
the study area (Figure 5a).
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4.9. Soil

Soil is a key geomorphological component of the porosity, permeability, and geometry
of rocks. Hence, it represents an important factor in delineating the GPZs of a region.
The amount of flow and infiltration is significantly influenced by the soil type [57]. Water
movement can be significantly impacted by the size, shape, and arrangement of soil grains
as well as their associated pore-systems [67]. Therefore, soil texture has a direct impact
on porosity and permeability. Due to its permeability and porosity, fine-grained soil of
a well sorted material such as sand has a lower rate of infiltration than coarse-grained
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soil [68]. Considering that sandy soil has a high rate of penetration, coarser loamy soil with
a high sand content has been given higher priority. In the meantime, fine soil with a lower
infiltration rate due to a higher clay content has been given low priority [69]. The studied
basin is occupied by clay loam, sandy clay loam, clay, and loam. These cove 37.63, 32.12,
25.63, and 4.57% of the area, respectively (Figure 5b).

4.10. Lineaments

Deeper geological structures, such as faults, fractures, and ruptures with no dis-
cernible fracture displacement can be observed as lineaments on the surface of the earth’s
crust [70,71]. They serve as a conduit for the movement of groundwater, which results in an
increase in secondary porosity and can therefore be used to identify potential groundwater
zones [72]. Significant groundwater prospects could exist in a high-lineament density loca-
tion. Lineaments offer crucial knowledge about surface and subsurface fracture systems,
which may regulate the circulation and collection of groundwater [71,73,74]. This has been
applied to identify possible locations for runoff water collection [75,76] and the distribution
of groundwater resources. Higher lineament densities indicate permeability regions, which
suggest promising regions for groundwater potential [71,77]. The lineaments (Figure 5c)
of the studied basin were digitized from the Landsat and SRTM data, then they were
converted to a lineament density map using Spatial Analyst of ArcGIS. The lineament
density map is classified into four classes which are 0–5, 5–9.3, 9.3–14, 14–26, which cover
30.49, 37.84, 23.57, and 8.10%, respectively (Figure 5d).

4.11. NDVI

The NDVI is a frequently used factor for groundwater potential zones [56,78]. The
NDVI map was utilized to show the vegetation coverage and density. The NDVI layer
was derived from data of the Advanced Very High-Resolution Radiometer (AVHRR). The
NDVI ranges from −1 to 1, commonly referred to as 240 to 10,000; a higher NDVI value
denotes dense vegetation. The NDVI result map of the study area ranges from 240 to
10,000 and is classified into four classes based on the natural break method which are
240–1000, 1000–1400, 1400–2600, and 2600–10,000, respectively (Figure 6a), and these cover
areas of 37.36, 46.12, 15.90, and 0.62% of the area, respectively (Table 1).
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Table 1. Factors influencing groundwater occurrence and computed FR values.

Topography No .Pixels in
Domain Domain % No. Wells No. Wells % FR

0–485 1,046,241 0.078 36 0.12 1.47

485.01–756 2,025,026 0.151 156 0.50 3.30

756.01–972 5,207,302 0.389 116 0.37 0.95

972.01–1219 3,782,988 0.283 4 0.01 0.05

1219.1–2335 1,328,281 0.099 1 0.00 0.03

Slope classes

0–3.7 8,768,661 0.656 266 0.85 1.29

3.7–9.49 2,213,055 0.166 33 0.11 0.64

9.49–17.14 1,310,133 0.098 8 0.03 0.26

17.14–26.90 766,364 0.057 4 0.01 0.22

26.90–67.25 301,435 0.023 2 0.01 0.28

Dd

0.028–0.14 2416 0.095 2 0.01 0.07

0.15–0.2 5185 0.203 21 0.07 0.33

0.21–0.24 6939 0.272 55 0.18 0.65

0.25–0.29 6813 0.267 113 0.36 1.35

0.3–0.39 4170 0.163 122 0.39 2.39

NDVI

235–1043 268,046 0.374 32 0.10 0.27

1043–1380 330,950 0.461 72 0.23 0.50

1380–2639 114,115 0.159 127 0.41 2.55

2639–10,000 4419 0.006 82 0.26 42.54

Dist to Rivers

0–500 12,371 0.485 258 0.82 1.70

510–2900 9194 0.360 47 0.15 0.42

3000–8200 3940 0.154 8 0.03 0.17

TRI

0.11–0.41 3,852,555 0.287 103 0.33 1.15

0.42–0.56 6,194,486 0.462 120 0.38 0.83

0.57–0.89 3,370,565 0.251 90 0.29 1.14

Lineament density

0–5 9813 0.305 6 0.20 0.66

5–9.3 12,178 0.378 4 0.13 0.35

9.3–14 7587 0.236 7 0.23 0.99

15–26 2608 0.081 13 0.43 5.35

Soil

Clay_Loam 7,226,776 0.377 142 0.45 1.20

Sandy_Clay_Loam 6,161,094 0.321 84 0.27 0.84

Clay 4,914,699 0.256 38 0.12 0.47

Loam 876,276 0.046 49 0.16 3.43
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Table 1. Cont.

Topography No .Pixels in
Domain Domain % No. Wells No. Wells % FR

Rainfall

0.066–0.11 3925 0.241 101 0.32 1.34

0.12–0.14 2931 0.180 11 0.04 0.20

0.15–0.16 4477 0.274 90 0.29 1.05

0.17–0.19 3394 0.208 95 0.30 1.46

0.2–0.24 1590 0.097 16 0.05 0.52

Curvature

neg 9.3 to neg
0.64 781,089 0.058 9 0.03 0.49

neg 0.62 to
0.5 11,557,636 0.863 298 0.95 1.10

0.51–9.6 1,051,113 0.079 6 0.02 0.24

TWI

3.8–8.1 5,137,005 0.385 64 0.20 0.53

8.2–12 6,578,827 0.492 185 0.59 1.20

13–28 1,643,816 0.123 64 0.20 1.66

GEOLOGY

Precambrian 19,975 0.616 218 0.70 1.13

Cenozoic
volcanics 7897 0.244 79 0.25 1.04

Paleozoic 3187 0.098 5 0.02 0.16

Quaternary
deposits 1351 0.042 11 0.04 0.84

4.12. Rainfall Data (TRMM)

Water availability in a network is defined by rainfall patterns. Thus, the amount
of rainfall is one of the crucial factors in identifying groundwater potential zones and
is the hydrologic method of recharging aquifers [54]. Rainfall causes a particular land
area’s likelihood of having groundwater to rise [79]. Using rainfall information from the
TRMM data, researchers may monitor, record, and measure the downpour rates within
the examined watershed. The main sources of groundwater are infiltration and drainage
from precipitation. It is the primary natural recharge source that initiates groundwater
supplies [19,80]. The rainfall intensity map was classified into five classes which are
0.066–0.11, 0.11–0.14, 0.15–0.16, 0.16–0.19, and 0.20–0.24, which cover 24.05, 17.96, 27.44,
20.80, and 9.74, respectively (Figure 6b). Rainfall allows accumulation that facilitates
groundwater infiltration, which replenishes the shallow acquirers (Figure 7), as the area
was recently hit by rainfall storms.
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5. Groundwater Potential Mapping

Utilizing the FR model, we determined the locations of the wells (nearness for the
groundwater) and the controlling factors (Table 1). FR values below 1 are thought to suggest
weak correlations, while those above 1 are thought to show strong correlations [26,81]. The
highest FRs were found in the elevation classes from 485–756 (3.30), followed by those from
0 to 485 (1.47), but the lowest FR was found in the elevation classes from 1219 to 2335 (0.03).
This was the case for areas with lower elevation which are more likely to hold groundwater
than higher elevation [16]. This correlated with areas of low slope that positively related to
high groundwater potential. The areas with slopes from 0 to 3.7 had high FRs (1.29) but
steep slopes 26.9–67.25 (0.28). Noteworthy, areas with lower TRIs (from 0.11 to 0.41) have
the highest FR’s values (1.15) that are followed by 0.57–0.89 (1.14) but the class of 0.42–0.56
(0.83) is the lowest (Table 1). Additionally, the curvature class −0.62 to 0.5 is the highest
value, 1.103, that almost reveals areas that are almost flat, but areas of highest curvature
displayed a low FR value (0.244).

The Dd classes display a positive correlation and steady increase with the FR values
(Table 1). The zones with high Dd values (from 0.3 to 0.39) have greater FRs (2.38), whereas
the regions with low Dd values have the lowest FRs (Table 1). Likewise, the TWI classes
with higher values reveal higher FR values e.g., from 3.87 to 8.1 (FR = 0.53), followed by
the TWI classes from 8.2 to 12 (FR = 1.20) and from 13 to 28 (FR = 1.66). Additionally, the
values of the FR show a negative association as river distance increases. From 0 to 500, the
locations closest to the rivers had the highest FRs (1.7), whilst the locations further away
from the rivers had poor potentiality (FR = 0.165).

In terms of geologic characteristics, the Precambrian rocks display a high FR value
(1.13) that is followed by Cenozoic volcanics (1.04), and Quaternary deposits (0.84), but the
Paleozoic rock unit has the lowest (0.16). Loam, and clay loam classes have the highest,
3.43 and 1.20, respectively, but clay soil is the lowest (0.47). Furthermore, the higher the
lineament density values, the higher the FR values, e.g., 0 to 5 (FR = 0.656; lowest) but
15–26 (FR = 5.34; the highest). The NDVI class displays a strong positive correlation with
FR values. The NDVI classes with higher values, 2639–10,000, have FR = 42.54, but with
low NDVIs from 235 to 1043 have the lowest (FR = 0.27). In terms of the rainfall classes, the
areas that received from 0.17 to 0.19 mm/day had the highest FR value (1.46), followed by
those that received from 0.066 to 0.11 mm (FR = 1.34).

The twelve evidential layers are combined based on the discussed FR values. Follow-
ing that, we divided the combined groundwater potential zones (GWPZs) map, created by
combining 12 thematic maps, with the natural breaks method into five categories (Figure 8a:
2.24, 5.81, 13.39, 53.90, and 24.65%). These, respectively, are very good, good, moderate,
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low, and very low. Using the ROC curve, the GWPZ map of the study area is validated
(Figure 9). The AUC can be used to describe the system’s capacity to accurately predict
both the occurrence of “groundwater” and its absence, which emphasizes the value of
its estimate. AUC values vary from 0 to 1, with smaller values suggesting a more useful
prediction, and greater values reflecting more accurate estimates. The AUC result of the
model is 0.893, representing better accuracy. The field observations validated the GWPZ
map as several wells are consistent with the zones of high potentiality. Additionally, several
farms coincide with those zones (Figure 10). Vegetation and water resources make up
the majority of the extremely high to extreme GWPZs, according to the Landsat-9 band
composites 7, 5, and 3 (Figure 11a–c) and Sentinel-2 (Figure 11d,e).
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Figure 10. Field observations (a) Madaen Saleh; (b) Al Ula area displays the pumping well and
vegetated area; (c–e) water wells at Al Madinah; (f) Al Yutamah area that is enriched in date palm
trees; (g) Wadi Aqiq surface water flow during rainy storms.
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Figure 11. Landsat-9 of the study area (a) vegetated areas around Al Madinah and Quaternary
volcanics in black; (b) Al Yutamah farms south of Al Madinah; (c) Adh Dhumainah farms south of Al
Madinah; (d) band combination 12, 8, 3 of Sentinel-2 of the area south of Al Madinah; (e) Sentinel-2
of Alyutamah area reveal the signature of surface water in a bright tone. Polygon in magenta color in
Figure 8 is the reference location for these sub-figures.

6. Discussion

Using the FR model, we determine here the spatial relations between features and
controlling factors (Table 1). Areas of low elevation and slope are more likely to hold
groundwater than higher elevation [14,16,79]. This correlated with areas of low slope that
are positively related to high groundwater potential. In terms of the hydrologic properties,
the Dd reveals areas of high FR values and groundwater potentiality. The groundwater
potential was promising for the highest TWI classes as TWI positively correlated with FR
values [26]. The areas close to the streams from 0 to 500 had the highest FRs (1.7) which
reveals that the nearness to the streams results in more recharging capability. However,
areas farther from the rivers had low potentiality. In terms of geologic properties, the
Precambrian rocks display a high FR value and groundwater potential, as such areas are
dominated by basement rocks that hold groundwater in a fractured aquifer. This coincides
with the FR values that are higher with the lineament density as the Precambrian and
Cenozoic volcanic rocks must have fractures to hold groundwater. The groundwater
potential probability has a strong positive correlation with NDVI values, as the highest
FR values coincide with the occurrence of vegetation and hence groundwater in arid
regions [26] and rainfall intensity. Although the area is characterized by rugged terrain
with limited rainfall, combining the evidential layers revealed that good and very good
zones cover ~8% of the study region.

Basement rocks and brecciated vesicular basalts in the area are overlain by allu-
vium that is composed of breccia and conglomerates, and the siltstone and the claystone
(Figure 12). Such rock units that are highly fracture, represent the main aquifer system
that is recharged by the structurally controlled drainage pattern, e.g., parallel drainage in
a northwesterly direction probably related to the Najd Fault System along with the N-S
and the cross-cutting E-W Cenozoic trans tensional faults. The latter are related to the Red
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Sea Opening [82]. Water occurrences can be significantly controlled by the size, shape, and
arrangement of soil grains, as well as their associated pores systems Therefore, fine-grained
soil of well sorted material such as sand has a lower rate of infiltration than coarse-grained
soil [68]. Accordingly, loam, sandy clay loam, and clay loam classes which occupy about
75% of the area have the highest FR values but clay soil has the lowest.
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Figure 12. Vegetated areas at Wadi Al Ula Town. These are irrigated using groundwater wells
abstracted from clastic Paleozoic rocks aquifer. Wadi Al Qura passes through Al Ula town, formed by
Tertiary N-S graben system that deformed the Paleozoic rocks.

The Wadi Al-Aqiq valley connects all valleys at Al-Ayoun in Al-Madinah Al-Munawarah,
providing a 150 km recharging region south of Al-Madinah. It discharges its water in a trellised
drainage pattern. The Wadi Qanah-Al-Hamdh watershed connects all the valleys in the Al-
Madinah and flows from the southeast to the northwest. It is >400 km long and around 150 km
wide [83]. The three mentioned sub-basins flow in the Tayef region; the Wadi Qanah-Al-
Aqul valley is 300 kilometres southeast of Al-Madinah. These valleys’ watersheds display
a trellised structure of drainage, which may be related to the Red Sea Rift. Additionally,
groundwater wells that draw water from an aquifer of clastic Paleozoic rock are used to
irrigate vegetation in Al Ula Town (Figure 12).

7. Conclusions

In arid and hyper-arid locations, groundwater is especially a crucial supply of water
for sustainable development. To reveal, evaluate, and monitor exploration data for water
resources in various climatic situations, RS data and GIS-techniques are effectively merged.
W. Al-Hamdh, in the Al-Madinah Al-Munawarah area, in the western part of Saudi Arabia
was investigated using remote sensing and GIS techniques. The main goal was to identify
prospective zones of groundwater potential and recharge zones. Here, we integrated
twelve GIS thematic layers that depict the geology, geomorphic, climatic, and hydrologic
conditions. These layers are soil, lithology, slope, elevation, curvature, TRI, Dd, TWI,
distance to river, rainfall, NDVI, and lineament density. They were processed, normalized
and integrated using GIS-based FR-overlay model. The result revealed the groundwater
prospective areas, which are here categorized into five zones: very good, good, moderate,
low, and very low that covering 2.24, 5.81, 13.39, 53.90, and 24.65% of the entire area.
Field observation and the AUC validated the model which presented good performance
(AUC: 0.893). The promising areas represent the artificial abstraction for groundwater
supply. Overall, decision-makers and sustainability considerations greatly benefit from
resultant GWPZ using RS and GIS. Moreover, this approach can be applied on a regional
scale and in areas with comparable conditions.
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