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Abstract: The estimation of reference evapotranspiration (ETo), a crucial step in the hydrologic cy-

cle, is essential for system design and management, including the balancing, planning, and sched-

uling of agricultural water supply and water resources. When climates vary from arid to semi-arid, 

and there are problems with a lack of meteorological data and a lack of future information on ETo, 

as is the case in Egypt, it is more important to estimate ETo precisely. To address this, the current 

study aimed to model ETo for Egypt’s most important agricultural governorates (Al Buhayrah, 

Alexandria, Ismailiyah, and Minufiyah) using four machine learning (ML) algorithms: linear re-

gression (LR), random subspace (RSS), additive regression (AR), and reduced error pruning tree 

(REPTree). The Climate Forecast System Reanalysis (CFSR) of the National Centers for Environ-

mental Prediction (NCEP) was used to gather daily climate data variables from 1979 to 2014. The 

datasets were split into two sections: the training phase, i.e., 1979–2006, and the testing phase, i.e., 

2007–2014. Maximum temperature (Tmax), minimum temperature (Tmin), and solar radiation (SR) 

were found to be the three input variables that had the most influence on the outcome of subset 

regression and sensitivity analysis. A comparative analysis of ML models revealed that REPTree 

outperformed competitors by achieving the best values for various performance matrices during 

the training and testing phases. The study’s novelty lies in the use of REPTree to estimate and 

predict ETo, as this algorithm has not been commonly used for this purpose. Given the sparse 

attempts to use this model for such research, the remarkable accuracy of the REPTree model in 

predicting ETo highlighted the rarity of this study. In order to combat the effects of aridity through 

better water resource management, the study also cautions Egypt’s authorities to concentrate their 

policymaking on climate adaptation. 

Keywords: reference evapotranspiration; machine learning algorithms; linear regression; random 

subspace; additive regression; reduced error pruning tree; water resources management;  

climate-resilient pathways 

 

1. Introduction 

Evapotranspiration is the sum of evaporation from the ground surface plus tran-

spiration from plants, and it represents the amount of water required by plants over time. 
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It is vital to the calculation and scheduling of irrigation water in the region and is one of 

the most influential hydrological factors affecting a region’s climate. This variable must 

be monitored before agricultural activities on a field may commence. Thus, it is essential 

for agricultural water supply administrators and users to estimate it accurately. The food 

and agriculture organization (FAO) standardized a method of Penman–Monteith 56 

(FAO PM-56) that estimates reference evapotranspiration (ETo) using various meteoro-

logical data. The World Meteorological Organization (WMO) and the International 

Commission on Irrigation and Drainage (ICID) introduced the model as a reliable 

method for estimating ETo, and it was also approved as a suitable alternative to lysimeter 

data by the ICID [1]. One of the most significant issues in hydrology and agriculture is 

ETo modeling, which allows for the prediction of future values of this variable. In fact, the 

forecast of this variable tells us how much water the plant will need in the future. This 

method is quite successful and is used in the region to schedule crop irrigation. Increased 

demand for limited water resources, climate change, and certain agricultural commodi-

ties have all pointed to the need for better ways to make efficient use of the water re-

sources at our fingertips as well as distribute them at the right time and through the right 

channel to produce premium food [2]. Certain management actions, crop characteristics, 

weather conditions, land type, and field operations are all key variables that influence the 

ETo process [3]. 

The ability to model ETo is critical in determining agricultural irrigation require-

ments on a regional and global scale, preparing water budgets, and assessing the impact 

of various climatic changes [4]. Significant problems arise when ETo modeling is tried to 

estimate accurately using available meteorological data at different gauging stations [5]. 

A precise measurement of the ETo serves a variety of purposes including not only the 

research of climate change and the evaluation of water resources but also the efficient 

monitoring and forecasting of droughts as well as the correct use and development of 

water resources [6]. Machine learning (ML) models based on robust algorithms are now 

being used to map nonlinear processes employing input and output (target) variables. 

Raza et al. [7] examined research publications on ETo estimation published in the last 

eight years (2012–2020) for accuracy, structure, and usefulness. The presented studies’ 

main goal is to establish an alternative ML model to the FAO-PM56 since it requires a 

substantial quantity of climatic data as input, which is not accessible at many stations, 

especially in developing countries. As a result, designing ML models employing all of the 

usable data comparable to FAO-PM56 is not worthwhile. Moreover, a limited number of 

studies have investigated the development of a generalized ETo model for accurate ETo 

estimation in all stations within a region, such as Raza et al. [8]. This is particularly im-

portant in developing countries since climatic data from most stations are either missing 

or unavailable owing to technical challenges and a lack of technology. As a result, de-

veloping an ETo model with fewer climatic inputs (such as temperature data) should be 

enough. 

Different types of ML algorithms such as support vector machine (SVM) [9,10], least 

square support vector machine [11], genetic programming [12–14], extreme learning 

machine (ELM) [15,16], tree-based models [17,18] such as M5 model tree [19–21], random 

forest [22–25], and extreme gradient boosting (XGBoost) [10,19,26], artificial neural net-

works (ANNs) [27–29], and an adaptive neuro-fuzzy inference system (ANFIS) [30,31] 

were used in ETo modeling for this purpose. Utilizing alternative ML models, it may be 

possible to incorporate such inputs (simultaneously) into the daily ETo estimation. 

According to the available literature, there is no comparison research in the literature 

that uses random subspace (RSS), additive regression (AR), reduced error pruning tree 

(REPTree), and linear regression (LR) algorithms to estimate ETo in the study area of Egypt 

using daily time-scale data. As a result, this study aims to (i) investigate the historical dis-

tributions of ETo from 1979 to 2014, (ii) evaluate the performance and accuracy of ML algo-

rithms in daily ETo estimation, and (iii) select the optimal ETo ML model based on statistical 
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metrics results. These data are essential for understanding the influence of climate change 

on ETo in the study region. 

2. Materials and Methods 

2.1. Study Area 

The Nile Delta is Egypt’s economic and financial core and contains the country’s 

richest agriculture. It is home to eleven governorates. Like the rest of Egypt, the Nile 

Delta has a hot desert environment. The delta’s warmest months are July and August, 

when temperatures reach a maximum average of 34 °C. During the winter, temperatures 

typically range from 9 °C to 19 °C. The annual rainfall is 100–200 mm, with most falling 

during the winter. Egypt is considered an arid region with a significant danger of water 

scarcity in the near future. The agricultural sector requires a large amount of water, ac-

counting for around 85 percent of overall freshwater consumption. The study area in-

cludes four governorates in Egypt: Al Buhayrah, Alexandria, Ismailiyah, and Minufiyah 

(Figure 1). These four governorates are located in the Nile Delta, the northern part of 

Egypt. The Al Buhayrah governorate is located in an important strategic place, west of 

the Rosetta branch of the Nile River, about 123 km northwest of Cairo, and covers an area 

of 9826 km2. The Alexandria governorate is located in the northern part of the country, 

directly on the Mediterranean Sea, making it one of the most important harbors in Egypt. 

The Alexandria governorate is located about 188.6 km northwest of Cairo and covers an 

area of 2818 km2. The Ismailiyah governorate is one of the Canal Zone governorates of 

Egypt. Located in the northeastern part of the country, it covers an area of 5066 km2 and 

is about 122.5 km away from Cairo. The Minufiyah governorate is located in the Nile 

Delta’s northern part, north of Cairo. It covers about 2543 km2. The population of Al 

Buhayrah, Alexandria, Ismailiyah, and Minufiyah governorates are estimated by the 

Central Agency for Public Mobilization and Statistics in Egypt (CAPMAS) [32] to be 

6,723,269; 5,469,480; 1,419,631; and 4,640,003 people per capita on 1 January 2022. 

 

Figure 1. Location of the study area (Al Buhayrah, Alexandria, Ismailiyah, and Minufiyah gover-

norates) in Egypt. 

2.2. Datasets Description 

Daily climate data variables for the studied regions, such as minimum and maxi-

mum temperatures, humidity, wind speed, vapor pressure deficit, and solar radiation, 

were collected from the National Centers for Environmental Prediction (NCEP) Climate 

Forecast System Reanalysis (CFSR) from 1979 to 2014. It was completed over 36 years 

from 1979 through 2014. Figure 2 demonstrates the time series of each variable for the 

period 1979–2014. The CFSR was designed and executed as a global, high-resolution, 

coupled atmosphere-ocean-land surface-sea-ice system to provide the best estimate of the 

state of these coupled domains over this period. The daily CFSR data (precipitation, 

https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr
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wind, relative humidity, and solar radiation) were downloaded in SWAT file format and 

CSV for the entire period in a zip file by continent. Table 1 presents a statistical analysis of 

climate data variables in the governorates of Al Buhayrah, Alexandria, Ismailiyah, and 

Minufiyah from 1979 to 2014. 

 

Figure 2. Demonstration of time series of each input variable used for developing ML models for 

simulating the evapotranspiration process. 

Table 1. Statistical analysis of climate data variables from 1979 to 2014 in the governorates of Al 

Buhayrah, Alexandria, Ismailiyah, and Minufiyah. 

Governorate Metrics 
Tmax 

(°C) 

Tmin 

(°C) 

Tmean 

(°C) 

P 

(mm) 

WS 

(Km/h) 

RH 

(%) 

SR 

(kWh/m2) 

ETo 

(mm/day) 

Al Buhayrah 

Maximum 47.59 26.38 35.09 40.50 9.14 0.98 30.68 34.01 

Minimum 8.17 −2.69 6.36 0.00 0.75 0.11 0.00 0.00 

Average 27.52 13.89 20.71 0.34 3.29 0.64 20.45 13.05 

Std. deviation 6.81 5.28 5.72 1.50 0.92 0.10 7.84 6.83 

Variance 46.40 27.84 32.70 2.24 0.84 0.01 61.53 46.70 

Skewness −0.21 −0.20 −0.15 8.84 0.96 −0.98 −0.51 −0.06 

Kurtosis −0.93 −0.97 −1.20 118.55 2.43 2.41 −0.89 −1.13 

Alexandria 

Maximum 43.43 29.82 35.15 32.97 12.88 0.94 30.49 29.83 

Minimum 9.35 2.72 7.87 0.00 1.20 0.10 0.00 0.00 

Average 26.11 15.98 21.04 0.38 4.52 0.64 20.48 11.28 

Std. deviation 6.06 4.81 5.18 1.53 1.35 0.10 7.82 5.83 

Variance 36.72 23.17 26.82 2.33 1.83 0.01 61.13 33.98 

Skewness −0.19 −0.08 −0.12 7.69 1.01 −1.43 −0.53 −0.06 

Kurtosis −0.93 −1.09 −1.21 83.65 2.33 3.14 −0.84 −1.03 

Ismailiyah 

Maximum 47.76 27.64 35.59 33.74 4.98 0.96 30.74 32.82 

Minimum 7.06 −0.14 5.83 0.00 0.49 0.07 0.00 0.00 

Average 28.81 12.78 20.79 0.18 1.70 0.59 20.71 14.49 

Std. deviation 7.50 4.57 5.74 1.03 0.43 0.12 7.33 7.62 

Variance 56.18 20.87 32.95 1.06 0.18 0.01 53.75 58.14 

Skewness −0.24 −0.11 −0.15 13.61 1.44 −0.72 −0.42 0.02 

Kurtosis −1.03 −0.96 −1.18 281.36 5.21 0.97 −0.98 −1.24 

Minufiyah Maximum 48.09 25.30 35.55 60.28 6.38 0.97 31.06 34.41 



Water 2023, 15, 1149 5 of 19 
 

 

Minimum 6.77 −2.23 5.29 0.00 0.62 0.09 0.00 0.00 

Average 29.42 12.84 21.13 0.16 2.36 0.57 20.92 15.00 

Std. deviation 7.74 5.34 6.28 1.01 0.63 0.13 7.43 7.82 

Variance 59.94 28.52 39.43 1.02 0.39 0.02 55.18 61.21 

Skewness −0.23 −0.23 −0.17 25.06 0.78 −0.36 −0.44 −0.02 

Kurtosis −1.07 −1.00 −1.23 1134.97 1.95 0.37 −0.97 −1.28 

Note: Tmax, maximum temperature; Tmin, minimum temperature; Tmean, mean temperature; WS, 

wind speed; SR, solar radiation. 

3. Methodology 

The proposed model for ETo estimation methodology in the study (Figure 3) is based 

on the following: (i) collection of daily databases; (ii) data preparation and selection of the 

best variables; (iii) application of four forecasting machine learning models: linear re-

gression (LR), additive regression (AR), random subspace (RSS), and reduced error 

pruning tree (REPTree); (iv) training and testing of developed models; (v) evaluation of 

the results obtained based on RMSE, R2, MAE, and RRSE; (vi) selection of the best de-

veloped model for ETo prediction; and finally, (vii) the end of the process. The four fore-

casting machine learning models used in this study are discussed below: 

 

Figure 3. Flowchart of ETo estimation methodology in the study area. 
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3.1. Machine Learning (ML) Models 

3.1.1. Random Subspace (RSS) 

The RSS is a technique for the collective knowledge approach; it is used to investi-

gate arrangement and regression. This model has been applied in land-use categoriza-

tion, hydrology, irrigation scheduling, evaporation measurement, and forest and agri-

cultural classification [33]. It is an ensemble classifier technique that Ho [34] proposed. In 

the RSS, the training data are modified. However, this data modification is carried out in 

the feature space. Hence, each training incidence Xi (i = 1, …, n) in the training sample set 

X = [X1; …; Xn] is defined as a p-dimensional vector Xi = (xi1, xi2, …, xip) and defined by p 

features. Then, r < p features are randomly selected from the p-dimensional dataset X. 

Consequently, the modified training set X˜b = X˜b1, X˜b2…, X˜bn, is composed of 

r-dimensional training incidences. After this step, classifiers are built into the random 

subspaces X˜b and aggregated by utilizing a majority voting. Therefore, the RSS is im-

plemented in the following way [35]: 

• Repeat for b = 1, 2, …, B; 

• Choose an r-dimensional random subspace Xb˜; 

• from the original p-dimensional feature space X; 

• Build a classifier Cb(x) (with a decision boundary Cb(x) = 0) in Xb˜; 

• Aggregate classifiers Cb(x), b =1, 2, …, B, by utilizing majority voting for the final 

decision. 

The RSS can benefit from using random subspaces for both building and combining 

the classifiers. When the number of training incidences is comparatively small compared 

to the data dimension, the small sample size problem can be solved by building classifiers 

in random subspaces. The subspace dimension will be less than the original feature 

space, while the number of training incidence is kept the same. Thus, the relative training 

sample size increases. Once the data have several redundant features, a better classifier 

can be found in random subspaces than in the original feature space. The aggregated 

decision of such classifiers might be better than a single classifier built on the original 

training set in the entire feature space [36]. The parameters used in this model were as 

follows: batch size—100, classifier—REPTree, random seed—1, subspace size—0.5, 

number of execution slots—1, number of iterations—10. 

3.1.2. Additive Regression (AR) 

Regression estimation and variable selection are two important tasks for 

high-dimensional data mining [37]. Sparse additive models aiming to deal with the above 

tasks simultaneously have been extensively investigated in the mean regression setting. 

As a class of models between linear and non-parametric regression, these methods inherit 

the flexibility from nonparametric regression and the interpretability from linear regres-

sion [38]. the generalized additive model (GAM) was constructed by Hastie and Tibshi-

ran [39], which is an extension of the generalized linear model (GLM). The GLM model 

implies that the parameters are linear, but the GAM model assumes that there is no de-

pendency and that the connection is not necessarily linear [40]. Linear dependence is 

substituted in that model with broader dependency characteristics [41]. 

The algorithm’s equation is as follows: 

𝑔(𝐸(𝑦)) =  𝛽0 +  𝑓1𝑥1 + 𝑓2𝑥2 + ⋯ + 𝑓𝑝𝑥𝑝 + 𝜀 (1) 

For each single explanatory vector 𝑥𝑖 , the computation of the application of this 

model comprises the nonlinear smooth functions 𝑓𝑖(𝑥𝑖), i = 1, ..., p. 

Several dataset split features are chosen using the standard deviation error (SDR) as 

a parameter for the optimum characteristics to divide the data set into each node. The 

chosen attribute is meant to reduce mistakes. 

SDR = 𝑆𝐷(𝑇𝑟𝑒𝑒) − Ʃ
𝑇𝑟𝑒𝑒𝑖

𝑇𝑟𝑒𝑒
∗ 𝑆𝐷(𝑇𝑟𝑒𝑒𝑖) (2) 
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where 𝑇𝑟𝑒𝑒𝑖  is the subset of cases containing the product of the potential evaluations, 

and SD (·) denotes the standard deviation of the argument. The stop conditions are either 

the number of occurrences remaining to accomplish a specific number or a minor type 

value change. Table 2 displays the parameters that were used for technique. Parameters 

selected for applying this method were as follows: batch size—100, classifier—bagging, 

shrinkage—1, number of iterations—30. 

Table 2. Analysis of best subset regression for determining the best input combinations. 

No. of 

Variables 
Variables MSE R² 

Adjusted 

R² 

Mallows’ 

Cp 

Akaike’s 

AIC 

Schwarz’s 

SBC 

Amemiya’s 

PC 

1 SR 7.670 0.853 0.853 178,771.227 105,837.493 105,855.209 0.147 

2 Tmax/SR 2.773 0.947 0.947 31,471.556 52,988.983 53,015.557 0.053 

3 Tmax/Tmean/SR 1.728 0.967 0.967 26.095 28,408.184 28,443.616 0.033 

4 Tmax/Tmean/RH/SR 1.727 0.967 0.967 4.195 28,386.287 28,430.577 0.033 

5 * Tmax/Tmin/RH/SR 1.727 0.967 0.967 4.195 28,386.287 28,430.577 0.033 

6 Tmax/Tmin/WS/RH/SR 1.727 0.967 0.967 6.000 28,388.092 28,441.240 0.033 

Note: * The best model for the selected selection criterion is displayed in bold blue. As the 

number of requested variables could not be entered into the model, the results are unre-

liable, and the model is not necessarily the best one. 

3.1.3. Reduced Error Pruning Tree (REPTree) 

The REPTree process is a basic decision tree beginning method that designs and 

utilizes condensed error trimming to create a regression tree using variance data [42]. As 

a fast decision tree approach, the REPTree classifier is based on the idea of calculating 

information acquisition with entropy and minimizing the error caused by variance [43]. 

The REPTree creates multiple trees in regression tree modified iterations. Then, the best 

of the trees produced is selected. This algorithm creates a regression/decision tree within 

the variance framework and the knowledge gain approach. By using the method of 

linking, this algorithm reduces the pruning error rate. The measure used in pruning the 

tree is the error in the average frame predicted by the tree. The values of numerical 

attributes are sorted at the beginning of the modeling process. As with the C4.5 algo-

rithm, this algorithm divides the corresponding samples into pieces and processes the 

missing values [44]. 

For numeric characteristics, the algorithm only examines values once. It is primarily 

the method of constructing a common set of decision-making instructions using a fore-

caster variable quantity [45,46]. The REPTree decision algorithm is a highly fast learning 

technique with a low-error pruning tree. It builds a decision/regression tree and prunes it 

using back-fitting with reduced error based on the data gain/variance [47]. The model’s 

parameters were as follows: batch size—100, initial count—0, number of folds—3, ran-

dom seed—1, minimum proportion of the variance—0.001, minimum number—2, 

maxdepth—1. 

3.1.4. Linear Regression (LR) 

Linear regression is a potent method for analyzing data in diverse fields [48]. LR 

predicts a variable’s value based on another variable’s value. The linear regression (LR) 

model is utilized in numerous application areas [49]: for example, engineering, econom-

ics, ecological, social sciences, and medicines, among many others. Hence, linear regres-

sion is a powerful and flexible technique to address regression issues. Thus, the trend of 

the LR model is an extensive topic of significant interest for researchers [50,51]. The pa-

rameters selected for implementing this model were as follows: attribute selection 

method—M5 method; batch size—100; eliminate co-linear attributes—true. 
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3.2. Performance Metrics 

Five performance indicators were employed to evaluate the performances of the ap-

plied algorithm as follows: mean absolute error (MAE), mean absolute error (MAE), root 

mean square error (RMSE), relative absolute error (RAE), root relative squared error 

(RRSE), and correlation coefficient (R). These parameters were determined using the fol-

lowing equations: 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑋𝑖 − 𝑌𝑖|

𝑁

𝑖=1

 (3) 

𝑀𝑆𝐸 =  
1

𝑁
∑(𝑋𝑖 − 𝑌𝑖)2

𝑁

𝑖=1

 (4) 

𝑅𝑀𝑆𝑅 =  √
1

𝑁
∑(𝑋𝑖 − 𝑌𝑖)

2

𝑁

𝑖=1

 (5) 

𝑅𝐴𝐸 = |
𝑋𝑖 − 𝑌𝑖

𝑌𝑖

| × 100 (6) 

𝑅𝑅𝑆𝐸 =
√∑ (𝑌𝑖 − 𝑋𝑖)

2𝑁
𝑖=1

√∑ (𝑋𝑖 − 𝑋̅)2𝑁
𝑖=1

  (7) 

𝑅 =
∑ (𝑋𝑖 − 𝑋̅)(𝑌𝑖 − 𝑌̅)𝑁

𝑖

√∑ (𝑋𝑖 − 𝑋̅)2𝑁
𝑖 ∑ (𝑌𝑖 − 𝑌̅)2𝑁

𝑖

 (8) 

where N is the total number of measurements; Xi is the observed values, and Yi is the es-

timated values; 𝑋̅ is the mean of observed values in X variables; 𝑌̅ is the mean of esti-

mated values in Y variables. 

4. Results 

4.1. Analysis of Best Subset Regression for Determining Best Input Combinations 

Determining the best input parameters is necessary to achieve the best performance 

of the selected models. This requires varying combinations of meteorological parameters 

for shortlisting the best input combinations. The present study aims to develop a joint 

model for the four study sites (stations), i.e., Alexandria, Al Buhayrah, Minufiyah, and 

Ismailiyah of Egypt. Shortlisting the best input combinations for the developed models 

was conducted using the six statistical criteria, i.e., MSE, R2, adjusted R2, Mallows’ Cp, 

Akaike’s AIC, Schwarz’s SBC, and Amemiya’s PC, whose results are shown in Table 2. It 

can be inferred that four input variables, i.e., Tmax, Tmin, RH, and SR (displayed in bold), 

were identified as the best input combination given they had the lowest values of Mal-

lows’ Cp (4.195) and Amemiya’s PC (0.033) and the highest value of R2 (0.967) and ad-

justed R2 (0.967) amid all input combinations. 

Furthermore, this study conducted correlation analysis to ascertain variable correla-

tions, as shown in Figure 4. In general, the study recorded significantly higher correla-

tions of independent variables with the dependent variable ETo, for example, 0.907 with 

Tmax, 0.806 with Tmean, and 0.923 with SR. To take advantage of long-term time-series da-

tasets for ETo, the present study categorized the complete dataset into two sets, of which 

the first segment comprised 75% of the dataset for training purposes (for the training pe-

riod 1979–2006), while the second segment comprised 25% for validation/testing pur-

poses (for the testing period 2007–2014) of the models. 
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Figure 4. Inter-correlation matrix of selected climatic variables for ETo. 

4.2. Sensitivity Analysis 

The different combinations of input variables provided the performance of the 

models such that some combinations yielded positive contributions to the accuracy, 

while some yielded negative contributions under each case of the selected models. Sen-

sitivity analysis was conducted to shortlist the best influential variables so as to identify 

the best performance of the models in predicting the ETo with greater accuracy. Findings 

from regression analysis on all input variables are summarized in Table 3. It can be in-

ferred in terms of absolute standard coefficients that the variables such as Tmax (0.649), 

Tmin (−0.205), RH (−0.005), and SR (0.525) are the most influential input variables. These 

standardized coefficients of input variables for sensitivity analysis for ETo are further 

demonstrated in Figure 5. 

Table 3. Regression analysis for identifying the most effective parameters for ETo. 

Source Value 
Standard 

Error 
t Pr > |t| 

Lower Bound 

(95%) 

Upper Bound 

(95%) 

Tmax 0.649 0.002 366.370 <0.0001 0.646 0.653 

Tmin −0.205 0.001 −167.137 <0.0001 −0.208 −0.203 

Tmean 0.000 0.000     

WS 0.000 0.000     

RH −0.005 0.001 −4.889 <0.0001 −0.007 −0.003 

SR 0.525 0.001 414.793 <0.0001 0.523 0.527 
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Figure 5. Standardized coefficients of input variable for sensitivity analysis for ETo. 

4.3. Comparison of ML Algorithms for ETo Estimation 

ETo was estimated by implementing four ML algorithms, i.e., linear regression (LR), 

random subspace (RSS), additive regression (AR), and reduced error pruning tree (REP-

Tree). To evaluate the performances of the applied algorithm, five performance indica-

tors were employed, i.e., mean absolute error (MAE), root mean square error (RMSE), 

relative absolute error (RAE), root relative squared error (RRSE), and correlation coeffi-

cient (R). The best performance of the models was identified based on the higher value 

for r (close to one) and lower values for MAE, RMSE, RAE, and RRSE (close to zero). Ta-

ble 3 shows the general trend for these performance indicators corresponding to each 

model. Following the aforementioned performance quantification criteria, the model 

REPTree was observed as the best model during both the training and testing phase, 

followed by the LR model (Table 4). This implied that the REPTree model has the poten-

tial to estimate the ETo with greater accuracy as compared with other algorithms. In the 

training phase, the model REPTree yielded the highest value for r (0.99) and lowest val-

ues for MAE (0.21), RMSE (0.28), RAE (3.45%), and RRSE (4.01%); during the testing 

phase also, the model REPTree yielded the highest value for r (0.99) and lowest values 

for MAE (0.28), RMSE (0.37), RAE (4.13%), and RRSE (4.72%), as shown in Table 4. The 

changes in the values for these performance indicators between the training and testing 

phases were found insignificant; thus, the model was considered suitable for the present 

study site. Following REPTree, the model LR was the second-best performing model, as 

in the training phase, the model LR yielded a higher value for r (0.98) and lower values 

for MAE (1.00), RMSE (1.30), RAE (16.66%), and RRSE (18.47%); during the testing phase 

also, the model LR yielded a higher value for r (0.98) and lower values for MAE (1.10), 

RMSE (1.37), RAE (16.28%), and RRSE (17.70%). 
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Table 4. Performance metrics for the models developed during the training and testing phase for 

ETo estimation. 

ML Algorithms 
Training Phase Testing Phase 

MAE RMSE RAE (%) RRSE (%) r MAE RMSE RAE (%) RRSE (%) r 

LR 1.0099 1.3011 16.6612 18.4732 0.9828 1.1050 1.3717 16.2809 17.7032 0.9849 

RSS 1.3673 1.7407 22.5558 24.7149 0.9757 1.6727 2.1425 24.6466 27.6511 0.9838 

AR 1.5913 1.9876 26.2524 28.2209 0.9595 1.6378 2.0703 24.1312 26.7191 0.9644 

REPTree 0.2095 0.2828 3.4565 4.0159 0.9992 0.2806 0.3659 4.1344 4.7224 0.9989 

As seen in Figure 6, time-series plots representing observed and modeled ETo data 

and scattered plots showing the whole testing dataset of observed vs. estimated ETo 

values were developed for the LR, RSS, AR, and REPTree models throughout the testing 

phase. The regression line, as shown in the scatter plot, was used for the assessment of 

model performance. The R2 value was assessed to be 0.9867 for the LR model, 0.9838 for 

the RSS model, 0.9644 for the AR model, and 0.9989 for the REPTree model. All the 

models (except for REPTree) underestimated the ETo prediction, as the models were ob-

served located below the best-fit 1:1 line. Nevertheless, the REPtree model was observed 

located nearest to the best-fit 1:1 line. In coherence to the inference made in the previous 

section, the model REPTree here, too, was implied as the best model for estimating the 

daily ETo for the present study site. For this, an additional sample time-series and scatter 

plot is shown in Figure 6e, indicating a higher correlation (similar to the entire 

time-series and scatter plot of REPTree) for the most recent study year. 

A radar chart for demonstrating the best performance indicators (i.e., 

best-calculated values for MAE, RMSE, RAE, RRSE, and r) of LR, RSS, AR, and REPTree 

models observed during the testing phase is shown in Figure 7. This allowed for better 

diagnostic assessment of the efficiency of all models. Results indicated that the model 

REPTree has lower values for MAE, RMSE, RAE, and RRSE and higher values for r as 

compared to the other models. It can be inferred that performance-wise, the model 

REPTree outperformed other models. Furthermore, a comparative analysis was con-

ducted between the aforesaid models using the Taylor diagram, as shown in Figure 8. 

This exercise was based on the magnitudes of standard deviation (SD), r, and RMSE ob-

tained during the testing phase. Findings indicated that the model REPTree was found 

to be the closest to the observed location, while the model AR was found to be the fur-

thest. Given this evidence, the present study summarized that the model AR is the 

worst-performing model, whereas the model REPTree is the best-performing model 

among the selected models. 
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Figure 6. Time-series plots (left) represent observed and modeled ETo data, and scattered plots 

(right) represent the entire testing dataset of observed versus estimated ETo values during the 

testing phase for the models ((a) LR, (b) RSS, (c) AR, (d) and (e) RETree). 
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Figure 7. Radar chart displaying the best performance indicators of ML models. 

 

Figure 8. Taylor diagrams of models during the testing phase. 
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5. Discussion 

The present study attempted to test various ML algorithms and their accuracy in 

predicting the ETo variable. Considering the findings of this study, it can be broadly in-

ferred that all the four ML algorithm-based models, i.e., LR, RSS, AR, and REPTree, de-

veloped in this study more or less demonstrated their predictive capabilities in estimat-

ing ETo. Through a comparative analysis, this study suggested REPTree as the most 

suitable model for advancing further investigation in the study area. The model REPTree 

was observed to outclass other models based on satisfying all criteria for performance 

indicators, as the indicators obtained the most-appropriate values (lowest for MAE, 

RMSE, RAE, and RRSE and highest for r). These results were further supported by the 

findings from time-series and scattered plots (refer to Figure 6) as well as from radar 

chart (Figure 7) and Taylor diagram (Figure 8) developed for comparing the four ML al-

gorithms. They comprehensively indicated REPTree as the best model for the prediction 

of ETo, followed by LR, while the model AR was comparatively found to be the 

worst-performing model for the present study site. 

Amidst the ongoing research on estimating reference evapotranspiration, it is im-

perative to highlight here that the point of novelty for this research lies in using the 

model REPTree for estimating and predicting ETo. In addition, the present study deter-

mined REPTree as the most suitable model among the models developed to estimate the 

same. Both these inferences are against the ongoing trend, where researchers have pri-

marily focused on estimating ETo using other machine learning algorithms. Many studies 

in recent times have been conducted to estimate hydrologic variables such as pan evap-

oration, evapotranspiration, etc., from across the globe using ML algorithms. Sattari et al. 

[52] successfully evaluated the deep learning-based gated recurrent units (GRUs) and 

tree-based models for estimating ETo as a case study in Turkey. They found GRUs as the 

best- and REPTree as the worst-performing model. Kushwaha et al. [53] examined the 

performance of the four meta-heuristic algorithms, i.e., support vector machine (SVM), 

random tree (RT), REPTree, and RSS, for simulating daily pan evaporation at two 

different locations in north India and observed the greater suitability of the model SVM 

for prediction compared to the others. Nhu et al. [54] predicted the daily water level of 

Zrebar Lake in Iran using M5P, random forest (RF), random tree (RT), and REPTree al-

gorithms, wherein their results indicated a good prediction capability for all the devel-

oped models other than REPTree. Furthermore, if the literature focusing ETo estimation 

using ML algorithms is only considered, no recent studies are found to employ the model 

REPTree. For example, Salam and Islam [55] evaluated the potential of RT, bagging, and 

RS ensemble learning algorithms for ETo prediction in Bangladesh. In that, their study 

found the model RT to outperform other models while estimating daily ETo. Tikhamarine 

et al. [56] explored the potential of support vector regression (SVR) integrated with grey 

wolf optimizer (SVR-GWO) for ETo estimation in the north of Algeria and concluded its 

suitability in the study stations. Kisi et al. [57] developed a radial-basis M5 model tree 

(RM5Tree) for ETo prediction in Turkey and evaluated it better than the traditional M5 

model tree. Bai et al. [58] evaluated four ensemble ET models (EEMs) that use different 

ML classifiers such as K-nearest neighbors, RF, SVM, and multi-layer perception neural 

network (MLP). Their study found that ML-based EEMs outperformed individual ET 

and conventional EEMs. Granata [20] assessed the M5P tree, bagging, RF, and SVR for 

how precise an ETo prediction could be obtained in central Florida by developing models 

in a varying combination of influencing variables. Mehdizadeh et al. [9] successfully 

evaluated gene expression programming (GEP), SVM, and multivariate adaptive regres-

sion splines (MARS) in estimating ETo in Iran. Their results shown that the MARS had the 

best performance in the weather-data-based scenarios. Ferreira et al. [10] estimated daily 

ETo in Brazil using ANN and SVM. They found that the ANN and SVM models outper-

formed the empirical equations studied. Fan et al. [19] successfully evaluated random 

forest (RF), M5Tree, gradient boosting decision tree (GBDT), and extreme gradient 

boosting (XGBoost) for estimating daily ETo in China. According to the results, the ELM 
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and SVM models achieved the best combination of prediction accuracy and stability. The 

XGBoost and GBDT models performed similarly to the SVM and ELM models in terms of 

accuracy and stability but with significantly lower computation time. Bellido-Jiménez et 

al. [59] successfully evaluated MLP, generalized regression neural network (GRNN), ex-

treme learning machine (ELM), SVM, RF, and XGBoost for estimating daily ETo in Spain. 

Their findings revealed that GRNN and ELM had the lowest computation time, while 

MLP and ELM were generally the models with the better performances. In general, all the 

aforementioned studies jointly concluded through their various model assessments that, 

other than REPTree, the entire presently developed model in this study was observed to 

be one of the suitable models among many machine-learning-algorithm-based models 

for estimating hydrologic variables, especially the ETo. 

To summarize, the present study finds its significance in ascertaining studies related 

to coupling hydrological investigations with climate change vulnerabilities in view of 

employing the REPTree model. Given the rapid land-use transformations, especially the 

agricultural land cover over the Earth, alongside aggravating extreme climatic events 

such as recurring floods [60,61] immediately followed by chronic droughts [62,63], the 

21st century’s climatological research demands improved understanding of various hy-

drologic variables, such as for the ETo investigated in the present study. Hence, 

knowledge of ML algorithms becomes paramount, especially when applying certain al-

gorithms; for example, REPTree is limited while estimating ETo. Such a study allows es-

timating the future magnitudes, thereby informing the concerned authorities and ad-

ministrators to orient their policymaking towards more specific climate-resilient path-

ways. 

6. Conclusions 

This research verifies the ability of different techniques of machine learning, such as 

linear regression (LR), random subspace (RSS), additive regression (AR), and reduced 

error pruning tree (REPTree) models, to estimate the long-series daily reference evapo-

transpiration (ETo) for four sites in Egypt (Al Buhayrah, Alexandria, Ismailiyah, and 

Minufiyah governorates). In order to achieve this, daily climate data variables (including 

minimum and maximum temperatures, humidity, wind speed, vapor pressure deficit, 

and solar radiation) for the studied regions over 36 years from 1979 to 2014 were collected 

from the National Centers for Environmental Prediction (NCEP) Climate Forecast System 

Reanalysis (CFSR). In addition, the best subset regression analysis was used to determine 

the best input combinations of meteorological parameters for calculating the ETo. Sensi-

tivity analysis was carried out and included all input variables in determining the most 

influential input variables to predict the ETo with greater accuracy. The following find-

ings were obtained: 

- The results showed that the best input combination for the ETo model was deter-

mined as four input combinations (Tmax/Tmin/RH/SR) with high R2 (0.967) and high 

Adj-R2 (0.967) and MSE of 1.727; 

- The most sensitive input variables to predict the ETo with greater accuracy were Tmax, 

Tmin, and SR; 

- The REPTree model generated the best results with the highest value for r (0.99) and 

the lowest values for MAE (0.21), RMSE (0.28), RAE (3.45%), and RRSE (4.01%) 

during the training phase; it also generated the highest value for r (0.99) and the 

lowest values for MAE (0.28), RMSE (0.37), RAE (4.13%), and RRSE during the test-

ing phase (4.72 %); 

- The AR model generated the worst results with R = 0.9595, MAE = 1.5914, RMSE = 

1.9876, RAE = 26.25%, and RRSE = 28.22% during the training phase. 

The study found that all four models demonstrated their predictive capabilities, 

with REPTree emerging as the most suitable model for further investigation. This con-
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clusion is significant, as it diverges from the current trend of using other machine learn-

ing algorithms to estimate ETo. The study’s novelty lies in using REPTree to estimate and 

predict ETo, as this algorithm has not been commonly used for this purpose. This finding 

is important given the urgent need to better understand hydrological variables in light of 

climate change and land-use transformations. The study underscores the importance of 

machine learning algorithms in predicting ETo and their potential for estimating future 

magnitudes to guide climate-resilient policymaking. The study’s results have broader 

implications beyond ETo prediction, as machine learning algorithms have been increas-

ingly employed in hydrologic research. The study contributes to the growing literature 

on using machine learning algorithms to estimate hydrologic variables such as evapo-

transpiration, pan evaporation, and water levels. The study’s findings suggest that re-

searchers should consider using REPTree rather than other commonly used algorithms 

for ETo prediction. In summary, this study highlights the significance of using REPTree in 

hydrologic research and its potential for predicting ETo. The study’s results underscore 

the importance of machine learning algorithms in guiding climate-resilient policymaking 

in the face of ongoing climate change and land-use transformations. This research could 

be useful for managing the water resources in the study area. 
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