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Abstract: Heat-activated persulfate preoxidation was recently proposed as a potential approach to
mitigate membrane fouling in membrane distillation (MD) for treating actual water. However, the
possible mitigation mechanism involved has not yet been elucidated. In this study, we explored
the relationship between membrane fouling and the pretreatment of natural organic matter (NOM)
solutions with peroxymonosulfate (PMS). Individual humic acid (HA), bovine serum albumin (BSA),
and sodium alginate (SA) contaminants were chosen as model NOM samples. The degradation
efficiency of heat-activated PMS preoxidation was investigated. The removal rates of organic con-
taminants improved as the PMS dose and activation temperature of the feed increased. Specific flux
(J/J0) measurements coupled with multiple characterizations were performed to assess the fouling
behavior. The fouling data showed that when pretreatment was conducted without PMS, pure HA
caused the most severe fouling, followed by pure BSA, whereas pure SA caused almost no membrane
fouling. After PMS preoxidation, the oxidation products of the NOM unexpectedly caused more
fouling, despite the reduction in the amount of the NOM. Further work is needed to evaluate fouling
mitigation when working with complex streams.

Keywords: membrane distillation; membrane fouling; natural organic matter; heat-activated
peroxymonosulfate oxidation

1. Introduction

Membrane distillation (MD) is a thermal separation process in which the driving force
for mass transfer is the vapor pressure gradient created by the temperature difference
between the sides of a hydrophobic microporous membrane [1,2]. Superior to pressure-
driven membrane processes, MD can theoretically reach a nonvolatile rejection rate of 100%
while having minimal mechanical requirements for membrane materials and modules [3,4].
Moreover, compared to conventional distillation and multistage vacuum evaporation
processes, MD can be performed at lower temperatures and consumes lesser energy [5].

Although MD is a promising technique for desalination and water purification [6,7],
the industrial application of MD has not yet fully matured [8]. Membrane fouling is one
of the primary problems hindering its scale-up and is manifested in the forms of surface
fouling and pore blocking [9]. The fouling of membrane surfaces aggravates the tempera-
ture and concentration polarization effects and increases the mass transfer resistance [10].
Blockages in membrane pores result in reductions of the pore size and porosity of the
membrane [11,12], thus affecting the transfer rate of water vapor in the pores. Therefore,
membrane fouling could reduce the membrane permeability and increase the heat transfer
resistance, ultimately leading to a rapid flux decline [13]. In addition, severe membrane
fouling could induce membrane wetting, which is responsible for the deterioration of the
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effluent quality [14,15]. Based on the nature of the feed solution, fouling can be classified
into biological, inorganic, and organic fouling [9,16]. The adsorption and deposition of
natural organic matter (NOM) constitutes the most common type of organic fouling, where
the NOM is primarily made up of humic substances, proteins, polysaccharides, carboxylic
acids, extracellular polymers, and other substances [17]. Liu et al. [18] found that humic
acid (HA) is more prone to adsorption on the surfaces of hydrophobic membranes due
to hydrophobic interaction forces and electrostatic interactions, leading to irreversible
membrane fouling. Tan et al. [19] explored the effect of HA fouling on MD and found that
HA contamination caused a considerable decrease in the flux, mainly due to the concave
interfaces inside the small pores of the foulants, leading to a decrease in the vapor pressure.
Naidu et al. [20] found that bovine serum albumin (BSA) also has considerable fouling
potential, whereas alginate acid causes minimal fouling because of its hydrophilic nature.
Interestingly, in a recent study by Wang et al. [21], HA formed a dense protective layer that
hindered inorganic scaling, making HA play a mitigative role in membrane scaling/wetting
when MD was performed for sea water desalination. Organic fouling is typically accompa-
nied by biological and/or inorganic fouling during the treatment of actual water, and the
resulting complex fouling mechanism is difficult to elucidate. Nanomaterial modification
of MD membranes has shown potential in enhancing their performance, including their
flux, selectivity, and antifouling properties. However, the high cost and difficulty in scaling
up the fabrication process remain significant challenges [22].

Advanced oxidation processes (AOPs) are promising technologies for pollutant degra-
dation as they produce hydroxyl radicals (•OH) and sulfate radicals (SO•−4 ). Among the
oxidants, persulfates, including peroxymonosulfate (PMS) and peroxydisulfate (PDS), are
often preferred due to their high stability and low cost [23–25]. PMS and PDS can be
activated to produce SO•−4 and/or •OH by providing an energy input (heat, light, and
ultrasound) and incorporating transition metal ions and carbonaceous materials, among
other means [26]. Asif et al. [27] first proposed heat-activated persulfate oxidation as a pre-
treatment strategy for MD applications. Subsequent studies have verified the effectiveness
of this strategy in degrading contaminants in raw water, thus reducing membrane foul-
ing [28–30]. Since MD is a thermal separation process, no additional heat source is required
for persulfate activation. In addition, secondary contamination is eliminated because no
chemical activators are needed. The use of persulfates can result in lower operational costs
for membrane distillation by reducing the frequency of cleaning and maintenance as well as
increasing the overall lifespan of the membranes. Therefore, preoxidation with persulfates
activated by the hot feed in the MD process is an effective strategy for membrane fouling
mitigation and effluent quality improvement. In the MD-AOP hybrid process developed by
Han et al. [29], a hot feed is utilized to activate PDS and successfully control the membrane
fouling/wetting caused by sodium dodecyl sulfate (SDS). Asif et al. [28] found that al-
though protein-like substances are mainly responsible for algogenic organic matter (AOM)
fouling in MD, it can be degraded by •OH and the singlet oxygen (1O2) generated from
heat-activated PMS, thus alleviating 27–100% of AOM fouling. Ding et al. [30] revealed the
fouling control mechanism through molecular fate mapping in a heated PDS activation–MD
hybrid process. They found that organics with a high unsaturation degree that prefer to
develop into membrane foulants could be effectively destroyed during the pretreatment
process. High-molecular-weight (MW) organic compounds were broken down into lower-
MW ones. These lower-MW compounds were more easily absorbed into the membranes of
MD. At the same time, the complexation between cations and organics was reduced, which
hindered inorganic scaling. Studies on the propensity of, and mechanisms underlying,
organic fouling mitigation in persulfate oxidation coupled with ultrafiltration (UF) have
been conducted [31–34]. According to Cheng et al. [34] Fe(II)/PMS oxidation can alleviate
the UF fouling caused by salt-free HA–SA–BSA. However, unlike UF, MD is performed
at higher water temperatures, lower operating pressures, and with different membrane
materials. Therefore, the laws and mechanisms of UF may not apply to MD.
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To evaluate the fouling degree caused by various NOM compounds and to compre-
hend the effect of persulfate preoxidation from the perspective of organic fouling excluding
biological/inorganic fouling, we utilized a direct-contact membrane distillation (DCMD)
system in conjunction with heat-activated PMS (heat/PMS) preoxidation to treat single
NOM solutions. HA, BSA, and sodium alginate (SA) were utilized as target NOM con-
taminants to represent humic substances, proteins, and polysaccharides, respectively. The
degradation efficiency of heat/PMS preoxidation was investigated using dissolved organic
carbon (DOC) measurements, ultraviolet absorbance spectrometry at 254 nm (UV254), and
fluorescence excitation-emission matrices (EEMs). Real-time fluxes were monitored to
reflect the rate and extent of membrane fouling. The fouling behaviors of the fouled mem-
branes were characterized and assessed by scanning electron microscopy (SEM), attenuated
total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy, and water contact
angle (WCA) analyses. The research is anticipated to facilitate the development of precise
pretreatment strategies for MD.

2. Materials and Methods
2.1. Membranes and Reagents

A hydrophobic, electronegative polytetrafluoroethylene (PTFE) flat-sheet membrane
with a mean pore diameter of 0.22 µm, porosity of 70–80%, and thickness of 100 µm was
obtained from Chuangwei Filter Equipment Company (Haining, China). HA (BR, ≥90%
purity), BSA (BR, ≥98% purity), and SA (AR, ≥98% purity) were purchased from Yuanye
Bio-Technology Co., Ltd. (Shanghai, China). Analytical grade potassium peroxymonosul-
fate (PMS, KHSO5·0.5KHSO4·0.5K2SO4, ≥98% purity), sodium thiosulfate pentahydrate
(Na2S2O3·5H2O, ≥99% purity), hydrochloric acid (HCl, 36–38% purity), and sodium hy-
droxide (NaOH, ≥96% purity) were supplied by Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). In this research, the concentration of each NOM (HA, BSA, and SA)
solution was fixed at 20 mg L−1, slightly higher than the DOC of surface water. Two gram
per liter organic stock solutions of NOM were prepared as follows: 2 g HA was dissolved
in 800 mL of 0.01 mol L−1 NaOH and stirred for 24 h. Subsequently, the pH was adjusted to
7.0 ± 0.1 using 1 mmol L−1 HCl, and the solution was diluted to 1000 mL using ultrapure
water. Two grams each of BSA and SA were separately dissolved in 1000 mL ultrapure
water under 12 h of stirring. Prior to the preoxidation tests, PMS and Na2S2O3·5H2O
powders were separately dissolved in ultrapure water to prepare their respective stock
solutions (0.10 mol L−1). All stock solutions were stored in the dark at 4 ◦C and were used
within three months.

2.2. Experimental Procedures
2.2.1. Heat-Activated PMS Preoxidation

Heat/PMS pretreatment experiments were performed in a glass beaker placed in a
magnetically stirred water bath (ZNCL-GS, Jieyang Instrument, Shanghai, China). PMS was
added to initiate the reaction when the desired temperature was reached. The time required
for each preoxidation experiment was 60 min, and then equal stoichiometric amounts of
Na2S2O3 were added to quench the oxidation reaction. The activation temperature was
controlled at 80 ◦C to study the degradation efficiency under different PMS doses (0, 0.4,
and 0.8 g L−1). A constant PMS dose of 0.4 g L−1 was used to study the degradation
efficiency at different activation temperatures (60 ◦C, 70 ◦C, 80 ◦C, and 90 ◦C). Samples
were gathered every 10 min and then immediately placed in a cold bath (0 ◦C) in order to
quench the reaction without affecting the analysis, as explained in Section 2.2.1.

2.2.2. DCMD Process

The laboratory-scale DCMD setup (Figure 1) was composed of two water circula-
tion systems (hot side and cold side) and a membrane module with an effective area of
8.5 × 6.5 cm2 with cavities 2 mm in height on the hot and cold sides of the PTFE mem-
brane. Two peristaltic pumps (DIPump550, Kamoer, Shanghai, China) were used for water
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circulation at the same speed of 300 rpm, which enabled a constant crossflow velocity of
6.16 cm s−1 on both sides of the membrane. The feed temperature was set to the preoxida-
tion temperature using an electric thermostatic water bath (BHS-2, Joanlab, Huzhou, China).
The cold-side inlet temperature was constantly controlled at 20 ◦C using a thermostatic
condensation bath (XODC-0506, Xianou, Nanjing, China). The volume of the hot-side
feed was 2 L, and 300 mL of ultrapure water was added to the permeate tank to start
the cold-side circulation. Each MD process was run for 12 h. The permeate volume was
calculated as the weight increase of the permeate tank, which was connected to an online
digital balance (Jinkehua, Jinhua, China). The permeation flux and specific flux (SF) were
calculated using Equations (1) and (2), respectively, as follows:

J = V/(A × t) (1)

where J refers to the permeate flux (L m−2 h−1), V refers to the permeate volume (L), A
refers to the effective area of the membrane (m2), and t refers to the operating time (h).

SF = J/J0 (2)

where SF represents the specific flux, J represents the permeate flux (L m−2 h−1), and J0
represents the initial permeate flux (L m−2 h−1) in the first 10 min of operation.
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Figure 1. Schematic of the laboratory-scale DCMD setup.

After each experiment had been conducted in triplicate, membrane samples were
collected. Each PMS-MD hybrid experiment was labeled in the form HA/SA/BSA-n-
m, with n and m representing the PMS concentration (g L−1) and reaction temperature
(◦C), respectively.

2.3. Analytical Methods

UV254, DOC, and EEM analyses were performed to characterize the oxidation prod-
ucts. A UV-visible spectrometer (UV-3000, Mapada, Shanghai, China) was used at 254 nm
for UV254 analysis, and a total organic carbon analyzer (N/C-3100, Analytikjena, Jena, Ger-
many) was used for the DOC analysis. A molecular fluorescence absorption spectrometer
(F-7000, Hitachi Limited, Tokyo, Japan) equipped with a gas light source was used for the
EEM measurements.

The degree of membrane fouling and the shape of the membrane foulants were
observed using SEM (S-4800, Hitachi, Japan). ATR-FTIR (Tensor 27, Bruker, Billerica, MA,
USA) spectroscopy was performed to identify the functional groups on the virgin and
fouled membrane surfaces. WCA analysis was performed to detect the changes in the
hydrophobicity of the membrane surface before and after the MD operation. Static WCA
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measurements were performed using a contact angle measurement system (DSA30, KRÜSS
Scientific, Hamburg, Germany).

3. Results and Discussion
3.1. Effect of Heat/PMS on Organic Degradation

DOC measurements were performed to characterize the amount of dissolved organic
matter, and UV254 measurements were conducted to characterize the organics containing
unsaturated bonds or aromatic chromophores [35]. Figures 2 and 3 clearly demonstrate
that heat/PMS oxidation can considerably degrade the model NOM samples. Equation (3)
illustrates that the O–O bond of PMS is cleaved to form SO•−4 and •OH when adequate
heat is supplied, leading to the degradation of NOM [36].

HSO−5 → SO•−4 + •OH (3)
Water 2023, 15, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 2. Influence of the PMS dose on the DOC removal rates for (a) individual HA, (c) BSA, (d) 
SA, and (b) the UV254 removal rate for individual HA. Pretreatment conditions: [PMS] = 0, 0.4, and 
0.8 g L−1, temperature = 80 °C. 

 
Figure 3. Influence of the activation temperature on the DOC removal rates for (a) individual HA, 
(c) BSA, (d) SA, and (b) the UV254 removal rate for individual HA. Pretreatment conditions: temper-
ature = 60, 70, 80, and 90 °C, [PMS] = 0.4 g L−1. 

The fluorescence EEMs were used to explore the influence of heat/PMS preoxidation 
on the removal of the fluorescent components (Figure 4). SA was not investigated here 
because polysaccharides cannot show fluorescence [38]. Figure 4a shows a significant 
peak (C1, Ex/Em: 275 nm/435 nm) in the HA spectrum, representing humic-like sub-
stances [31,39]. After 60 min of heat/PMS oxidation, peak C1 vanished completely (Figure 
4b). Figure 4c reveals that the BSA spectrum has two significant peaks, peak C2 (Ex/Em = 
280 nm/335 nm) and peak C3 (Ex/Em = 230 nm/330 nm), representing aromatic protein 
and tryptophan-like substances, respectively [40]. The fluorescence intensities of peaks C2 
and C3 were zero after 60 min of heat/PMS preoxidation (Figure 4d). The EEM results 
suggest that the fluorescent components of HA and BSA were substantially degraded in 
the preoxidation processes. 

Figure 2. Influence of the PMS dose on the DOC removal rates for (a) individual HA, (c) BSA, (d) SA,
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0.8 g L−1, temperature = 80 ◦C.

The effect of the PMS dose was explored by regulating the reaction temperature at
80 ◦C. According to Figure 2, the removal of each organic compound was negligible in
the absence of PMS, indicating that the pyrolysis reaction (at a reaction temperature of
80 ◦C or below) was not effective for reducing the amount of NOM in the feed solution
within 60 min of the reaction. When PMS was added for preoxidation, the removal rates
of both DOC and UV254 increased with the PMS dose. An increase in the PMS dose from
0.4 to 0.8 g L−1 within 60 min of the reaction resulted in a rise in the DOC removal rates
from 45.2%, 41.8%, and 29.4% to 60.2%, 55.5%, and 53.8%, for individual HA, BSA, and
SA, respectively. An increasing PMS dose can enhance the reaction rate by providing more
reactive radicals (SO•–4 and •OH) to react with the organic pollutants [26]. Notably, DOC
(Figure 2a) had a lower HA removal rate than UV254 (Figure 2b), primarily due to the
fact that the NOM structure tends to break down into small molecules rather than being
completely mineralized into CO2 and H2O because of the higher energy requirements of
the latter [31,33].

The influence of temperature on the DOC removal rates for NOM was further in-
vestigated (Figure 3). In all cases, the degradation efficiency of NOM was limited at a
reaction temperature of 60 ◦C, likely because PMS is difficult to thermally activate at tem-
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peratures below 60 ◦C due to its high peroxide bond dissociation energy [37]. However,
the DOC removal rate increased significantly when the temperature reached 70 ◦C. When
the temperature increased from 70 ◦C to 90 ◦C, the DOC removal rates for HA, BSA, and
SA increased from 35.7%, 31.1%, and 22.9% to 55.3%, 51.5%, and 45.0%, respectively, at
60 min. A higher temperature can promote the generation of reactive radicals and enhance
the reaction rate between the radicals and NOM [26,36]. Therefore, the degradation of
NOM was more complete at higher temperatures, as demonstrated by the significantly
increased DOC removal rates at temperatures above 70 ◦C. Similarly, DOC showed a lower
removal efficiency than UV254, further demonstrating that some of the NOM in raw water
was only oxidized to organic intermediates. Interestingly, at the beginning of the reaction
at 60 ◦C, DOC removal occurred to a lower extent with an increase in temperature, but
UV254 removal occurred to a higher extent under the same conditions, indicating that NOM
is more inclined to be destroyed rather than mineralized at the initial stage at a reaction
temperature of 60 ◦C.
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The fluorescence EEMs were used to explore the influence of heat/PMS preoxida-
tion on the removal of the fluorescent components (Figure 4). SA was not investigated
here because polysaccharides cannot show fluorescence [38]. Figure 4a shows a signif-
icant peak (C1, Ex/Em: 275 nm/435 nm) in the HA spectrum, representing humic-like
substances [31,39]. After 60 min of heat/PMS oxidation, peak C1 vanished completely
(Figure 4b). Figure 4c reveals that the BSA spectrum has two significant peaks, peak C2
(Ex/Em = 280 nm/335 nm) and peak C3 (Ex/Em = 230 nm/330 nm), representing aromatic
protein and tryptophan-like substances, respectively [40]. The fluorescence intensities
of peaks C2 and C3 were zero after 60 min of heat/PMS preoxidation (Figure 4d). The
EEM results suggest that the fluorescent components of HA and BSA were substantially
degraded in the preoxidation processes.

3.2. Impact of Heat/PMS Pretreatment on MD Performance

The effect of the increase in the salt ion concentration caused by adding PMS was
assessed. The mixed (HA–BSA–SA) solution with and without PMS (beforehand, a stoi-
chiometric amount of Na2S2O3 was added to the PMS solution, causing the PMS to lose
its oxidation capacity) was treated by MD. As illustrated in Figure 5, the permeate flux of
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the feed solution with PMS decreased faster due to the following reasons: (i) the driving
force for mass transfer was reduced due to the increase in the concentration polarization
effect [41]; (ii) the required driving force increase due to the decrease in the saturated
vapor pressure of the feed solutions [42]; and (iii) as the electronegativity of the NOM and
membrane decreased, the electrostatic repulsion between organic and membrane surfaces
decreased, enabling easier adsorption of NOM on the membrane surface [43].
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Figures 6 and 7 show the flux behavior observed during the treatment of NOM
solutions under various pretreatment conditions. For both HA and BSA, regardless of
the addition of PMS, the SF curves exhibited three stages. In Stage I, a slow flux increase
was seen in the initial periods, likely due to the increased hydrophilicity of the PTFE
membrane as some NOM was adsorbed on the membrane. In Stage II, the slow flux decline
continued in the middle period as the deposition and adsorption of NOM proceeded,
blocking the transport paths of water vapor. In Stage III, the flux decline accelerated
during the final period. This rapid flux decline was likely due to further membrane fouling,
which aggravated the differential concentration and temperature polarizations. Due to the
separation properties of DCMD, contaminants accumulate in the boundary layer of the
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MD membrane, leading to concentration polarization, which prevents the passage of water
vapor through the membrane [9]. However, pure and oxidized SA have consistently shown
steady flux trends, probably because SA is less likely to cause membrane fouling [20].
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Figure 6 shows the changes in SF over time at different PMS doses. When pure NOM
solutions are treated, the SF values of pure HA, BSA, and SA reached 0.81, 0.86, and 0.94,
respectively, during an operation time of 12 h, with HA showing the sharpest decline.
However, after 12 h of 80 ◦C/0.8 g L−1 heat/PMS pretreatment, the SF values of oxidized
HA, BSA, and SA decreased to 0.60, 0.75, and 0.88, respectively, where the oxidized NOM
solutions all showed more significant flux declines, especially oxidized HA and BSA. The
influence of temperature on the permeate flux was evaluated at a constant PMS dose of
0.4 g L−1. Figure 7 shows that the diminishing rate trend of the SF gradually reversed as
the temperature increased from 60 ◦C to 90 ◦C, whereas the final J/J0 values decreased from
0.83, 0.87, and 0.92 to 0.61, 0.71 and 0.86 for HA, BSA, and SA respectively. Additionally,
samples of MD effluents were collected hourly to monitor the effluent quality, which
could indicate the loss of the membrane filtration functionality triggered by membrane
wetting. The DOC of each MD effluent was below 0.1 mg L−1, and the DOC removal was
consistently greater than 99%, demonstrating the outstanding removal performance of the
MD process.

3.3. Characterization of Fouled MD Membranes
3.3.1. SEM Analysis

SEM was used to observe the surface morphology of the membrane, assess the mem-
brane fouling degree and shape of the foulants, and compare them with those of the virgin
PTFE membrane. Figure 8a,b displays a fiber-nodule microporous structure in the virgin
PTFE membrane [44]. The contaminated membranes were covered with a dense layer of
contaminants after 12 h of MD to treat pure HA (Figure 8c) and oxidized HA (Figure 8d).
Moreover, the organic deposits on the fouled membrane of oxidized HA were distinctly
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smaller than those for pure HA. As shown in Figure 8e, most parts of the membrane fouled
by pure BSA were deposit-free; however, the membrane fouled by oxidized BSA was
completely covered with organic contaminants (Figure 8f). This indicates that subjecting
BSA to heating and oxidation enhances its adsorption on the hydrophobic membrane.
However, the fouled membrane appeared to be relatively fresh after 12 h of treatment with
pure and oxidized SA solutions (Figure 8g,h, respectively), indicating that little SA was
deposited or adsorbed on the membrane. This conclusion is consistent with the findings
of Naidu et al. [20], who suggested that a hydrophilic, organic SA compound had a mini-
mal fouling impact on the MD operation. The SEM images confirmed that the oxidized
NOM produced by heat/PMS oxidation preferentially adhered to the PTFE membrane
during MD.
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BSA (e), SA (g) and oxidized HA (d), BSA (f), and SA (h). Pretreatment conditions: [PMS] = 0.4 g L−1,
temperature = 80 ◦C.

3.3.2. ATR-FTIR Analysis

ATR-FTIR spectroscopy was utilized for identifying the functional groups of the
membrane foulants (Figure 9). In the spectra of the virgin PTFE membrane, two strong
peaks appeared at 1201 cm−1 and 1140 cm−1, corresponding to the stretching vibrations
of the asymmetric and symmetric C–F bonds [45]. Another band appeared at 635 cm−1,
corresponding to the bending modes of the C–C skeleton [46,47]. The membranes fouled by
pure and oxidized HA showed new peaks at 3691 cm−1, 2923–2854 cm−1, 1708–1578 cm−1,
1030 cm−1, and 917 cm−1, denoting the stretching vibrations of the alcoholic O–H, C–
H, C=O, C–O, and carboxylic O–H groups, respectively. The differences between the
peaks of pure HA and oxidized HA indicate the transformation of organic molecules after
oxidation. Additionally, the peaks associated with PTFE were weakened, implying that
membranes fouled with both native and oxidized HA are covered with a layer of humic
substances. The membranes fouled by oxidized BSA showed different peaks at 3478 cm−1,
1739 cm−1, and 1045 cm−1, denoting the N–H groups, C=O, and C–H groups of the peptide
bonds in BSA, respectively. However, the membranes fouled by pure BSA were almost
indistinguishable from the virgin PTFE membrane. Similar results were also observed for
pure and oxidized SA, indicating that SA is unlikely to cause membrane fouling, regardless
of its preoxidation status.
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Figure 9. ATR-FTIR spectra of the virgin PTFE membrane and membranes fouled by pure and
oxidized NOMs: (a) HA, (b) BSA, and (c) SA. Pretreatment conditions: [PMS] = 0.4 g L−1,
temperature = 80 ◦C.

3.3.3. Hydrophobicity Analysis

The influence of fouling on the hydrophobicity was assessed by measuring the WCA of
the virgin and fouled MD membranes. The WCA results were consistent with the SEM and
ATR-FTIR results (Figure 10). In NOM solutions that did not undergo PMS preoxidation,
pure HA (WCA of 98.2◦) caused the biggest reduction in hydrophobicity, followed by pure
BSA (WCA of 113.3◦), in comparison with the virgin PTFE membrane (WCA of 139.0◦),
implying the deposition of hydrophilic contaminants. However, pure SA (WCA of 136.9◦)
only induced a slight decrease in the hydrophobicity, demonstrating that individual SA
caused little membrane fouling. After pretreatment with heat/PMS, only oxidized HA
showed a negligible change in hydrophobicity, whereas both oxidized SA (WCA of 128.1◦)
and BSA (WCA of 69.5◦) caused severe decreases in hydrophobicity, with the heat/PMS
oxidation of BSA causing the greatest decrease in hydrophobicity. This is possibly because
heat/PMS oxidation changed the molecular properties of NOM, making it more susceptible
to membrane adhesion.
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The results for the flux performances and characterizations conducted to assess the
membrane fouling degree with or without preoxidation contradict those of previous studies
in which the feed solutions all contained ions (Table 1). Therefore, it can be inferred that
pretreatment can only successfully mitigate MD fouling in saline solutions of organic matter.
Large organic molecules can be broken down into smaller ones during the pretreatment
process, and these would easily assemble on the membrane surface, resulting in fouling.
It can be speculated that the reduction in inorganic fouling is the reason for the effect of
PMS pretreatment, because the degradation of the organic matter would consequently
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reduce the binding of salt ions to organic matter. Therefore, follow-up studies are needed
to investigate the effect of salt ions on organic fouling in the AOP-MD hybrid process.

Table 1. Feed solutions used in previous studies.

Feed Solutions Organics Cations References

Secondary effluent + a
mixture of micropollutants

NOM and micropollutants
(amitriptyline, trimethoprim, etc.) Zn2+, Cu2+, Ca2+, Fe3+, K+, etc. Asif et al., 2019 [27]

Surface water AOM Ca2+, Mg2+, Al3+, etc. Asif et al., 2021 [28]
SDS + NaCl SDS Na+ Han et al., 2022 [29]

Secondary effluent/surface
water NOM Ca2+, Mg2+, Fe3+, K+, etc. Ding et al., 2022 [30]

4. Conclusions

The study investigated single-organic membrane fouling by examining different model
organics individually. Individual salt-free NOM solutions were selected as the target con-
taminants for the PMS-MD hybrid process. The findings demonstrate that, in contrast to
pure NOM solutions, the degree of membrane fouling increased surprisingly for preoxi-
dized NOM solutions, as summarized below:

1. NOM was notably degraded after 60 min of heat/PMS pretreatment using a PMS dose
of 0.4 g L−1 and a reaction temperature of 80 ◦C. The DOC removal results indicate
that the amount of NOM was considerably reduced because some of the NOM was
partially mineralized. The greater removal of UV254 compared with DOC indicates
that some NOM decomposed to small molecules, whereas the fluorescent compounds
HA and BSA were completely degraded.

2. For pure NOM solutions that did not undergo heat/PMS pretreatment, pure HA
caused the most severe membrane fouling, followed by pure BSA; however, there was
little adherence of pure SA to the membrane.

3. When PMS was added for pretreatment, the oxidized NOM solutions caused a more
severe flux decline and a higher fouling degree, despite the reduction in the NOM
concentration, especially for oxidized HA and BSA. On one hand, the oxidized NOM
had a lower MW, which made it easier to adsorb on the membrane. On the other
hand, the introduction of the PMS oxidant and quencher increased the ionic strength
of the feed solution, which reduced the permeability in the MD process.

Overall, this study demonstrates that the organic fouling degree cannot be reduced
even after the considerable degradation of NOM by heat/PMS pretreatment. Therefore,
the ideal mitigation effect reported in previous studies in actual water treatments was most
likely mainly due to a reduction in inorganic fouling. The degradation of NOM could hinder
the complexation of inorganic cations and organic matter. Hence, further investigations are
required to determine the impact of this pretreatment approach on the fouling of inorganic-
organic mixed membranes. Specifically, understanding how organic molecule properties
and their interactions with salt ions during oxidation affect the degree of membrane fouling
in membrane distillation (MD) is necessary to optimize MD performance.
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