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Abstract: Understanding the relationship between remotely sensed snow disappearance and sea-
sonal water supply may become vital in coming years to supplement limited ground based, in
situ measurements of snow in a changing climate. For the period 2001–2019, we investigated the
relationship between satellite derived Day of Snow Disappearance (DSD)—the date at which snow
has completely disappeared—and the seasonal water supply, i.e., the April—July total streamflow
volume, for 15 snow dominated basins across the western U.S. A Monte Carlo framework was
applied, using linear regression models to evaluate the predictive skill—defined here as a model’s
ability to accurately predict seasonal flow volumes—of varied predictors, including DSD and in
situ snow water equivalent (SWE), across a range of spring forecast dates. In all basins there is a
statistically significant relationship between mean DSD and seasonal water supply (p ≤ 0.05), with
mean DSD explaining roughly half of the variance. Satellite-based model skill improves later in the
forecast season, surpassing the skill of in-situ-based (SWE) models in skill in 10 of the 15 basins by the
latest forecast date. We found little to no correlation between model error and basin characteristics
such as elevation and the ratio of snow water equivalent to total precipitation. Despite a relatively
short data record, this exploratory analysis shows promise for improving seasonal water supply
prediction, in particular for snow dominated basins lacking in situ observations.

Keywords: snow remote sensing; water supply prediction; snow disappearance

1. Introduction

Across much of the western United States, a substantial amount of total water sup-
ply originates as mountain snowpack in the colder, winter months. Especially at higher
elevations, many regions are snow dominated, with estimates of up to 70% of runoff origi-
nating as snow ablation [1]. This water is vital for power generation, recreation/municipal
use, and agriculture [2,3]. As demand for water increases with population growth [4],
so does the importance of accurately predicting water supply. However, widely used
operational forecast models still struggle to forecast total seasonal snow water supplies,
especially in years with anomalous snowpack and under growing uncertainties from future
projected changes to climate. This stresses the need to leverage emerging observational
data streams, such as remotely sensed snow observations to help improve forecasts in
snow-dominated watersheds.

With relatively low summer precipitation, western U.S. water supplies are depen-
dent on water from snow ablation, with streamflow peaking around April, May, June,
and July (AMJJ). One major challenge in the skillful prediction of AMJJ total streamflow
volume—defined here as seasonal water supply—is the spatially limited network of in
situ measurements of SWE and related characteristics, such as incremental precipitation
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and snow density. Measurements are sparse and preferentially located, often in areas of
easy access, which leads them to under sample a variety of terrains while oversampling
more accessible elevations. This relatively homogenous snow sampling makes estimates
of watershed-scale hydrology difficult, reducing the accuracy of in situ measurements in
regions located in the mid-latitudes [5]. New satellite-based geospatial data has allowed
for expanded observation of snow, with studies showing a relationship between remotely
sensed snow variables and changes in peak SWE [6], as well as with runoff [7,8] and water
supply characteristics [9]. In particular, basin DSD was found to explain over half of the
variance in peak SWE across basins located in the western U.S. [6] In this study, we seek
to isolate remotely sensed snow disappearance information and investigate its utility in
skillfully predicting seasonal water supply for 15 basins across the western United States.

As early as 1906, in situ snow observations have been collected to support hydrologic
prediction [10]. Snow course data, collected by teams of researchers, include variables such
as snow depth and SWE. More modern methods of in situ snow data include daily measure-
ments from Snow Telemetry (SNOTEL) sites, which are monitored by the Natural Resources
Conservation Service (NRCS) and were designed to replace snow course measurements.
SNOTEL measurements are typically found in high accumulation, high elevation areas,
with an approximate station density of one site per 3400 km2 over the western U.S. This,
paired with the cost and difficulty of repairs, limits the widespread availability of SNOTEL
data. Additionally, sparse spatial coverage implies that predictions based on SNOTEL must
implicitly assume a stationary relationship between snow observed at those points relative
to basin-wide SWE volume. This assumption has varying utility dependence on the path
of winter storm tracks and a non-stationary climate [11]. Conversely, satellites can monitor
the presence of snow nearly continuously over the entire landscape. Despite its limitations,
SNOTEL data has been vital in the initialization of many models used to predict seasonal
water supply. Previous studies have shown a strong relationship exists between peak SWE
and flow volume, with lower peak values of SWE corresponding with less runoff in the
snow ablation season [12]. In the Sierra Nevada, a 10% decrease in peak SWE led to larger
decreases (9% to 22% reduction) in summer minimum streamflow [13], with minimum
downstream flows occurring 3–7 days earlier than average annually with each 10% de-
crease in SWE. A relationship has also been found between the timing of peak SWE and the
volume of AMJJ runoff; earlier peak SWE leads to below average AMJJ runoff [14,15]. When
considering the response of annual streamflow volume to changing future snow conditions,
the expected outcomes may partially depend on which ablation mechanisms dominate; e.g.,
changes in aridity, water-inputs, or energy-inputs. There is limited consensus on changes
in streamflow volume, but greater consensus on how warming-driven changes in snow
ablation will drive earlier peak hydrograph timing [16].

In the last few decades, the emergence of satellite-based snow cover data has allowed
for new insights into the state of snow in the West. Satellite-based data is spatiotemporally
continuous, in contrast to the limited spatial coverage of SNOTEL data. Several satellite
snow products exist, including Landsat’s fractional Snow Covered Area (fSCA) dataset [16],
the National Snow and Ice Data Center’s Snow Data Assimilation System (SNODAS) [17],
and snow cover estimations derived from data procured by NASA’s Moderate Resolu-
tion Imaging Spectroradiometer (MODIS). These products have various strengths and
weaknesses: for example, Landsat has high spatial resolution (ranging from 15 m to 60 m,
depending on spectral band), but is only available every 16 days [18]. On the other hand,
SNODAS assimilates satellite data with a physically based model, providing snow esti-
mates at a 1-day temporal resolution, but with a somewhat coarse spatial resolution of
1 km [17]. Finally, MODIS-based approximations of snow cover have a high temporal reso-
lution derived from twice daily observations onboard NASA’s Terra and Aqua satellites,
but a 500 m spatial resolution. Furthermore, due to the limitations of remote sensing, these
products do not output a direct estimate of SWE. Instead, they can identify the presence of
snow, providing useful information on snow timing. Reconstructions of SWE via remotely
sensed data can provide spatially distributed estimates of SWE using assumptions about
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the snowpack energy balance, but are generally limited to be run only after the snowpack
has fully ablated and so are generally only valid for retrospective study [19–21].

In the western U.S., the Natural Resources Conservation Service (NRCS) have primar-
ily used SNOTEL SWE as a predictor in water supply forecasts [22]. Statistical models,
such as those employed by the NRCS, allow for the inclusion of relevant data while mini-
mizing model complexity, although they are less robust in response to shifts in hydrologic
conditions. The U.S. National Weather Service (NWS) also uses snowpack measurements
to initialize different process-based models used to simulate river flooding and water
supply via their River Forecast Centers (RFCs) [23–25]. The main benefit of process-based
models is the representation of hydrologic processes and mass balance equations applied
through time. However, these representations heavily rely on many trainable parameters,
generally requiring extensive data availability and computationally expensive parameter
identification procedures.

Although a major source of predictability used in water supply forecasting can be
attributed to the SNOTEL network, satellite data provides potentially complementary infor-
mation that may offer unique skill to predictions. Other studies have explored combining
in situ and satellite data within computationally demanding physically based models.
For example, the combination of MODIS snow-covered area and in situ data was used to
estimate daily SWE within the Sierra Nevada and to improve predictions of streamflow
and hydrologic models in the Upper Colorado River Basin using physically based mod-
els [26,27]. Similarly, the addition of satellite variables such as fSCA to SNOTEL-based
measurements of SWE in a linear regression model were found to improve estimates of spa-
tially distributed SWE in the California Sierra Nevada [28]. Previous analyses by Heldmyer
et al. 2021 and Yang et al. 2022 used regression models to demonstrate that remotely sensed
snow variables —including annually aggregated DSD—which may explain the majority
of the variance of peak SWE, which is among the most important variables in predicting
seasonal water supply [29,30]. Although many of these relationships have been separately
studied, no work to date has sought to quantify the skill of satellite snow disappearance in
directly predicting seasonal water flow volume. This paper explores two novel concepts:
(1) the relationship between satellite-derived snow timing variables and seasonal water
supply, directly exploring the predictive power of this relationship in a computationally
inexpensive linear regression model; and (2) locations and time periods where satellite
data may support or even exceed the skill of in situ observations in predicting seasonal
water supply. As all satellite (DSD, SFF) and in situ (SNOTEL SWE) predictors evaluated in
this study provide snapshots of snow conditions in the study basins, the skill that these
variables provide is expected to vary over time and space. Working hypotheses include
that satellite-derived linear regression models will provide more information about water
supply later in the season, as snow ablation occurs, as well as that the strength of this
relationship will be positively related to the annual fraction of precipitation that falls as
snow (SWE/P).

2. Materials and Methods

A description of relevant data is included in Section 2.1, with an overview of the
15 study basins. We describe the test of the relationship between satellite-observed DSD
and seasonal water supply (Section 2.2), followed by the predictive testing of satellite snow
timing variables—separately, as well as in conjunction with in situ observations—on a
series of forecast dates in Section 2.3. Forecast validation is explained further in Section 2.4.

2.1. Data Description

A total of 15 basins were selected across the western U.S. to span a range of snow-
dominated conditions. Multiple screening criteria followed Modi et al., 2022, resulting
in the selected basins and their attributes shown in Figure 1 and listed in Table 1. Basin
area was constrained between 350 to 2500 km2, with at least one SNOTEL station within
the basin boundary or less than 10 km from the basin boundary, with a full record of
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SNOTEL [31] and USGS-gaged streamflow observations [32] available between water-years
2001 and 2019 [33]. The selected date range was chosen to overlap with snow timing data
from Heldmyer et al., 2021, which motivated this work. The resulting basins fell within
snow-dominated ecoregions and were also identified as having minimal anthropogenic
influence on streamflow as part of metadata from the GAGESII dataset [34]. Following
procedures outlined in Heldmyer et al., 2021, DSD values greater than 275 (day of year)
were discarded under the assumption that these pixels are permanently snow-covered.
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Figure 1. The 15 study basins spread across eight western states. Correlation values between DSD
mean and yearly seasonal water supply are calculated at basin-wide level, marked at the outlet
location for each basin.

MODIS-derived raster data of satellite snow cover timing for the western U.S. was
obtained from Heldmyer et al., 2021, spanning the years of 2001–2019 at a 500 m resolution.
They found that applying a 10% fractional snow covered area (fSCA) threshold in obtaining
a binary snow cover series from MODIS snow covered area minimized errors in calculating
the day of snow disappearance (DSD), reducing some of the uncertainty associated with
canopy masking of snow cover. The basin-wide mean DSD—defined here as the “mean
DSD”—is a central predictor variable in this analysis and was calculated for all pixels that
experienced complete snow ablation (nvalid) during a one-year period. The pixelwise means
for all locations within the basin were then averaged to obtain the annual basin-wide mean
DSD. From the same pixelwise data, we further calculated the daily snow free fraction,
(SFF) or the fraction of a given basin for which snow has ablated by a specific date. This
value was calculated with Equation (1), by determining the fraction of pixels which had
DSD values less than or equal to the forecast date (nDSD ≤ day) with respect to nvalid. The
dates chosen for this analysis began on 1 April and were evaluated biweekly (on 15 April,
1 May, 15 May), ending on 1 June.

SFFday =
nDSD ≤ day

nvalid
(1)
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Two sources of in situ data were also used: USGS stream gage data, as well as data
from the NRCS’ Snow Telemetry (SNOTEL) sites. The stream gage data, initially accessed
as an average daily flow rate, was accumulated to a single value of seasonal water supply
volume for that year. For each basin, one SNOTEL site was manually selected to represent
in situ SWE at a daily timestep, using beginning of day measurements.

Table 1. Description of study basins and relevant attributes. SWE/P is defined as the average ratio of
1 April SWE to cumulative precipitation, as recorded at each SNOTEL station, for the water years
1985–2020. The USGS gage names have been abbreviated for clarity.

Basin Name USGS Gage
Name USGS ID Gage

Location

Gage
Elevation

(m)

Basin
Area
(km2)

SNOTEL
Station

SNOTEL
Elevation

(m)

SWE/P
Ratio

Walker R. W Walker River
near Coleville, CA 10,296,000 38.38,

−119.45 2008 471 575 2191 0.84

Carson R.
E F Carson River
near Markleeville,

CA
10,308,200 38.71,

−119.76 1646 718 697 2358 0.82

East R. East River at
Almont, CO 9,112,500 38.66,

−106.85 2440 750 380 3109 0.92

Crystal R. Crystal River near
Redstone, CO 9,081,600 39.23,

−107.23 2105 434 618 2674 0.82

San Juan R.
San Juan River at
Pagosa Springs,

CO
9,342,500 37.27,

−107.01 2148 727 840 3091 0.80

Little Wood R. Little Wood River
near Carey, ID 13,147,900 43.49,

−114.06 1621 655 805 2329 0.75

Swan R. Swan River near
Bigfork, MT 12,370,000 48.02,

−113.98 933 1753 562 1448 0.76

Bruneau R. Bruneau River at
Rowland, NV 13,161,500 41.93,

−115.67 1372 988 746 2240 0.68

Sandy R. Sandy River near
Marmot, OR 14,137,000 45.40,

−112.14 0 711 655 1241 0.41

Santiam R.
North Santiam

River near Detroit,
OR

14,178,000 44.71,
−122.10 485 553 614 789 0.24

Blacksmith
Fork

Blacksmith Fork
near Hyrum, UT 10,113,500 41.62,

−111.74 1530 681 634 2722 0.98

Sevier R. Sevier River at
Hatch, UT 10,174,500 37.65,

−113.43 2094 864 390 2928 0.74

Lamar R.
Lamar River near

Tower Falls Ranger
Station, YNP

6,188,000 44.93,
−110.39 1829 1741 683 2865 0.96

Pacific Cr. Pacific Creek at
Moran, WY 13,011,500 43.85,

−110.52 2048 407 314 2152 0.96

Stehekin R. Stehekin River at
Stehekin, WA 12,451,000 48.33,

−120.69 335 839 681 1402 0.86

2.2. Evaluation of the Relationship between DSD and Seasonal Water Supply

To determine the strength of the linear relationship between satellite variables (DSD
and SFF) and seasonal water supply, the correlation between annual mean water supply
and mean DSD was calculated under the assumption that each pixel behaves as a spatially
discrete snow pillow. The correlations shown in Figure 1 come from the basin-wide mean
correlation between the 19 years of DSD data and the annual values of seasonal water
supply (AMJJ total flow volume). For each basin, the Pearson’s correlation coefficient (R)
was calculated, where basin-wide mean DSD was identified as the independent variable
and the aggregated seasonal water supply for each year was identified as the dependent
variable in the sample. Similarly, the strength of the relationship between the DSD and
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seasonal water supply was evaluated via a linear regression, which was chosen to isolate
the connection between variables [33]. Model goodness of fit was evaluated and the R2 and
p-value of the regression were reported. The null hypothesis for the regression was that
the slope of the regression line is equal to zero, or that there is no observable relationship
between the two datasets. To better understand the interannual variability in each source
of data and how this may affect model skill, the quartile coefficient of dispersion (QCD)
was calculated for each basin. Equation (2) shows the calculation of the QCD for a single
data source, where Q1 is equal to the 25th percentile of the data, and Q3 is equal to the
75th percentile of the data. This nonparametric metric is a more robust alternative to the
coefficient of variation, which is sensitive to outliers.

QCD =
Q3−Q1
Q1 + Q3

(2)

2.3. Analysis of Predictive Skill

Historically, 1 April has been an important date for water supply forecasting, as SWE
is near its maximum annual value [35]. Here, we evaluated the predictive capabilities of
linear models on and after this date—on 1 April, 15 April, 1 May, 15 May, and 1 June—to
provide an understanding of how the skill of these models depends on seasonal timing of
the prediction and additional, post 1 April snow ablation timing information. After 1 April,
decreases in SWE increase the portion of the basin with observable snow disappearance,
causing an increase in the amount of available DSD information. The remaining dates were
chosen to simulate ‘first of month’ water supply forecasts; to increase the granularity of
results, mid-month forecast dates were added. Five different linear models were fit to the
AMJJ flow data from 2001–2019, with names and relevant input variables defined in Table 2.
In each of these cases, the predictand variable is the seasonal water supply in each basin.

Table 2. Description of model inputs, units, and naming scheme. ‘Sat’ describes satellite-based
measurements of snow, whereas ‘Phys’ refers to physical, in situ measurements.

Model Classifier Input Variables Units

Sat_DSD Day of Snow Disappearance
(DSD) Day of year

Sat_SFF Snow free fraction (SFF) Percentage (%)
Sat_combo DSD and SFF Day of year; percentage (%)

Phys_SWE SNOTEL snow water
equivalent (SWE) mm

SatPhys_combo DSD, SFF, and SNOTEL SWE Day of year; percentage (%);
mm

For each basin, a Monte Carlo (MC) approach was used to portray the central tendency
of the predictions. Following previous studies, which used MC simulations to estimate
probabilistic flood hydrographs, 10,000 random MC simulations were utilized. [36,37]. In
each iteration, a random split of the 19 years of data partitioned the data into training and
testing datasets, with an optimal train: test ratio of

√
p:1, where p =

√
Nu, and Nu is equal

to the number of unique input rows (in this case, 19) [38]. Using this method, the fraction
of data reserved for model validation was approximately 0.32, which is comparable to that
retained in other linear regression studies [39]. Using this iterative resampling of yearly
data into independent testing and training datasets, we also sought to reduce model overfit.

To resemble the setup of a true forecast, only data that would have been available
on or before the corresponding forecast date was considered for each experiment. For
example, on 1 April–the 91st day of the year—DSD values larger than 91 meant that
snow had not yet disappeared for those grid cells. Therefore, these values were dropped
before computing the spatial mean DSD for each year. A similar procedure was used
in calculating SFF (in Equation (1)) to ensure that the model was only provided data
that was available on or prior to the forecast date. A linear ordinary least squares (OLS)



Water 2023, 15, 1147 7 of 18

regression via the scikit-learn and statsmodels Python packages [40,41] was used for
the model fitting process. Due to the potential for multicollinearity across predictors,
models with more than one predictor variable employed a forward stepwise regression
approach to determine which independent variables positively contributed to model fit.
Previous research has shown that forward stepwise regression rivals the performance of
other predictor variable selection frameworks, which seek to reduce model residuals, such
as principal components regression or best subsets regression, and performs well when
a potential for multicollinearity is present [42]. Forward stepwise OLS regression was
validated and trained for each MC simulation on the subset of training years. To select
a model with multiple predictor variables, additional predictors must have reduced the
residual sum of squares (RSS), or variance in model error, when the multilinear model
was fit.

VAMJJ = β0 + β1(DSD) + β2(SFF) + β3(SWE) (3)

where VAMJJ is the total AMJJ streamflow volume, or seasonal water supply, β1–3 are model
coefficients corresponding to mean DSD, SFF, and SNOTEL SWE terms, and β0 is the
model error.

2.4. Model Evaluation

For each of the 10,000 MC simulations, model fit and error statistics were calculated
for all linear regression models. After each model was fit, the estimated β values were
used in conjunction with the reserved testing data to evaluate the model. The intercept,
as well as the relative root mean squared error (rRMSE), Pearson’s correlation (R), and
percent bias (PBIAS) were reported. These metrics all provide insight into different facets
of the model fit. rRMSE, the standard deviation of the model residuals, was chosen to
represent the overall model fit, while the PBIAS was chosen as an operational metric
determining how accurate the predictions were with respect to total volume, as well as the
direction of the errors. After 10,000 iterations, the median scores and interquartile range
(IQR) were reported to capture the central tendency and uncertainty associated with each
model. This process was repeated for each basin on each of the five forecast dates (1 April,
15 April, 1 May, 15 May, 1 June). Equations (4) and (5) describe the chosen model fit and
error statistics:

rRMSE =

√
∑n

i=1
(ŷi−yi)

2

n
y

(4)

PBIAS =
∑n

i=1(ŷi − yi)

∑n
i=1 yi

(5)

where ŷ is the observed value of seasonal water supply, VAMJJ, y is the predicted value of
VAMJJ for a given model, and n is equal to the number of predicted values.

3. Results
3.1. Evaluating the Relationship between Satellite Variables and Seasonal Water Supply

When considering all years of available data, a significant relationship (p ≤ 0.05) exists
between DSD and seasonal water supply in all the selected basins. Overall, later DSD
values correspond with larger streamflow volume. The associated regression fit statistics
are provided in Table 3. Although we focus on basin wide averages, we acknowledge that
the correlation between DSD and seasonal water supply spatially varies within each basin,
as shown for the East R. basin in Figure 2a—chosen to represent a basin with relatively
high overall correlation. Here, as in other basins, we generally see increasing correlation
with increasing elevation. In most cases, the selected SNOTEL station is located in a
high-elevation portion of the basin where there is a relatively high correlation between the
pixelwise DSD and seasonal water supply. These are areas where high snow accumulation is
expected. As a result, in situ snow observations at these locations may not be representative
of the range of snow conditions found across the entire basin. In basins with lower overall
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correlation, for instance, the Bruneau R. Basin (Figure 2b), a greater disparity of correlation
across the basin can be seen.

Table 3. Relationships between mean DSD, center of water supply volume, and VAMJJ for the
15 selected study basins. R2 and p-value from OLS model fit statistics using all years of available
spatially aggregated DSD and USGS stream gage data. Basins are sorted from highest to lowest
elevation at their USGS stream gage.

Basin Mean DSD Center of Water
Supply Volume DSD-VAMJJ R2 p-Value

East R. 130 152 0.82 8.30 × 10−8

San Juan R. 114 143 0.80 2.20 × 10−7

Crystal R. 136 157 0.80 2.50 × 10−7

Sevier R. 95 143 0.57 1.80 × 10−4

Pacific Cr. 141 147 0.60 1.10 × 10−4

Walker R. 135 150 0.79 4.50 × 10−7

Lamar R. 140 152 0.46 1.50 × 10−3

Carson R. 119 141 0.74 2.10 × 10−6

Little Wood R. 107 142 0.41 3.00 × 10−3

Blacksmith Fork 105 139 0.48 1.00 × 10−3

Bruneau R. 83 130 0.38 4.80 × 10−3

Swan R. 111 153 0.39 4.00 × 10−3

Santiam R. 102 135 0.79 4.50 × 10−7

Stehekin R. 150 153 0.60 9.30 × 10−5

Sandy R. 75 132 0.52 4.90 × 10−4
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Table 3. Relationships between mean DSD, center of water supply volume, and VAMJJ for the 15 
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Figure 2. Absolute correlation between VAMJJ and DSD for the years of 2001–2019 spatially illustrated
for the example basins of the East R. at Almont, CO, (a) and the Bruneau R. at Rowland, NV, (b) at the
native MODIS resolution of 500 m. The location of the USGS gage and SNOTEL station are denoted
by a yellow star and orange triangle, respectively. Contour lines range from yellow (lowest) to orange
(highest) elevations.

While this relationship differs in strength within each basin, approximately half of the
yearly variance in seasonal water supply can be explained by the annual mean DSD. The
mean correlation for all basins is 0.46 with a median correlation of 0.50. R2 values expected
to be larger later in the season, as the DSD information for each year has captured more
snow disappearance. Other variables, such as the SFF or SNOTEL SWE, may increase the
R2 values within these basins. By discussing the relative predictive skill of each model,
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the following Sections (Sections 3.2 and 3.3) discuss how this relationship develops over
time and with respect to different predictor variables. The addition of other meteorological
predictors—including total precipitation—may improve R2 further but were not considered
in this study.

3.2. Evaluation of Forecast Skill of Linear Models Only Using Satellite Data

The predictive strength of the satellite-derived snow information varies throughout
the forecasting season. In the case of the example study basin, the East R. (Figure 3),
as the season progresses, the satellite-based forecasts improve in rRMSE and R, while
PBIAS shows greater variability. When considering overall goodness of fit, we see that the
rRMSE consistently decreases during the prediction duration, and correlation between the
predicted and observed values rapidly increases until approximately 15 April, where it
plateaus and slowly improves. In all cases, model skill generally improves after 1 April,
when the proportion of the basin that is snow free increases and provides more descriptive
information. In an operational setting, an important metric of the fidelity of water supply
models is the PBIAS, which describes the direction and magnitude of errors. In the East R.
basin, the Sat_DSD model has a minimum PBIAS when less of the basin is snow covered,
with close to zero bias by 15 May. Similarly, the Sat_SFF model is most skillful (−0.071
PBIAS) at the end of the season; when there is more yearly variation in the rate, the basin
experiences snow ablation.
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Figure 3. The median relative RMSE, correlation, R, and percent bias, PBIAS, error statistics for
three different satellite-based water supply forecasts in the East R. basin, with interquartile range
(25/75 percentiles) shaded. Vertical dotted lines denote the days chosen for forecasting—1 April,
15 April, 1 May, 15 May, and 1 June.

The same generally holds true when considering the other basins. The simplest satellite
model (Sat_DSD) has a median 1 April PBIAS of −0.78, whereas the 1 June PBIAS has a
median of −0.57. In terms of the overall model fit, the rRMSE varies most substantially
from model to model, with a median 1 April rRMSE of 0.33 when considering DSD mean
and SFF, and 0.42 only considering DSD mean. In some basins, changes in model skill
are not always positive, as can be seen in Figure 4. The addition of additional predictor
variables in these basins can increase uncertainty, leading to larger interquartile ranges
and small increases in errors in some cases. This can be due to multicollinearity between
different predictor variables, which the forward stepwise OLS regression was not able to
consistently overcome.
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Figure 4. The median percent bias, PBIAS, statistics for three different satellite-based water supply
forecasts with interquartile range (25/75 percentiles) shaded, for all 15 study basins. Vertical dotted
lines denote the days chosen for forecasting—1 April, 15 April, 1 May, 15 May, and 1 June.

In the San Juan R. basin, in all 10,000 simulations, the RSS for the training set was
always reduced when both DSD mean and SFF were introduced as independent variables;
i.e., the Sat_combo case. In other basins plotted in Figure 4 (e.g., gages at the Blacksmith
Fork and Lamar R. basins), PBIAS is markedly larger in magnitude for the Sat_combo
forward stepwise model than other, single variable models. However, in these cases, the
“best” model with lowest training RSS was often still the Sat_combo model, using both DSD
and SFF information. The increase in absolute PBIAS in these additional basins, despite
a low training RSS, suggests large variability within the yearly values of DSD, SFF, and
the seasonal water supply. Additional figures for satellite-based model correlation, R, and
rRMSE are presented in the Supplementary Materials (Figures S1 and S2, respectively).

3.3. Evaluation of Skill of Linear Models Combining Satellite and In Situ Data

For the East R. gage, the Phys_SWE model outperforms all combinations of the satellite
models from 15 April to 15 May with respect to PBIAS (Figure 5). Earlier than 15 April,
the Sat_combo model performs best (PBIAS = 0.07), whereas after 15 May, the Sat_SFF
model performs best, with a PBIAS of 8.91%. A steep increase in the PBIAS and the
magnitude of the IQR, as well as a degradation in skill among other metrics, can be seen
in Figure 5. Similarly, by 1 June, the forward stepwise SatPhys_combo model no longer
includes SNOTEL SWE as a predictor in every combination, as snow may have ablated
at the snow pillow by that time. Throughout the season, the rRMSE improves for the
Sat_combo and SatPhys_combo models, but there is a rapid increase in the magnitude of
errors for the Phys_SWE model after 1 May. This is consistent with the general phenomenon
of correlation increasing in the Sat_combo and SatPhys_combo models across the season,
and rapidly decreasing for the Phys_SWE model after 1 May.
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Figure 5. The median relative RMSE, rRMSE, correlation, R, and PBIAS statistics for three differ-
ent satellite and in-situ-based water supply forecasts in the East R. basin with interquartile range
(25/75 percentiles) shaded. Vertical dotted lines denote the days chosen for forecasting—1 April,
15 April, 1 May, 15 May, and 1 June.

When considering the full set of study basins in Figure 6, there is more variability in
skill—both in which predictors produce the lowest error, as well as when the best skill
is observed in the snow ablation season. For example, in the Blacksmith Fork basin, the
Phys_SWE model still produces the least errors in predicting summer flow on 1 June, with
the Sat_SFF and Sat_combo models producing significantly more errors. With a basin-wide
mean DSD of 104, which is after 1 April, for WY2001–2019, as well as a SWE/P ratio
of 0.98, 98% of precipitation in the basin falls as snow, and the satellite models may not
capture increased information from DSD and SFF in the Blacksmith Fork basin as the
season progresses. However, this pattern is not seen in other basins with low mean DSD,
such as the Bruneau R and Sandy R basins, or those with high SWE/P ratios, such as
the Pacific Creek and Lamar R basins (SWE/P = 0.96). Additional figures for satellite
and in-situ-based model correlation, R, and rRMSE can be found in the Supplementary
Materials (Figures S3 and S4, respectively).
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4. Discussion
4.1. Insights and Implications

Using satellite snow timing data compiled by Heldmyer et al., 2021 (detailed further
in Section 2.1), the relationship between remotely sensed data and seasonal water supply
was studied in a range of snow-dominated basins across the western U.S. SNOTEL SWE, a
useful predictor in operational water supply forecasts, is spatially limited and unavailable in
many basins; consequently, the exploration of MODIS-derived satellite data for prediction
of water supply may provide vital information to water managers across the western U.S.
Motivated by existing research, this study expanded on previous work that investigated
relationships between satellite data and streamflow characteristics, such as peak runoff.

In our attempt to answer whether remotely sensed snow disappearance can explain
seasonal water supply variability, a few features appeared. First, due to a lack of snow
disappearance at the beginning of the forecast period, the initial hypothesis —that linear
models depending on DSD and SFF data improve in their predictive skill over time, as
snow disappears—cannot be rejected in most basins. In some basins, such as the East R.
and Pacific Cr. basins, PBIAS skill did not consistently improve from 1 April to 1 June.
However, the central tendency of other error metrics, such as the rRMSE, did improve over
the course of the forecast period. In those same basins, as well as seven others (Walker R.,
Lamar R., Stehekin R., Carson R., Little Wood R., Santiam R., and Sevier R.) there was at
least one instance in which the rRMSE of the Sat_DSD and Sat_combo models increased
from one date to the next. In five of the nine basins, which saw increases in rRMSE over
time, this decrease came before the date of mean DSD.
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Interestingly, a strong correlation exists between basin SWE/P ratio and model error,
as shown in Table 4, or between gage elevation and model error, as shown in Table S1.
The strength of this result varies when averaged across the forecasting season, but the
Phys_SWE model showed the highest correlation between SWE/P ratio and model error, as
well as the only relationship that can be described as statistically significant (p ≤ 0.05). The
variation associated with DSD and SFF are related to physical processes, which may not be
well represented by these metrics. For example, while the DSD may give some indication
regarding how wet/warm a water year is, it does not allow for an interpretation of physical
processes to explain the separate implications of temperature, solar radiation, and/or
deviations from expected meteorological conditions. Similarly, the methods described in
this paper assume that seasonal water supply can be represented by changes in snow-
covered areas, suggesting that only pixels that have experienced complete ablation will
contribute to seasonal water supply. In basins with areas of permanent snowpack, this
assumption may introduce a source of error, since permanent snowpacks will contribute
some water to melt, but will not be included in the aggregated DSD calculation.

Table 4. Correlation between SWE/P ratio and median PBIAS values for all basins calculated for
each model and each forecast date. Values with a significant relationship (p-value < 0.05) are marked
with an asterisk.

1 April 15 April 1 May 15 May 1 June Mean Median
Sat_DSD −0.07 −0.28 −0.15 −0.03 0.03 −0.10 −0.07
Sat_SFF −0.21 −0.29 −0.16 −0.35 0.27 −0.15 −0.21

Sat_combo −0.11 −0.20 0.22 −0.26 0.33 0.00 −0.11
Phys_SWE −0.17 −0.26 −0.57 * −0.64 * 0.11 −0.31 −0.26

SatPhys_Combo −0.28 −0.23 −0.09 −0.19 0.24 −0.11 −0.19
Mean −0.17 −0.25 −0.15 −0.29 0.20

Median −0.17 −0.26 −0.15 −0.26 0.24

The Sat_DSD and Sat_SFF models varied in predictive skill across basins, as presented
in Figure 4. In some basins, DSD was consistently more skillful, or vice versa. This suggests
that there may be some combination of basin characteristics (i.e., slope, aspect, or vegetation
cover) which were not considered, under which one of these predictor variables is most
skillful. When comparing the skill of satellite-based models with those which rely on in situ
data, we found that those using in situ observations of SWE (from SNOTEL) may be more
informative than remotely sensed estimates of snow disappearance in predicting seasonal
water supply. This may be due to greater year-to-year variation in SNOTEL SWE; for each
basin in the analysis, the quartile coefficient of dispersion was calculated via Equation (2)
and is shown in Figure 7. This coefficient is a proxy for the spread of data; i.e., how wide
its distribution is. This variation in yearly SWE is larger than the variation in DSD in every
basin, but it becomes less pronounced as the season progresses.

The relative skill of satellite and in situ models also varies with time. Using a Mann-
Whitney U Test (also known as a Wilcoxon Rank Sum Test), a nonparametric comparison of
model distributions, the distribution of the satellite model predictive metrics with lowest
median PBIAS (i.e., Sat_DSD, Sat_SFF, or Sat_combo) was compared to the distribution
of the Phys_SWE model, to provide an understanding of when and where the skill is
significantly different.

A visualization of the mean difference in absolute PBIAS distribution for all 10,000 iterations
is shown in Figure 8. Here, we see that, in many basins, in-situ-based models show higher
skill in predicting seasonal water supply than satellite-based models before 1 May. Al-
though the behavior varies by basin, those with high SWE/P ratios tend to see better model
skill from SWE-based predictions (Phys_SWE, SatPhys_combo). In the Blacksmith Fork
(SWE/P = 0.98) and Lamar R. (SWE/P = 0.96) basins, the skill of the Phys_SWE model is
always significantly higher. The opposite is true for basins with low SWE/P ratios, such as
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the Santiam R. (SWE/P = 0.24) basin, where satellite variables have significantly higher
predictive skill for most, if not all, dates analyzed.
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Another important perspective on the question posed in this paper is that, given
limited SNOTEL coverage across the western U.S., predictive capabilities solely provided
by satellite-derived snow information show promise in providing predictive information
for less well-served water communities that may not have a SNOTEL station in their
basin. Similarly, changes in storm-track and overall climate could potentially imperil the
relationship between SWE observed at SNOTEL locations and seasonal water supply, such
that remote sensing would be likely to become increasingly important to supplement in
situ observations in making predictions in future years.

4.2. Limitations

The availability of DSD data used here was constrained to data obtained and processed
by Heldmyer et al., 2021; as a result, each model was only fit on data from 2001–2019
(19 years of available data). This limited sample size restricted the maximum number of
predictor variables used in the models to avoid model overfit. In addition, despite efforts
towards a large degree of resampling, e.g., 10,000 iterations of model fitting, the short
record may still lead to model overfitting as there are fewer training samples for each
prediction, as well as an increased possibility for outliers to skew model fit. On a physical
level, a key limitation of satellite variables previously mentioned is they do not provide
a direct estimate of water volume, rather only an indirect measurement of the timing of
snow presence. Moreover, we acknowledge that all variables used in this study (remotely
sensed and in situ) are subject to observational errors. In particular, the estimation of snow
disappearance from satellite-derived spectral data is an indirect measurement of ‘true’
snow disappearance, expected to introduce additional error to the study. While the errors
associated with uncertainties in satellite-derived DSD have been explored with respect
to errors in spatially distributed snow reconstructions, the effect of these uncertainties
on aggregated data has not been studied [43]. Finally, this analysis has been applied
to relatively small basins compared to the larger western U.S., given the availability of
unmanaged streamflow and concomitant snow observations. Further investigations into
the utility of this methodology applied to larger basins could provide additional insight into
the further potential of DSD in forecasting. As the size of the study area of interest increases,
the use of a more spatially comprehensive predictor such as DSD could provide unique
predictive skill relative to traditional methodologies that rely on sparse in situ observations.

4.3. Future Research Directions

To answer the posed research question(s), this study considered relatively simple
linear models to portray general relationships between variables. However, emerging
machine learning techniques, which may capture non-linear interactions, as well as models
considering a broader suite of predictor variables, could be used in future analyses. As time
progresses and the remotely sensed record length grows, the overarching question of this
manuscript should be revisited and reanalyzed with updated data records to understand
how these trends may change in a future climate and under a broader set of conditions,
especially with respect to anomalous years beyond what has already been observed in the
historical record.

5. Conclusions

In summary, we revisit the question posed in the title of the paper—can remotely
sensed snow disappearance predict seasonal water supply? We can affirmatively an-
swer, with all 15 of the study basins showing a statistically significant (p ≤ 0.05) explana-
tory relationship between remotely sensed snow variables and seasonal water supply for
WY2001–2019. In addition, using satellite-derived snow disappearance information to
predict water supply showed notable skill, with a seasonal average of less than 2% bias
in linear models (Sat_DSD, Sat_SFF, Sat_combo) in every basin surveyed. This work has
broad operational applications across the western U.S., especially in those areas without in
situ monitoring sites available.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15061147/s1, Figure S1: The median rRMSE statistics for three
different satellite-based water supply forecasts with interquartile range (25/75 percentiles) shaded,
for all 15 study basins. Vertical dotted lines denote the days chosen for forecasting—1 April, 15 April,
1 May, 15 May, and 1 June; Figure S2: The median correlation, R, statistics for three different satellite-
based water supply forecasts with interquartile range (25/75 percentiles) shaded, for all 15 study
basins. Vertical dotted lines denote the days chosen for forecasting—1 April, 15 April, 1 May, 15 May,
and 1 June; Figure S3: The median rRMSE statistics for three different satellite and in-situ-based
water supply forecasts with interquartile range shaded, for all 15 study basins. Vertical dotted lines
denote the days chosen for forecasting—1 April, 15 April, 1 May, 15 May, and 1 June; Figure S4: The
median correlation, R, statistics for three different satellite and in-situ-based water supply forecasts
with interquartile range shaded, for all 15 study basins. Vertical dotted lines denote the days chosen
for forecasting—1 April, 15 April, 1 May, 15 May, and 1 June. Due to a lack of recorded SWE on the
forecast dates for any year in the study period, some basins (e.g., Sevier R. and Pacific Cr.) have an
undefined correlation coefficient, R, for the Phys_SWE model. This is because Pearson’s correlation
coefficient, R, cannot be defined for a constant input array and, after complete snow ablation, SWE is
equal to zero for all years studied; Table S1: Correlation between USGS gage elevation and median
PBIAS values for all basins calculated for each model and each forecast date. Values with a significant
relationship (p-value < 0.05) are marked with an asterisk.
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