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Abstract: Water supply systems that use rivers with high sedimentation levels may experience
issues such as reservoir siltation. The suspended sediment concentration (SSC) of rivers experiences
interannual variation and high nonlinearity due to its close relationship with meteorological factors,
which increase the mismatch between the river water source and urban water demand. The raw
water system scheduling problem is expressed as a reservoir and pump station control problem
that involves real-time SSC changes. To lower the SSC of the water intake and lower the pumping
station’s energy consumption, a deep reinforcement learning (DRL) model based on SSC prediction
was developed. The framework consists of a DRL model, a hydraulic model for simulating the
raw water system, and a neural network for predicting river SSC. The framework was tested using
data from a Yellow River water withdrawal pumping station in China with an average capacity of
400,000 m3/d. The strategy created in this study can reduce the system energy consumption per
unit of water withdrawal by 8.33% and the average annual water withdrawal SSC by 37.01%, when
compared to manual strategy. Meanwhile, the deep reinforcement learning algorithm had good
response robustness to uncertain imperfect predictive data.

Keywords: water intake pumping station; storage reservoir; deep reinforcement learning; predictive
online control; artificial neural network

1. Introduction

The raw water system is a crucial component of the urban water supply system,
which consists of two components: the raw water source, which provides urban water
consumption, and the raw water pipeline network, which transports raw water to water
treatment facilities. Rivers, lakes, reservoirs and groundwater can all be sources of raw
water that meet certain water quality requirements. Pipelines, water pumping stations,
water storage facilities and other ancillary equipment comprise the raw water pipeline
network. One of the many functions of reservoirs is to provide the necessary water resources
for urban consumption [1,2]. Reservoirs adjust their water volumes to account for seasonal
variations and irregularities in precipitation and runoff, allowing them to provide a nearly
constant supply of water [3]. However, reservoirs’ storage capacities gradually shrink due
to sediment deposition [4], threatening the reliability of the water supply [5,6]. When a river
is clear, a diversion dam diverts water to the off-channel reservoir by gravity or by pumping
for reservoirs in raw water systems [7]. When there is not a sufficient gradient, raw water
systems use pumping stations to lift water from rivers into reservoirs and transfer water
from reservoirs to water plants. A large amount of electricity is needed to pump water
for transportation [8–10]. It is well known that optimized control strategies can reduce
pump energy costs [11,12]. Constructing online optimal control strategies for river-pump
station-reservoir type raw water systems in complex hydrological environments to achieve
long-term system sustainability is a challenging problem. Specifically, under highly variable
river suspended sediment concentration (SSC), the abstraction period and water volume
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of the abstraction pump station are optimally controlled in order to reduce pump station
energy consumption and slow down reservoir siltation while meeting the requirements of
urban water demand and river abstraction standards.

Optimal reservoir operation is typically accomplished by allocating reservoir releases.
Optimization algorithms have been reviewed in the literature [13–16]. Because of the
unique characteristics of off-channel storage reservoirs, their operational scheduling focuses
primarily on the optimal control of diversion pumping stations. To solve the pumping
optimal control problem, the classical approach is to model it as a steady-state optimization
problem [17] and solve it using deterministic methods (linear programming LP, nonlinear
programming NLP, etc.) or heuristic methods (genetic algorithm GA, particle swarm
optimization PSO, etc.) [12,18]. Unfortunately, the steady-state solution is unsuitable for
online control of complex systems because it cannot handle the uncertainty of randomly
fluctuating water needs and river inflows. The literature [19] also points out that heuristic
algorithms combined with hydraulic simulators, such as EPANET, are computationally
inefficient for real-time control of large water distribution systems. Dynamic control
based on real-time information can better achieve the goals of raw water system operation.
Existing real-time control methods can be divided into two categories: heuristic control and
optimization-based control [20,21]. Heuristic controls are typically based on predefined
rules, the development of which requires expertise. However, these rigid rules limit the
adaptability to a wide range of hydrological events and may not be the best solution [22].

In recent decades, model predictive control (MPC) has been widely studied as an
optimization-based technique for real-time control of dynamic systems. It solves a finite-
horizon open-loop constrained optimal control problem at each sampling moment to
determine the optimal control sequence and applies the first control in that sequence to
the system [23]. MPC has been used in the scheduling of water diversion and drainage
pumping stations [24], the urban water transmission system [25], and the water distribution
system [26]. In general, MPC solves uncertainty by solving deterministic optimization
problems in which random perturbations are replaced by estimates based on available
information, and the predictions are assumed to be deterministic. Because of its backward-
looking horizon implementation, MPC provides some robustness to system uncertainty, but
its deterministic formulation ignores the effect of future uncertainty [20,27], which may lead
to violation of soft constraints or model insolvability. It is insufficient to handle uncertainty
systematically [28]. Another common drawback of MPC is that its performance is limited by
online calculation loads and prediction accuracy [29,30]. To ensure computational feasibility,
the prediction horizon is shortened for more complex systems. However, the optimal
solution at short time horizons may produce a suboptimal result in the long term [31,32].
To develop a long-term optimal method for online control of storage reservoirs and water
intake pumps, we must consider the problem characteristics.

Reinforcement learning is an automated real-time control method that has become
popular in recent years. It enables sequential decision making in complex and uncertain
environments and is useful in a variety of fields, such as power systems [33,34], unmanned
aerial vehicles [35], traffic signal control [36,37], and so on. It is regarded as an adaptive
control algorithm capable of accounting for uncertainty without the use of a finite formula
randomized model [32]. Agents developed by reinforcement learning algorithms can
learn how to adopt the best control strategies to maximize cumulative rewards in their
environment through trial and error. Agents can be trained to control actions based on
previous experience in similar states [38], providing them good generalization properties.
Meanwhile, reinforcement learning provides computationally feasible solutions through
stochastic simulation and function approximation [39]. It can learn control strategies offline,
without the need for extensive online computation [40,41].

There has been some research on reinforcement learning in the field of real-time online
control of water supply and drainage, including optimal scheduling of water pumps in
water distribution networks [42,43], real-time control of stormwater systems [44–47], and so
on. Xu et al. [17] considered that the water demand at each node remains constant during
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the control period of real-time optimal scheduling of water pumps in the distribution
network to simplify the problem. Bowes et al. [40,48] used perfect predictive data to inform
decision control in their study of a reinforcement learning agent for real-time control of
stormwater systems. However, much of the prediction data is time-varying and contains
large uncertainty. It is critical to comprehend the impact of uncertainty in predictive
information on reinforcement learning control methods. Hence, further research into these
concerns is needed: (1) the feasibility of employing a deep reinforcement learning-based
predictive control framework for online control in raw water systems; (2) whether strategies
using imperfect prediction data can provide optimal or near-optimal solutions; and (3) the
effect of different hydraulic boundary conditions (initial annual reservoir storage volume,
daily reservoir outflow pattern) on the water intake strategies.

In this study, we develop a predictive control framework for the operation of a raw
water system based on deep reinforcement learning (DRL) [49,50]. In order to reduce
energy consumption in the raw water system, extend reservoir service life, and meet urban
water demand, a multi-objective reward function is developed. The reinforcement learning
model is trained and tested in a virtual environment using predicted data and accurate
data sets, respectively. The robustness of the framework under uncertain data is verified by
comparing the performance of the different strategies. The applicability of the framework
is demonstrated by creating various reservoir outflow patterns and initial annual reservoir
water volumes, then testing the model in a virtual environment for one year using river
hydrology data and urban water consumption data.

2. Methods

The raw water system in this study consists of an intake pumping station, an off-
channel reservoir, and pipes that connect the reservoir and the pumping station. The
overall architecture of the proposed DRL-based online control model is illustrated in
Figure 1. The action of the system at is defined as the pump operation at time step t. The
state of the system includes the volume of water in the reservoir v, the cumulative volume
of water withdrawn from the river g, the average sediment content of the water withdrawn
from the river w, the historical average sediment content of the river h and so on. The
current state st is the basis for decisions on future actions, and the action chosen in turn
affects the state of the system at the next time step. Because the river SSC at the next time
step is mainly influenced by the river hydrology, two modules (the hydraulic model and
the SSC predictive model) are used to calculate the state transition process of the system,
which serve as the environment for reinforcement learning. The hydraulic model is used
to calculate the state vectors including reservoir water volume vt+1, the cumulative water
withdrawal gt+1 and other variables. Using the flow, the SSC and other relevant data
upstream and downstream of the water intake, the SSC prediction model predicts the
SSC of intake water at the next time step. The outputs of the preceding two modules are
combined to form the state st+1 that is used as the basis for control decisions at+1 at the
next time step t + 1.

The DRL agent controls the environment through a closed-loop framework. When
the agent performs an action at at time t, the environment model is used to calculate state
st+1 at next time t + 1. During the training stage, the agent is trained step by step how
to perform actions with a higher cumulative reward. The trained agent is then used to
produce the operational strategy for online control.
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Figure 1. Architecture of the water intake pumping station predictive online control model.

The robustness of the reinforcement learning framework to uncertain data is validated
by comparing three different types of operation strategies, as defined below.

• Manual strategy: the actual pumping station control strategy developed through the
experience of human operators.

• Predictive control strategy: with a predicted river SSC, the strategy generated by the
DRL-based predictive online control model framework.

• Perfect predictive control strategy: the strategy generated by training with the real-
world river SSC. The robustness of the reinforcement learning framework to uncertain
data is verified by comparing the test performance of the two strategies (predictive
control strategy and perfect predictive control strategy). Perfect predictive control
strategy is impractical because it is impossible to make unbiased predictions of the
river’s SSC, and it is precisely the future river SSC that influences the choice of
control action.

Furthermore, we construct several different online control models and related train-
ing datasets under various reservoir outflow patterns and initial reservoir volumes, and
examine how these boundary conditions affect the strategies.

2.1. Hydraulic Model

The following are the approximation functions (characteristic curves) between the
head of the H (m), pump efficiency η (%), and pump flow q

(
m3/s

)
:

H = a1q + a2q + a3 (1)

η = b1q + b2q + b3 (2)

where a1, a2, a3, b1, b2, b3 are constant coefficients.
The system curve head includes the sum of the net pump head and pipeline head loss.

H = Hst + ∑ h f + ∑ hj (3)
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where Hst is the difference in height between the level of the suction well and the level of
the tank. ∑ h f and ∑ hj are the frictional head loss and the minor head loss, respectively.
∑ hj is estimated as 10% of ∑ h f in this study. And ∑ h f is calculated using Equation (4).

∑ h f = 10.294n2 q2
s L

D5.333 (4)

where qs (m3/s) is the flow rate; D (m) is the inner diameter of the pipe; L (m) is the length
of the pipe; n (dimensionless) is the pipe roughness coefficient, set at 0.013 in this study.

The pump operating point is the point at which Equation (1), the pump curve (or
parallel combined curve if the pumps are connected in parallel) intersects with Equation
(3), the system curve. The above formulas can be used to calculate the flow rate, head, and
efficiency of the pump under various operating conditions. The data, such as the daily
power of water intake Pt+1 (kW) and the daily water withdrawal Qt+1

(
m3/d

)
, can be

further calculated according to the action at.

Pt =
ρgH

1000η (5)

where ρ is the density of the liquid sucked by the pump, set at 1000 kg/m3 in this study; g
is the acceleration of gravity, set at 9.8 m/s2 in this study; H is the head of the pump and η
is the pump efficiency, both calculated by pump operating point.

2.2. SSC Predictive Model

To predict the daily average river SSC, a prediction model is built using a multilayer
perceptron (MLP). The feedforward neural network consists of one input layer, one hidden
layer, and one output layer, with the number of hidden layer neurons determined through
trial and error. The output of each neuron is calculated using LeakRelu as the activation
function of the hidden layer [51]. The most recent year of the dataset is used as a test set
to evaluate the generalization ability of the predictive models and for comparison with
manual strategy. A portion of the data (90%) from the remaining years in the dataset is
used for training, while 10% for validation. Training and validation data are both used to
generate DRL training data and to train pumping station abstraction strategies.

Daily average flow and daily average SSC from two hydrographic stations upstream
and downstream, daily average temperature and rainfall are considered as input variables
influencing the SSC of water intake. To analyze the data correlations between those
variables, mutual information (MI) [52] and Spearman’s rank correlation coefficient (rs)
are used.

Moreover, the original dataset consists of variables with different physical meanings
and units, resulting in a highly variable range. The variables are rescaled to [0, 1] in the
model preprocess using Equation (6) to ensure that different variables are treated equally
in the model and to eliminate their physical dimensions [53]:

xin = xi−xi min+ε
xi max−xi min+ε (6)

where xin is the rescaled value of variable i, xi is the original value, and xi max and xi min
are the maximum and minimum of variable i, respectively. ε is a small positive value used
to avoid zero values, set at 0.0001 (xi max + xi min) in our study.

The performance of the prediction models is evaluated using the root mean square
error (RMSE) and the mean absolute error (MAE). The formulas of evaluation metrics are
shown in the following Equations (7) and (8).

RMSE =

√
1
N

N
∑

i=1

(
SSCi, measured − SSCi,predicted

)2
(7)
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MAE = 1
N

N
∑

i=1
|SSCi, measured − SSCi,predicted| (8)

where SSCmeasured is measured suspended sediment concentration, SSCpredicted is pre-
dicted suspended sediment concentration using the MLP model, and N is the number of
data points.

2.3. DRL Agent

Single-agent reinforcement learning is modeled using a Markov Decision Process
(MDP), typically the MDP is defined by (S, A, P, R). S is the set of all environmental states,
and st ∈ S denotes the state of the environment at time step t. A is the set of all agent actions,
and at ∈ A denotes the action taken by the agent at time step t. P : S× A× S→ [0, 1] is
state-transition probability. R : S× A→ R denotes the scalar signal rt+1 received at state
st. The reward rt+1 obtained by executing action at, and an immediate feedback reward is
received at each time step until the final time step T. The agent’s objective is to maximize
the cumulative rewards it receives over the long term. The sum of the rewards from step t
to the final step T is defined as return Gt

Gt =
T
∑

k=0
γkrt+k+1 (9)

where discount rate γ ∈ [0, 1], used to indicate the present value of future rewards [54].

2.3.1. Action Space

For fixed-speed pumping stations, all possible pump opening combinations can be
pre-enumerated. If the total number of all possibilities is n, then the discrete action space
A = {0, 1, 2, . . . , n− 1}.

2.3.2. State Space

The environmental state includes reservoir water volume vt
(
m3), cumulative water

withdrawal gt
(
m3), historical average withdrawal SSC wt

(
kg/m3), historical average

river SSC ht
(
kg/m3), river daily SSC ŵt

(
kg/m3), and reservoir water outflow ot

(
m3/d

)
.

ŵt is predicted by the prediction model. ot is ideally equal to the daily total surface water
consumption; to avoid uncertainty caused by water consumption forecasts, the previous
day’s urban water consumption is used in this study instead of the daily total surface water
consumption. The calculation of vt takes into account the reservoir water outflow ot, the
pump station water withdrawal Qt and the reservoir evaporation. The input state st is a
six-dimensional vector which contains the above states. These are updated at each time
step of the model.

st = (vt, gt, wt, ht, ŵt, ot) (10)

2.3.3. Reward Function

The reward function is usually used to evaluate the performance of a control strategy.
The calculation of the reward at time step t + 1 in this study depends on the state st+1 and
the action at.

rt+1 = c1rt+1,water + c2rt+1,rule + c3rt+1,reservoir + c4rt+1,power (11)

where c1, c2, c3, and c4 are the weights of the rt+1,water, rt+1,rule, rt+1,reservoir, and rt+1,power,
respectively.

The water withdrawal reward rt+1,water in Equation (11) reflects the advantages and
disadvantages of water quantity and SSC in water withdrawal, which can be represented by:

rt+1,water = −Qt+1(ŵt+1 − wt+1) (12)
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The threshold wt+1 represents the average of the historical SSC of the water withdrawn
before time step t + 1. When ŵt+1 is less than wt+1, the SSC of the river at this time is lower
than in the past. Moreover, the larger the amount of water withdrawal Qt+1, the more
reward for the agent. When ŵt+1 is greater than wt+1, it is probably not suitable for large
amounts of water withdrawal. The higher the SSC is at this time, the larger Qt+1, and the
larger the penalty for the agent.

Reservoir capacity reward rt+1,rule is to limit reservoir operation. The reservoir volume
must be kept between the maximum storage capacity vmax and the dead storage capacity
vmin. If the water volume exceeds vmax or fails below vmin, a penalty proportional to the
reservoir volume offset will be imposed.

rt+1,rule =


vt+1 − vmin vt+1 < vmin
vmax − vt+1 vt+1 > vmax
0 otherwise

(13)

Reservoir remaining water reward rt+1,reservoir is to meet the demand for the urban
water consumption, which is presented as a step function.

rt+1,reservoir =
+∞
∑

k=0
ln(kε1 + ε2)X[kε1,(k+1)ε1)

(α) (14)

where XZ(α) =

{
1, α ∈ Z
0, α /∈ Z

, ε1 is the length of the interval, set at 5 in this study; ε2 ∈ (0, 1)

plays the role of punishing low water volume.

α = vt+1−vmin
ot+1

(15)

where the reservoir residual indicator α indicates the approximate number of days that the
remaining water in the reservoir can be used by the residents. ot+1 is used to represent the
average level of recent surface water consumption.

To ensure the reliability of water supply when there is a low amount of water available
in the storage reservoir, i.e., when α is less than 15, rt+1,water = max(0,−Qt+1(ŵt+1 − wt+1)),
which means the penalty due to high SSC in the abstracted water is no longer calculated at
this time.

Energy consumption incentive rt+1,power calculates the effective power saved by
monthly water withdrawal.

rt+1,power = Pthreshold −
T
∑

t=1
Pt+1/Qt+1 (16)

where Pthreshold is a threshold value to avoid the appearance of extremely large energy
consumptions, set at 110 kWh/km3 in this study. The daily total power of water intake
Pt+1 (kW) and the daily total water withdrawal Qt+1

(
m3/d

)
can be calculated by the

hydraulic model.

2.3.4. Training Method and Process

In this study, proximal policy optimization (PPO) [55] is used to train the DRL agent.
PPO is a policy gradient approach that uses a deep neural network to approximate policy
function and uses stochastic gradient ascent to optimize the objective function through
interactive data sampling with the environment. Policy gradient methods are very popular
in reinforcement learning, they can optimize the cumulative reward directly with nonlinear
function approximators such as neural networks. Standard policy gradient methods
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perform one gradient update per data sample, while PPO proposes an objective function
which enables multiple epochs of minibatch updates.

maximize
θ

Êt
[
min(rt(θ)Ât, clip

(
rt(θ), 1− ε, 1 + ε)Ât

)]
(17)

where rt(θ) denotes the probability ratio rt(θ) = πθ(at |st)
πθold

(at |st)
, where πθ(at|st) is a policy

function obtained by neural network with parameter θ. Ât is an estimator of the advantage
function at timestep t. The advantage function measures whether or not the action is better
or worse than the policy’s default behavior [56], and ε is the clipping parameter.

The time step of the environmental simulation is one day, and each episode is simu-
lated from the beginning of the year to the end of the year. For each episode, the learning
process of the agent is as follows:

i. Initialize the simulation environment and return the initial state (randomly select a
year from the training dataset as the hydrological year Yhy of this episode; randomly
select a year from the training dataset as the water consumption year Ywc of this
episode; randomly sample a reservoir water volume as the annual initial reservoir
volume v0).

ii. For each time step:

(a) Sample of actions from the control strategy according to the state st at the
current time step;

(b) Apply action at to the simulated environment, and this action will affect the
state st+1 at the next step. Part of the state changed by the action is calculated
using the hydraulic model; the rest of the state not related to the action is
updated using the prediction model;

(c) Calculate the reward rt+1;
(d) Store the data sample [st, at, st+1, rt+1] into the training dataset.

iii. Update the parameters of the DRL agent using the PPO algorithm.

3. Case Study
3.1. Raw Water System of the Study Area

The Yinchuan water supply system was selected as a case study. The pumping station
was built on the left bank of Jinshawan, upstream of Qingtongxia Conservancy Hub on the
Yellow River. As shown in Figure 2, the pumping station has six fixed-speed centrifugal
pumps of the same type. Each of the three pumps at the pumping station has a common
outlet pipe that enters the Xixia Aqueduct’s inlet via 5.3 km of DN2600 steel-wound concrete
pressure pipeline and then gravity feeds water to the storage reservoir via 65.2 km of the
Xixia Aqueduct. Raw water from the reservoir is then transferred by gravity to the water
treatment plants.
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3.2. Modeling

This case study applies several assumptions and presets: (1) because the static head of
pumps is fixed, the hydraulic model can calculate different pump combinations in advance,
simplifying the action space; (2) one year of water consumption data-added Gaussian
noise are used for training, while another year of real water consumption data are used to
test; and (3) because the water intake of the pump station is very close to the downstream
hydrological station, the downstream station’s hydrological data is used to approximate
the ones at the water intake.

3.2.1. Simplify the Action Space

The approximation functions (pump curve) between the head of the pump H, pump
efficiency η, and pump flow rate q are as follows:

H = −0.41q2 − 2.2674q + 54.161 (18)

η = −3.4688q2 + 34.876q + 2.3286 (19)

The ∑ h f in Equation (4) is calculated by:

∑ h f = 10.294n2 q2
s L

D5.333 = 10.294× 0.0132 × 5342× q2
s

2.65.333 (20)

As illustrated in Figure 2, the six pumps of the pumping station are divided into
two hydraulically equivalent zones ZA and ZB, where three pumps in zone ZA share a
common outlet pipe and three pumps in zone ZB share another outlet pipe. The eight
possible combinations of actions for the pumping station are summarized in Table 1. Some
pump combination operations with significantly high energy consumption are directly
excluded. By action space simplification, there are a total of five possible ways of opening
the pumping station, i.e., at ∈ {0, 1, 2, 3, 4}.

Table 1. Water pump opening combinations.

Number of
Pumps On

Possible Pump
Combinations

Energy
Consumption per

Unit of Water
Intake

(kWh/km3)

Average Pump
Efficiency

(%)

Pump
Combination

after Simplifying
the Action Space

0 No pump on 0 - No pump on

1 ZA1 99.7 89.74 ZA1

2
ZA2 113.8 90.04

ZA1 + ZB1ZA1 + ZB1 99.7 89.04

3
ZA3 129.9 86.97

ZA1 + ZB2ZA1 + ZB2 108.7 89.71

4
ZA1 + ZB3 120.8 87.66

Z A2 + ZB2ZA2 + ZB2 113.8 90.04
Note: Taking opening two pumps for example, ZA2 represents opening two pumps in the ZA area, while
ZA1 + ZB1 represents opening one pump each in ZA and ZB.

3.2.2. Water Consumption Data

Surface water from the Yellow River has been used inconsistently in Yinchuan, where
surface water gradually replaced groundwater as a source of drinking water over the last
decade. A relatively stable period of water consumption data from 1 January 2021 to 31
December 2021 is used for analysis. Figure 3a shows the fluctuation of the daily water con-
sumption. Following assumption (2), Gaussian noise X ∼ N (µ, σ2)(|µ| ≤ 2.5× 104 m3/d,
σ ≤ 2× 104 m3/d) is added to the water consumption data of 2021 for training, and for
testing the actual data without noise is used. To initialize the simulation environment, we
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use the randomly sampled data that follows the Gaussian noise distribution as the daily
water consumption Ywc (Figure 3b). The choice of Gaussian noise parameters is based on
the analysis of the data characteristics.
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(
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2.5× 104 m3/d, σ = 2× 104 m3/d) in Yinchuan in 2021.

3.2.3. SSC Forecasting

Data from two hydrographic stations upstream and downstream of the Yellow River
intake section (Xiaheyan hydrographic station upstream and Qingtongxia hydrographic
station downstream, respectively), and one meteorology station (Zhongning station) are
used to predict the SSC at the water intake of the pump station. Figure 4 shows the location
of the stations. The meteorological data was downloaded from the National Oceanic and
Atmospheric Administration (NOAA) website. Figure 5 shows the data for the three
stations from 2002 to 2021.

Some researchers have demonstrated that flow and SSC correspond differently under
different runoff patterns influenced by rainfall, climate, and sediment sources [57]. During
the freezing period, the water flow has a reduced ability to hold sand and the SSC is smaller.
During the non-freezing period, the SSC of the river mainly depends on rainfall erosion,
river runoff, the sand transport capacity of the water flow, and river scouring. Therefore,
the prediction models are established separately for the freezing and non-freezing periods.
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average runoff (b1) and SSC(b2) at Qingtongxia station (downstream); (c): daily average rainfall (c1)
and temperature (c2) at Zhongning station (meteorological station).

Table 2 provides the model input variables and hidden layer neuron parameters of the
SSC predictive models. The number of hidden layer neurons is selected from eight to 16 by
the trial-and-error method. The variables are downstream river SSC sd, upstream river SSC
su, downstream flow qd and upstream flow qu. The daily rainfall data p mainly influences
the SSC in the non-freezing period.

Table 2. Input variables and partial parameters of the predictive model.

Model Input Variables
Input

Number of Input
Layer Neurons

Number of Hidden
Layer Neurons

non-freezing period model month, sd,t−1, sd,t−2, su,t−1, qu,t−1, qd,t−1, pt−1, pt−2 8 12
freezing period model month, sd,t−1, sd,t−2, su,t−1, qu,t−1, qd,t−1 6 10

3.2.4. DRL Configuration

Parameter settings of the deep reinforcement learning network are shown in Table 3;
the meaning of each parameter is found in the literature [55]. The computer used in this
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study was Intel(R) Xeon(R) Gold 6230 R CPU running at 2.10 GHz and GeForce_RTX_3090
GPU, and the RAM available was 32 GB. The number of iterations was set to 300 k, and it
delays approximately twenty minutes to converge to the solution.

Table 3. Parameters of the deep reinforcement learning network.

Variable Value

Num iterations 300 k
Timesteps per update 840

Batch size 420
Adam step size 1× 10−4

Clipping parameter (ε) 0.2
Discount (γ) 0.99

GAE parameter (λ) 0.95

3.3. Predict Model Performance

The performance of the prediction models is evaluated using RMSE and MAE, as
shown in Figure 6 and Table 4. The Qingtongxia Water Conservancy Hub, located 12 km
downstream of the intake, discharges sand and water once a year for two to three days
to reduce sediment deposition in the reservoir. The flow velocity increases and the SSC
increases significantly around the water intake station during the sand discharge period.
Since the hydraulic hub scheduling information can be known in advance, the SSC data due
to this unnatural hydrological process are pre-processed as outliers in the model prediction.
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Table 4. Comparison of model performance.

Model Training Set Validation Set Test Set

RMSE
(
kg/m3) non-freezing period 4.317 2.942 0.948

freezing period 0.023 0.024 0.016

MAE
(
kg/m3) non-freezing period 1.140 1.007 0.837

freezing period 0.008 0.009 0.013

The overall distribution of SSC in the test year differs significantly from the data in the
training and validation sets, and the SSC regularity is not strong. Although the deviation
of the predicted value from the true value in a single step is large, the error compensation
mechanism used in the DRL framework can transform the long-term cumulative state
deviation of the system as small as possible. It can be seen from the results of Section 3.4
that the reinforcement learning strategy can still achieve near-optimal performance despite
the large prediction deviation.

3.4. Results of the DRL

Figure 7 illustrates the number of pumps that are activated per day for different control
strategies. The manual strategy and the two control strategies derived from DRL training
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differ significantly. The manual strategy selects more intensive pump turn-on times, with
pumps turned on intensively in June, August, and November, but very few or no pumps
are activated in April and September. In contrast, the DRL strategies prefer to turn on
the pumps more frequently for water intake during the winter, and they prefer to reduce
the number of days of raw water abstraction during seasons when the SSC is higher and
uncertainty is greater.
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(a) The strategy with perfect prediction; (b) predictive control strategy; (c) manual strategy.

Figure 8 presents an overview of the amount of water withdrawn for different strate-
gies. It can be seen that the total amount of water abstracted for the different strategies is
similar throughout the year, which is important and indicates that the water withdrawal
strategies we have trained yield a long-term water supply and demand balance without
affecting the Yellow River’s ecological system. Since the predictive control strategy has
less variation in the amount of water withdrawn each month than the manual strategy, the
reservoir water volume fluctuates less.
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Figure 9 illustrates the change in reservoir water storage. The volumes of water storage
at the end of the testing year are different for the three strategies. The reward function
is designed in such a way that the predictive control strategies have no violations, such
as reservoir water exceeding Vmin or Vmax or insufficient reservoir water for urban use.
Meanwhile, the reward function keeps a certain amount of reservoir water at the end of the
year to prepare for the following year’s schedule. It can also be observed in Figure 9 that
the DRL strategies produce less fluctuations on water storage volume throughout the year
than the manual strategy.
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Figure 9. Changes in reservoir water volume under different strategies during the test year (data
missing from January to February for manual strategy).

Figure 10 shows the variation in the cumulative average SSC per unit of water ab-
stracted for the different strategies. It could be argued that the positive results are due to
the fact that the DRL model is able to predict the future SSC of the river. This enables the
strategies to better choose the timing of withdrawals, taking large amounts of water at
low SSC and suspending withdrawals at high SSC, significantly reducing the amount of
sediment in the annual abstraction and the sedimentation in the reservoir. The result shows
that employing a predictive control strategy rather than a manual strategy could reduce
sediment content per unit abstraction by 37.01%, while employing a perfect predictive
control strategy could reduce sediment content per unit abstraction by 40.57%.
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In terms of energy consumption per unit of water withdrawn, predictive control strate-
gies outperform the existing manual strategy. The monthly abstraction energy consumption
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of the manual strategy ranges from 0 to 3062.78 MWh, and the predictive control monthly
abstraction energy consumption ranges from 814.64 to 2081.86 MWh. The perfect predictive
strategy is similar to the predictive control strategy, with monthly power consumption
ranging from 905.16 to 1991.34 MWh. As can be seen from Figure 11, the predictive control
strategy can reduce the energy consumption of water withdrawal. The current manual
strategy uses 108 kWh/km3 of power per unit of water abstracted throughout the year.
Using predictive control strategy can reduce the annual power consumption per unit of
water withdrawal by 8.33%.
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Finally, the performance of the three strategies is summarized in Table 5. It demon-
strates that there is little difference between the three strategies in terms of annual abstrac-
tion volume, which is approximately 1.5× 108 m3, but the two DRL strategies perform
exceptionally well in terms of energy consumption and sediment content per unit abstrac-
tion. This is because the agent is trained to find strategies with a higher cumulative reward,
which is reflected in the optimization of energy consumption and fetching water sediment
content. The predictive control strategy and the perfect predictive strategy perform equally
well in terms of energy consumption per unit of abstracted water. Given the relatively large
prediction error of the SSC model, it is encouraging that the predictive control strategy
achieves slightly less than perfect results under these conditions, which demonstrates the
robustness of the DRL framework in dealing with imperfect data.

Table 5. Summary of water withdrawal performance of different strategies throughout the test year.

Strategy
Total Annual
Water Intake

(104 m3)

Total Energy
Consumption

(MWh)

Energy
Consumption per

Unit of Water
Intake

(kWh/km3)

Total Sand
Amount (104 kg)

Average Sand
Volume per Unit of
Water Withdrawal

(kg/m3)

Perfect prediction
control 15,980 15,931 99.7(−8.33%) 2679(−35.40%) 0.167(−40.57%)

Predictive control 15,617 15,569 99.7(−8.33%) 2768(−33.25%) 0.177(−37.01%)
Manual
control 14,747 15,970 108 4147 0.281

4. Results and Discussion
4.1. Effect of Different Reservoir Water Outflow Patterns

Four different patterns of reservoir daily outflow are compared to study the effect of
different reservoir operations on training the predictive control strategy, including P1: equal
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to the water consumption of the previous day, P2: equal to the exact water consumption of
the day (assuming we have perfectly predicted the daily water consumption), P3: equal
to monthly average water consumption, and P4: equal to annual average surface water
consumption. Considering the uncertainties of the daily water consumption, Gaussian
noise ( X ∼ N (µ, σ2)) is further added to the daily water consumption data for model
training. The influence of the predictive control strategy is as follows.

The daily water consumption in Yinchuan City varies greatly, as shown in Figure 3,
with a relatively obvious seasonal correlation. In P1 and P2, due to the significantly higher
summer reservoir outflow ot in summer, to ensure that the reservoir is well reliable at all
times, it requires more water withdrawals during the periods of peak water consumption
(Figures 12–14), which inevitably raises the quantity of water abstraction with high SSC
(Figure 15). In P4, reservoir outflow remains consistent throughout the year, with a focus on
producing large withdrawals in the winter when the SSC is low and avoiding as many as
possible withdrawals during the rainy season when the SSC is higher. Despite the different
patterns of pump scheduling, the DRL strategies under the four patterns achieve very close
output in total annual water intake, as well as energy consumption, as shown in Table 6.

Water 2023, 15, x FOR PEER REVIEW 17 of 23 
 

 

Gaussian noise (𝑋~𝒩(𝜇, 𝜎 )) is further added to the daily water consumption data for 
model training. The influence of the predictive control strategy is as follows. 

The daily water consumption in Yinchuan City varies greatly, as shown in Figure 3, 
with a relatively obvious seasonal correlation. In P1 and P2, due to the significantly higher 
summer reservoir outflow 𝑜  in summer, to ensure that the reservoir is well reliable at all 
times, it requires more water withdrawals during the periods of peak water consumption 
(Figures 12–14), which inevitably raises the quantity of water abstraction with high SSC 
(Figure 15). In P4, reservoir outflow remains consistent throughout the year, with a focus 
on producing large withdrawals in the winter when the SSC is low and avoiding as many 
as possible withdrawals during the rainy season when the SSC is higher. Despite the dif-
ferent patterns of pump scheduling, the DRL strategies under the four patterns achieve 
very close output in total annual water intake, as well as energy consumption, as shown 
in Table 6. 

 
Figure 12. The number of pumps activated per day under different reservoir water outflow patterns 
during the test year (a)P1; (b) P2; (c) P3; (d) P4. 

 
Figure 13. (a) Changes in total monthly water withdrawal during the test year; (b) total water with-
drawal for different reservoir water outflow patterns in the test year. 

Figure 12. The number of pumps activated per day under different reservoir water outflow patterns
during the test year (a)P1; (b) P2; (c) P3; (d) P4.

Water 2023, 15, x FOR PEER REVIEW 17 of 23 
 

 

Gaussian noise (𝑋~𝒩(𝜇, 𝜎 )) is further added to the daily water consumption data for 
model training. The influence of the predictive control strategy is as follows. 

The daily water consumption in Yinchuan City varies greatly, as shown in Figure 3, 
with a relatively obvious seasonal correlation. In P1 and P2, due to the significantly higher 
summer reservoir outflow 𝑜  in summer, to ensure that the reservoir is well reliable at all 
times, it requires more water withdrawals during the periods of peak water consumption 
(Figures 12–14), which inevitably raises the quantity of water abstraction with high SSC 
(Figure 15). In P4, reservoir outflow remains consistent throughout the year, with a focus 
on producing large withdrawals in the winter when the SSC is low and avoiding as many 
as possible withdrawals during the rainy season when the SSC is higher. Despite the dif-
ferent patterns of pump scheduling, the DRL strategies under the four patterns achieve 
very close output in total annual water intake, as well as energy consumption, as shown 
in Table 6. 

 
Figure 12. The number of pumps activated per day under different reservoir water outflow patterns 
during the test year (a)P1; (b) P2; (c) P3; (d) P4. 

 
Figure 13. (a) Changes in total monthly water withdrawal during the test year; (b) total water with-
drawal for different reservoir water outflow patterns in the test year. 
Figure 13. (a) Changes in total monthly water withdrawal during the test year; (b) total water
withdrawal for different reservoir water outflow patterns in the test year.



Water 2023, 15, 1131 17 of 22Water 2023, 15, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 14. Changes in reservoir water volume under different reservoir water outflow patterns dur-
ing the test year. 

 
Figure 15. Variation of average SSC per unit abstracted water under different reservoir water out-
flow patterns during the test year. 

Table 6. Effect of different reservoir water output patterns on predictive control strategy. 

Water Out-
flow Type 

Total Annual Wa-
ter Intake (𝟏𝟎𝟒 𝐦𝟑) 

Total Energy 
Consumption (𝐌𝐖𝐡) 

Energy Consump-
tion Per Unit of Wa-

ter Intake (𝐤𝐖𝐡/ 𝐤𝐦𝟑) 

Total Sand 
Amount ( 𝟏𝟎𝟒 𝐤𝐠) 

Average Sand Volume Per 
Unit of Water Withdrawal ( 𝐤𝐠/𝐦𝟑) 

P1 15,617 15,569 99.7 2768 0.177 
P2 15,561 15,524 99.8 2691 0.173 
P3 15,617 15,569 99.7 2808 0.180 
P4 15,616 15,568 99.7 2639 0.169 

Overall, the results indicate that whether the reservoir outflow pattern is the previous 
day’s or the current day’s daily water consumption has little effect on the predictive con-
trol strategy. Different reservoir outflow patterns could be selected based on the water 
plant’s ability to accept changes in treatment intake, the regulating capacity of the clear 
water basin, care for the SSC of the abstracted water, and other factors. 

4.2. Effect of Different Initial Reservoir Water Volumes 
Three different levels of reservoir water volume at the beginning of the year, low 

(500 × 10  m ), medium (1500 × 10  m ), and high (2500 × 10  m ) are chosen to explore 

Figure 14. Changes in reservoir water volume under different reservoir water outflow patterns
during the test year.

Water 2023, 15, x FOR PEER REVIEW 18 of 23 
 

 

 
Figure 14. Changes in reservoir water volume under different reservoir water outflow patterns dur-
ing the test year. 

 
Figure 15. Variation of average SSC per unit abstracted water under different reservoir water out-
flow patterns during the test year. 

Table 6. Effect of different reservoir water output patterns on predictive control strategy. 

Water Out-
flow Type 

Total Annual Wa-
ter Intake (𝟏𝟎𝟒 𝐦𝟑) 

Total Energy 
Consumption (𝐌𝐖𝐡) 

Energy Consump-
tion Per Unit of Wa-

ter Intake (𝐤𝐖𝐡/ 𝐤𝐦𝟑) 

Total Sand 
Amount ( 𝟏𝟎𝟒 𝐤𝐠) 

Average Sand Volume Per 
Unit of Water Withdrawal ( 𝐤𝐠/𝐦𝟑) 

P1 15,617 15,569 99.7 2768 0.177 
P2 15,561 15,524 99.8 2691 0.173 
P3 15,617 15,569 99.7 2808 0.180 
P4 15,616 15,568 99.7 2639 0.169 

Overall, the results indicate that whether the reservoir outflow pattern is the previous 
day’s or the current day’s daily water consumption has little effect on the predictive con-
trol strategy. Different reservoir outflow patterns could be selected based on the water 
plant’s ability to accept changes in treatment intake, the regulating capacity of the clear 
water basin, care for the SSC of the abstracted water, and other factors. 

4.2. Effect of Different Initial Reservoir Water Volumes 
Three different levels of reservoir water volume at the beginning of the year, low 

(500 × 10  m ), medium (1500 × 10  m ), and high (2500 × 10  m ) are chosen to explore 

Figure 15. Variation of average SSC per unit abstracted water under different reservoir water outflow
patterns during the test year.

Table 6. Effect of different reservoir water output patterns on predictive control strategy.

Water Outflow
Type

Total Annual
Water Intake

(104 m3)

Total Energy
Consumption

(MWh)

Energy Consumption
per Unit of Water

Intake
(kWh/km3)

Total Sand
Amount (104 kg)

Average Sand
Volume per Unit of
Water Withdrawal

(kg/m3)

P1 15,617 15,569 99.7 2768 0.177
P2 15,561 15,524 99.8 2691 0.173
P3 15,617 15,569 99.7 2808 0.180
P4 15,616 15,568 99.7 2639 0.169

Overall, the results indicate that whether the reservoir outflow pattern is the previous
day’s or the current day’s daily water consumption has little effect on the predictive control
strategy. Different reservoir outflow patterns could be selected based on the water plant’s
ability to accept changes in treatment intake, the regulating capacity of the clear water
basin, care for the SSC of the abstracted water, and other factors.

4.2. Effect of Different Initial Reservoir Water Volumes

Three different levels of reservoir water volume at the beginning of the year, low
(500× 104 m3), medium (1500× 104 m3), and high (2500× 104 m3) are chosen to explore the
effect of different initial reservoir water volumes on the predictive control strategy results.
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As shown in Figures 16 and 17, different initial reservoir storage volumes primarily
influence the result of control strategy in the first month, and have little effect on the
remaining months of control strategy. Furthermore, all three predictive control strategies
tend to achieve similar reservoir storage volume at the end of the year (Figure 18). Due to
the low river SSC in winter, a strategy with low initial reservoir water volume will choose
to take a large amount of water right away. Although the total amount of water withdrawn
is the least (Figure 17b) in the strategy with high initial reservoir volume, the SSC of water
withdrawn is the highest (Figure 19). The results of the analysis are summarized in Table 7.

Water 2023, 15, x FOR PEER REVIEW 19 of 23 
 

 

the effect of different initial reservoir water volumes on the predictive control strategy 
results. 

As shown in Figures 16 and 17, different initial reservoir storage volumes primarily 
influence the result of control strategy in the first month, and have little effect on the re-
maining months of control strategy. Furthermore, all three predictive control strategies 
tend to achieve similar reservoir storage volume at the end of the year (Figure 18). Due to 
the low river SSC in winter, a strategy with low initial reservoir water volume will choose 
to take a large amount of water right away. Although the total amount of water with-
drawn is the least (Figure 17b) in the strategy with high initial reservoir volume, the SSC 
of water withdrawn is the highest (Figure 19). The results of the analysis are summarized 
in Table 7. 

 
Figure 16. The number of pumps activated per day under different initial water volumes in the 
reservoir during the test year (a): low; (b): medium; (c): high. 

 
Figure 17. (a) The changes in total monthly water withdrawal during the test year; (b) total water 
withdrawal in the test year. 

Figure 16. The number of pumps activated per day under different initial water volumes in the
reservoir during the test year (a): low; (b): medium; (c): high.

Water 2023, 15, x FOR PEER REVIEW 19 of 23 
 

 

the effect of different initial reservoir water volumes on the predictive control strategy 
results. 

As shown in Figures 16 and 17, different initial reservoir storage volumes primarily 
influence the result of control strategy in the first month, and have little effect on the re-
maining months of control strategy. Furthermore, all three predictive control strategies 
tend to achieve similar reservoir storage volume at the end of the year (Figure 18). Due to 
the low river SSC in winter, a strategy with low initial reservoir water volume will choose 
to take a large amount of water right away. Although the total amount of water with-
drawn is the least (Figure 17b) in the strategy with high initial reservoir volume, the SSC 
of water withdrawn is the highest (Figure 19). The results of the analysis are summarized 
in Table 7. 

 
Figure 16. The number of pumps activated per day under different initial water volumes in the 
reservoir during the test year (a): low; (b): medium; (c): high. 

 
Figure 17. (a) The changes in total monthly water withdrawal during the test year; (b) total water 
withdrawal in the test year. 
Figure 17. (a) The changes in total monthly water withdrawal during the test year; (b) total water
withdrawal in the test year.



Water 2023, 15, 1131 19 of 22Water 2023, 15, x FOR PEER REVIEW 20 of 23 
 

 

 
Figure 18. Changes in reservoir water volume under different initial reservoir water volumes during 
the test year. 

 
Figure 19. Variation of average SSC per unit abstracted water under different initial reservoir water 
volumes during the test year. 

Table 7. Effect of different initial reservoir volumes on predictive control strategy. 

Initial Reser-
voir Volume 

Total Annual Wa-
ter Intake (𝟏𝟎𝟒 𝐦𝟑) 

Total Energy 
Consumption (𝐌𝐖𝐡) 

Energy Consump-
tion Per Unit of Wa-

ter Intake (𝐤𝐖𝐡/ 𝐤𝐦𝟑) 

Total Sand 
Amount ( 𝟏𝟎𝟒 𝐤𝐠) 

Average Sand Volume 
Per Unit of Water With-

drawal ( 𝐤𝐠/𝐦𝟑) 

Low 16,161 16,112 99.7 2777 0.172 
Medium 15,163 15,116 99.7 2776 0.183 

High 14,164 14,120 99.7 2779 0.196 

4.3. Limitation and Future Work 
Although the DRL-based pump scheduling scheme outperforms the current manual 

strategy, no other optimization methods are compared in this study. In addition, a variety 
of objectives are considered in the design of the reward function. The effect of different 
combinations of weight coefficients on the model results are the next research direction 
for this study. 

5. Conclusions 
In this study, we created a DRL-based predictive online control framework for the 

operation of a raw water system fed by a high-sediment river. 

Figure 18. Changes in reservoir water volume under different initial reservoir water volumes during
the test year.

Water 2023, 15, x FOR PEER REVIEW 20 of 23 
 

 

 
Figure 18. Changes in reservoir water volume under different initial reservoir water volumes during 
the test year. 

 
Figure 19. Variation of average SSC per unit abstracted water under different initial reservoir water 
volumes during the test year. 

Table 7. Effect of different initial reservoir volumes on predictive control strategy. 

Initial Reser-
voir Volume 

Total Annual Wa-
ter Intake (𝟏𝟎𝟒 𝐦𝟑) 

Total Energy 
Consumption (𝐌𝐖𝐡) 

Energy Consump-
tion Per Unit of Wa-

ter Intake (𝐤𝐖𝐡/ 𝐤𝐦𝟑) 

Total Sand 
Amount ( 𝟏𝟎𝟒 𝐤𝐠) 

Average Sand Volume 
Per Unit of Water With-

drawal ( 𝐤𝐠/𝐦𝟑) 

Low 16,161 16,112 99.7 2777 0.172 
Medium 15,163 15,116 99.7 2776 0.183 

High 14,164 14,120 99.7 2779 0.196 

4.3. Limitation and Future Work 
Although the DRL-based pump scheduling scheme outperforms the current manual 

strategy, no other optimization methods are compared in this study. In addition, a variety 
of objectives are considered in the design of the reward function. The effect of different 
combinations of weight coefficients on the model results are the next research direction 
for this study. 

5. Conclusions 
In this study, we created a DRL-based predictive online control framework for the 

operation of a raw water system fed by a high-sediment river. 

Figure 19. Variation of average SSC per unit abstracted water under different initial reservoir water
volumes during the test year.

Table 7. Effect of different initial reservoir volumes on predictive control strategy.

Initial Reservoir
Volume

Total Annual
Water Intake

(104 m3)

Total Energy
Consumption

(MWh)

Energy Consumption
per Unit of Water

Intake
(kWh/km3)

Total Sand
Amount (104 kg)

Average Sand
Volume per Unit of
Water Withdrawal

(kg/m3)

Low 16,161 16,112 99.7 2777 0.172
Medium 15,163 15,116 99.7 2776 0.183

High 14,164 14,120 99.7 2779 0.196

4.3. Limitation and Future Work

Although the DRL-based pump scheduling scheme outperforms the current manual
strategy, no other optimization methods are compared in this study. In addition, a variety
of objectives are considered in the design of the reward function. The effect of different
combinations of weight coefficients on the model results are the next research direction for
this study.

5. Conclusions

In this study, we created a DRL-based predictive online control framework for the
operation of a raw water system fed by a high-sediment river.
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In terms of energy consumption and SSC per unit of water withdrawal, the DRL-based
predictive control strategy outperforms the manual strategy. It has the potential to reduce
the energy consumption of water supply systems and the operation costs of water plants.
Furthermore, the reduction of SSC in water withdrawal can significantly extend the service
life of storage reservoirs.

Meanwhile, the predictive control strategy performs similarly to the perfect predictive
strategy, indicating that the predictive control strategy has good robustness and can still
guide the operation of water withdrawal pumping stations relatively well even when SSC
prediction is uncertain.

We discussed the effect of reservoir outflow pattern and initial annual reservoir volume
on the water withdrawal strategy, in addition to the online control of pumping stations
for reservoir abstraction. In fact, the pump online control strategy is heavily influenced by
reservoir outflow patterns and reservoir initial water volumes. They both produce good
cumulative reward functions, which means that they both reduce energy consumption and
abstraction SSC. Different long-term options have different annual abstraction volumes,
pumping station scheduling strategies, reservoir operating curves, and so on. In addition
to comparing relevant metrics, the operator’s preferences may influence the selection of
different reservoir out-flow patterns and initial annual reservoir volumes.
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