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Abstract: In the construction process of an intelligent pumping station, the parameter calibration of
the pumping station unit is very important. In actual engineering, the working parameters of the
pumping station are affected by complex working conditions and natural factors, so that it is difficult
to establish a traditional physical model for the pumping station. This paper uses a data-driven
method to apply the hybrid model of the convolutional neural network (CNN) and long-term short-
term memory network (LSTM) to water level prediction in pumping stations and adds self-attention
mechanism feature selection and a bagging optimization algorithm. Then, after an error analysis of
the hybrid model, a performance comparison experiment with the separate model was conducted.
The historical data of the pumping station project provided by the Tuancheng Lake Management
Office of Beijing South-to-North Water Diversion Project was used to train and verify the proposed
pumping station water level prediction model. The results show that the CNN–LSTM model based
on the self-attention mechanism has higher accuracy than the separate CNN model and LSTM model,
with a correlation coefficient (R2) of 0.72 and a mean absolute error (MAE) of 19.14. The model can
effectively solve the problem of water level prediction in the front and rear pools under complex
pumping station conditions.

Keywords: CNN; LSTM; data-driven; self-attention; bagging

1. Introduction

Due to the unbalanced distribution of water resources in time and space, the contradic-
tion between supply and demand of water resources is very prominent in many countries.
As one of the 13 water-poor countries in the world, China’s water shortage has posed a
serious threat to the sustainable development of society and the economy. As a result, many
diversion canals with cascade pumping stations were established in China [1], such as the
South-to-North Water Diversion Project. Large-scale water diversion projects have made
a major contribution to alleviating the problem of uneven distribution of water resources
in the country. As an indispensable and important part of water conservancy projects,
pump stations are of great significance to water conservancy construction during their
operation. The main task of the pumping station is to undertake the tasks of flood control
and waterlogging prevention, water diversion irrigation, and domestic water supply in
the area where the pumping station is located. The water level of the pumping station
is an important parameter in the operation process. It can judge whether the operation
is stable and can provide a warning in case of risk. If the water level between adjacent
pumping stations changes sharply, it may cause water supply interruption and severe
hydraulic oscillation [2]. In order to build a smart pumping station project based on digital
twins, we need to improve the prediction accuracy of the water level parameters of the
pumping station.

This research involves nine pumping stations. The rear pool of the front pumping
station is connected to the forebay of the rear pumping station. To achieve accurate
prediction, it is necessary to consider the startup time of the station, blade angle, voltage,
current, and other parameters, including the influence of the forebay water level of the
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pumping station connected to it. Therefore, it is of great significance to establish a data-
driven water level prediction model.

Pumping stations are common regulating facilities in water distribution systems,
which have complex hydraulic characteristics and parameters [3]. The method based on
physical modeling mainly combines the hydrological model and hydrodynamic model
to simulate the whole complex system [4–10]. Das et al. proposed a novel probabilistic
nonlinear method based on a hybrid Bayesian network model with exponential residual
correction for daily forecasting of reservoir water levels [11]. Wei et al. used a multilayer
perceptron (MLP) to predict hydrological information such as watershed runoff, forebay
water level, and pump flow [12]. Liu et al. proposed a hybrid Bayesian vine model for
water level information prediction [13]. Lei, X. et al. proposed a pumping station parameter
correction method based on data assimilation, established a one-dimensional hydrody-
namic model with the inner boundary of the pumping station, and used an integrated
Kalman filter to correct the pumping station parameters. The application potential of a
support vector machine (SVM) in water level prediction has been explored [14,15]. Tao,
H. et al. proposed a hybrid machine learning model based on correlation vector machine
and improved Grasshopper optimization for water level prediction [16]. A wavelet neural
network (WNN) has also been applied to the water level prediction task [17–22].

With the deepening of this research, it is proposed to use artificial intelligence and
deep learning technology to monitor and predict the water level of a pumping station. Liu,
W.C et al. used the combination of a physics-based model and an artificial neural network-
genetic algorithm to improve the prediction accuracy of the hydrodynamic model [23].
Hasan et al. proposed to use artificial intelligence technology to monitor and predict the
water level of an underground dam in a double pumping station gold mine, and applied six
single classifier methods including support vector machines, artificial neural networks, and
naive Bayesian classifiers. Following this premise, a new method based on determining the
mutual information of classifiers is proposed [24]. Bazartseren et al. used artificial neural
networks (ANNs) and neuro-fuzzy systems for short-term water level prediction [25].
Chang, F.J. et al. used a method based on a recurrent neural network for real-time multistep
water level prediction [26].

In the following research tasks, the deep neural network model was applied more
frequently to industrial parameter prediction tasks [27,28]. Ren et al. utilized multilayer
perceptron (MLP) and a recurrent neural network (RNN) to build a water level prediction
model with augmented data containing multiple channels in the spatial dimension and
implicit correlations between multiple data records in the temporal dimension [29]. Yuan
et al. used a long short-term memory (LSTM) network and a seasonal autoregressive
integrated moving average (SARIMA) model to construct a multi-station daily water level
prediction model [30]. Han et al. proposed a rainfall-runoff model based on ANN and
LSTM for runoff prediction in the Russian River Basin [31]. The CNN–LSTM hybrid model
has shown good performance in many prediction tasks [32]. For example, Barzegar et al.
built a CNN–LSTM coupled model to predict water quality variables [33]. Yang et al. used
the combined model of CNN and LSTM to predict the groundwater level, and the accuracy
was better than that of other models [34].

Based on the previous research, this paper proposes a CNN–LSTM pumping station
water level prediction model based on the attention mechanism, and considers the different
rainfall in the rainy and dry seasons to predict the water level parameters of the pumping
station with higher accuracy, replacing the traditional model. The cumbersome mathemati-
cal modeling method saves a great amount of labor costs and reduces engineering risks.
The contributions of this study are as follows:

(1) A coupled CNN–LSTM deep neural network model is established for pumping station
water level prediction, in which the CNN can extract the relationship between many
features of the pumping station and an LSTM can also capture time series information
with high prediction accuracy.
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(2) The self-attention mechanism (SA) is used to optimize the CNN, so that the model
can better analyze the feature information contained in the vector, and further sort the
feature importance. Finally, the bagging method is used to improve the accuracy and
stability of the prediction results, making the model more robust.

(3) Compare the model with the traditional machine learning algorithm support vec-
tor regression (SVR), a separate CNN, and a separate LSTM to prove its feasibility
and superiority. Although the studies described above explored the ability of these
methods to predict water level parameters, no studies compared their performance.
Furthermore, to the best of the authors’ knowledge, this is the first time that a cou-
pled CNN–LSTM model has been used to predict water level issues in pumping
station projects.

2. Data

The data in this study come from the nine pumping stations in Tundian, Qianliulin,
Niantou, Xingshou, Lishishan, Xitaishang, Guojiawu, Yanqi, and Xiwengzhuang involved
in the smart pumping station project of the South-to-North Water Diversion Project in
Beijing. The database of each station covers the sampling time of the station, startup
time, voltage, current, water pump blade angle, pipeline pressure, water pump frequency,
running times, current running time, cumulative running time, cumulative flow, reverse
cumulative flow, active power, reactive power, vibration and swing of the unit, outlet
pressure, pump speed, water level in the inlet pool, and water level in the front and rear
pools—a total of 21 dimensions, collected once every minute. Table 1 details the structure
of the experimental data.

Table 1. Details of the data.

Feature Name Description Unit

SAMP_TIME Samping time s
START_TIME Startup time s

VOLTAGE Voltage V
CURRENT Current A

IPB_ANGLE Inlet pump blade angle ◦

PIPE_PRESS Pipeline pressure Mpa
PUMP_FERQ Pump frequency Hz
RUN_NUM Number Of runs 1
RUN_TIME This run time 1

CUM_RUN_TIME Cumulative run time 1
CUM_FLOW Cumulative flow m3/s

RE_CUM_FLOW Reverse cumulative flow m3/s
ACT_POWER Active power kw

REACT_POWER Reactive power kw
UNIT_VIB Unit vibration µm

UNIT_SWING Unit swing mm
OUT_PRESS Outlet pressure Mpa

PUMP_SPEED Pump speed rpm
INLET_WL Inlet water level m
FORE_WL Fore pool water level m
REAR_WL Rear pool water level m

Figure 1 is the distribution map of the nine stations involved in this paper, depicting
the geographical relationship of the nine pumping stations.

Because in northern China, especially in the Beijing-Tianjin-Hebei region, the warm
temperate continental climate is very pronounced, the climate with more rain in summer
and less rain in winter can easily affect our prediction of the water level of the pumping
station. Figure 2, below, is the rainfall distribution map. If we directly use all the data for
modeling, the model will not be able to learn the regular characteristics of the data well.
Therefore, we divide the data sets according to the seasonal differences, and respectively



Water 2023, 15, 1128 4 of 18

establish the water level prediction model of the pumping station based on the rainy season
and the water level prediction model of the pumping station based on the non-rainy season.
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We selected the data from July, August, and September 2020 as the rainy season
training set, and the data from November, December, and January 2020 as the non-rainy
season training set; we selected August and December 2021 as the test set.

3. Methodology
3.1. Forecasting Strategy

In the forecasting task of time series data, the choice of forecasting strategy plays
an important role in the speed and accuracy of forecasting results. There are currently
three mainstream forecasting methods: direct multistep forecasting, recursive multistep
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forecasting, and direct + recursive mixed forecasting strategies. Among them, the essence
of direct multistep forecasting is single-step forecasting, and multistep forecasting is formed
through the combination of multiple single-step forecasting models. For example, if we
want to predict the value of the sequence at three time points, we will build three models:
model1, model2 and model3. The problem with this approach is that if we predict N time
steps, we need to build N models. The model complexity will become very high, and
there will be high variance, especially if we want to predict the time step in a relatively
long case; for example, if we want to predict 100 time steps in the future, the nearest
known observation sample used in the 100th time step is 100 time steps ago. We know
that the closer the period is to the current time point, the better the predictive effect of
the lag feature, and the longer the interval, the worse the effect. The essence of recursive
multistep forecasting is simple single-step forecasting, but unlike the first case, recursive
multistep forecasting does not need to build N models when predicting N time steps,
only one model is enough. For example, if we have a three-order lag model: [lag(t − 2),
lag(t − 1), lag(t)], and we would like to predict the next three time steps, X, Y, Z, we can
use lag(t − 2), lag(t − 1) and lag(t) to predict X, and use the predicted value of X as a
feature to obtain [lag(t − 1), lag(t), X], and then use this model to predict Y, and so on.
The disadvantage of this method is that the predicted value is used instead of the real
data, so the recursive multistep forecasting strategy will accumulate forecasting errors; that
is, the deviation of the recursive strategy is large, so as the forecast time range increases,
the performance and accuracy of the model will decline rapidly. The direct + recursive
hybrid strategy combines the direct strategy and the recursive strategy. The hybrid strategy
is to build N models based on N time steps to be predicted, use model1 to predict X to
obtain prediction(X), and then use this prediction(X) as the “observation” data of model2,
included in the model training.

This paper uses a partially unknown recursive prediction strategy, using the last time
window of the training set to predict the first label of the test set, and then adding the
predicted label back to the training set. The flow chart of the overall prediction model of
this study is shown in Figure 3.
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We assume the input sample matrix X = (X1 X2 X3 · · · Xn · · · Xm)
T , where X1−Xn

is the training set sample and Xn+1 − Xm is the testing set sample. The label is Y =



Water 2023, 15, 1128 6 of 18

(y1 y2 y3 · · · yn · · · ym)
T . Each sample can be written as Xm =

(
Xm1 Xm2 Xm3 · · · Xmj

)T ,
where j is the number of features.

In the training process, assuming t is the sample time step, the model can be regarded
as a function f (), and the predicted value can be obtained as shown in Equations (1)–(3):

yO
t+1 = f (X1, X2, · · ·Xt; y1, y2, · · · yt) (1)

yO
t+2 = f (X2, · · ·Xt, Xt+1; y2, · · · yt, yt+1) (2)

yO
n+1 = f (Xn+1−t, Xn+2−t, · · · , Xn; yn+1−t, yn+2−t, · · · , yn) (3)

During testing, we used yO
n+1 to infer XO

n+1, added XO
n+1 back to the training set,

predicted yO
n+2, continued to infer XO

n+2, then added this back to the training set, predicted
yO

n+3, and so on. The specific implementation process is shown in Equations (4)–(6):

yO
n+2 = f

(
Xn+2−t, · · · , Xn, XO

n+1; yn+2−t, · · · , yn, yO
n+1

)
(4)

yO
n+3 = f

(
Xn+3−t, · · · , Xn, XO

n+1, XO
n+2; yn+3−t, · · · , yn, yO

n+1, yO
n+2

)
(5)

yO
n+4 = f

(
Xn+4−t, · · · , Xn, XO

n+1, XO
n+2, XO

n+3; yn+4−t, · · · , yn, yO
n+1, yO

n+2, yO
n+3

)
(6)

The predictive strategies for training and testing are shown in Figures 4 and 5 below.
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3.2. Convolutional Neural Network (CNN)

A convolutional neural network (CNN) is a feedforward neural network [35]. It is
one of the representative algorithms of deep learning [36–38]. Each neuron only affects
a part of the neurons in the adjacent layer and has a local receptive field. Therefore, the
convolutional neural network has a strong ability to capture local features [39]; on the other
hand, through weight sharing and pooling, the computational complexity of the network
is significantly reduced, making the CNN widely used [40]. A CNN is an outstanding
algorithm in the field of image classification and speech recognition. It is also the core
technology of most computer vision systems, from Facebook’s automatic image labeling
to self-driving cars, and even of AlphaGo. At the same time, a CNN has gradually been
applied to NLP tasks in the past two years. In sentence classification, the CNN-based model
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has achieved very significant results. Convolution operation is the most significant feature
that distinguishes it from other neural network models. The classic convolutional neural
network mainly includes the following five layers: input layer, output layer, convolution
layer, pooling layer, and fully connected layer. Among them, the convolutional layer
continuously extracts features, from local features to overall features. The pooling layer
extracts the main features of a certain area, reduces the number of parameters, and prevents
the model from overfitting. The fully connected layer is equivalent to the feature space
transformation, which realizes the extraction and integration of useful information.

For sequence data, we use a one-dimensional convolutional network structure for
text processing.

After the convolution operation, an activation function needs to be passed. The role
of the activation function is to add nonlinear factors, because the expressive power of the
linear model is not enough. This study uses the rectified linear activation unit (ReLU)
function as the activation function, as shown in Formulas (7) and (8):

ReLU(x) =
{

x i f (x) > 0
0 i f (x) ≤ 0

(7)

yl
j = ReLU

 ∑
i∈Mj

Xl−1
j ∗ kl

ij + bl
j

 (8)

Among them, yl
j is referred to as the output of the jth channel of the convolutional layer

l, which is obtained by performing convolution summation and offset on the output feature
map Xl−1

j of the previous layer, and then passes through the ReLU activation function. kl
ij

is the convolution kernel matrix, and bl
j is the bias to the features after convolution. For an

output feature map Xl
j , the convolution kernel kl

ij corresponding to each input feature map

Xl−1
j may be different; “∗” is the convolution symbol and its relevant definitions are shown

in Formula (9); a one-dimensional CNN is used in this study.

z(t) = x(t) ∗ y(t) =
∫

x(m)y(t−m) dm (9)

The pooling layer is sandwiched between consecutive convolutional layers to compress
the amount of data and parameters and reduce overfitting. There are three types of
pooling layers: average pooling, maximum pooling, and random pooling. Our study uses
max pooling.

After a series of convolutions, activations, and pooling, the one-dimensional convolu-
tional neural network generates feature vectors and inputs them into the LSTM network.
The output is shown in (10):

Y = ReLU(ReLU(· · · ReLU( ∑
i∈Mj

Xl−1
j ∗ kl

ij + bl
j))) (10)

3.3. Long Short-Term Memory (LSTM)

The full name of LSTM is long short-term memory. It was proposed by Hochreiter and
Schmidhuber (1997), improved and promoted by Alex Graves [41], and is now widely used
in the field of machine learning. The LSTM model is a variant deep learning model based on
a recurrent neural network (RNN), which can solve the problems of gradient disappearance
and short-term memory in the RNN model, and capture long-term dependencies [42].
Compared with ordinary RNN, the most critical improvement of LSTM is the addition of
cell state and gate structure, which retains the characteristics of a long time ago through the
control of the gate. The LSTM model is an effective and scalable model for solving learning
problems related to various time series data. It has been applied in various fields through
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the combination with other neural networks and speech recognition, language modeling,
and translation.

Each cell of LSTM has three parts: forgetting gate, input gate, and output gate, which
are respectively responsible for information flow screening, memory, and generation.

The information part that needs to be filtered out in each decomposed signal com-
ponent is determined through the forgetting gate. The current input and the state of the
previous moment are used to determine whether to filter through the sigmoid function:

ft = σ
(

W f ·[ht−1, xt] + b f

)
(11)

The input information is determined by the sigmoid function to retain the part. Parts
xt and ht−1 become the new C̃t value after being updated by tanh. Then, Ct−1 is updated to
Ct. The specific process is shown in Equations (12)–(14):

it = σ(Wi·[ht−1, xt] + bi) (12)

C̃t = tanh(Wc·[ht−1, xt]) + bC) (13)

Ct = ftCt−1 + it C̃t (14)

First, the unit output part is determined by the sigmoid function, and then the unit
state is multiplied by the output part of the tanh and the sigmoid gate to obtain the predicted
value point of the model, as shown in Formulas (15) and (16):

ot = σ(Wo·[ht−1, xt] + bo) (15)

ht = ottanh(Ct) (16)

Figure 6, below, describes the workflow of LSTM.
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3.4. Self-Attention Mechanism

Attention is a unique cognitive ability of human beings, which means that people
can selectively ignore some nonimportant information while paying attention to certain
information. The attention mechanism (attention) model screens out a small amount of
important information from a large amount of information, and focuses on this important
information, ignoring most of the unimportant information. This basis allows the neural
network to observe where it needs to pay attention at different time nodes, thereby im-
proving the accuracy of the model. Self-attention is a variant of the attention mechanism,
which uses the inherent information of the data features to interact with attention as much
as possible. Its basic structure is shown in Figure 7.
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For self-attention, the same input is mapped to different spaces to obtain three matrices,
Q, K, and V, composed of query vector query, key vector key, and value vector value,
respectively. First, we calculated the dot product between Q and K, divided by a scale√

Dk, where Dk is the dimension between the query vector and the key vector, obtained
the correlation weight matrix coefficient of Q and K, and then used the softmax function
to obtain the correlation. The weight matrix coefficients were normalized, and, finally,
multiplied by the matrix Q to obtain the vector sequence representation of self-attention in
the current node. The calculation formula for this operation is shown in Formula (17):

Aattention(Q, K, V) = Vso f tmax

(
QKT
√

Dk

)
(17)

Q, K, V are matrices composed of vectors obtained by the same input through different
linear transformations and

√
Dk is a scaling factor to keep the gradient stable during

training. After calculating the attention score function, so f tmax(·) is the activation function
normalized by the column for normalization. This process can be explained by Formula (18):

at,i = so f tmax(st,i(xt, ht−1, qt))

=
exp(st,i(xt ,ht−1,qt))

∑
(1+m)×n
j=1 exp(st,j(xt ,ht−1,qt))

(18)

The self-attention mechanism introduced in this study is mainly used to combine
with the CNN, where at,i is the attention distribution that measures the importance of the
i-th dimension of incoming information at time t. At this time, the incoming information
coefficient of a single self-attention CNN–LSTM unit is 1 + at. After the CNN initially
extracts feature values that have a greater impact on label values, these feature values are
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further sorted by feature importance. On the one hand, it can reduce the dimensionality,
obtain the importance of different sequence data on the water level of the pumping station,
and eliminate factors that have little influence on the predicted value; on the other hand, it
can reduce the amount of input data to the LSTM network and reduce the computational
pressure of training.

3.5. CNN–LSTM Principle Based on Self-Attention Mechanism

The CNN–LSTM model consists of two parts. The first part is a one-dimensional
convolutional neural network model based on the self-attention mechanism, and the
second part is the long-term short-term memory network LSTM.

Among them, in the first part, the normalized input matrix is passed into the CNN
network structure, and then, through the convolutional layer, the one-dimensional pooling
layer, and the ReLU activation layer, the feature extraction of the incoming multidimen-
sional time series data is performed. Then, the feature importance is further sorted through
the self-attention mechanism. Since the time series data after using CNN for feature extrac-
tion still has time series characteristics, the feature matrix output by SA-Conv1D is passed
into the LSTM model, through the LSTM layer and the fully connected layer, in turn, and,
finally, the prediction result is passed through the ReLU activation function output.

Figure 8, below, is the operating structure diagram of the CNN–LSTM model.
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3.6. Bagging Strategy

The integrated learning algorithm itself is not a separate machine learning algorithm,
but by constructing and combining multiple machine learners to complete the learning
task, it can obtain superior performance to that of a single learner. Currently, there are two
common integrated learning algorithms: bagging-based algorithms and boosting-based
algorithms. Bagging-based representative algorithms include random forests, and boosting-
based representative algorithms include Adaboost, GBDT, XGBoost, etc. This article uses
the bagging algorithm.

The idea of bagging is to train k independent base learners and combine the results of
each base learner (weighted or majority vote) to obtain a strong learner.

Suppose we have a training set X. After N rounds of uniform probability self-sampling,
N self-sampling sample sets X1, X2, X3, · · · , XN are obtained, and the size of each sampling
sample set is the same as the number of training sets. Now, for each self-sampled sample
set, we have to train a classifier ai(x) dedicated to it. The final classifier is the output of the
average of all these individual classifiers. In classification algorithms, this process is named
voting, as shown in Formula (19):

a(x) =
1
M ∑M

i=1 ai(x) (19)

Figure 9, below, shows the algorithm flow.
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Assume that each basic algorithm is b1(x), b2(x), . . . , bn(x); assuming that there is a
real answer y(x) defined for all inputs, which is the objective function, and the distribution
of the data is p(x), the error of each regression function can be expressed as Formula (20):

εi(x) = bi(x)− y(x), i = 1, · · · , n (20)

and the expected value of the mean squared error is Formula (21):

Ex

[
(bi(x)− y(x))2

]
= Ex

[
ε2

i (x)
]

(21)

Then, the average error of all regression functions is as shown in Formula (22):

E1 =
1
n

Ex

[
∑ ε2

i (x)
]

(22)

We assume that the errors are unbiased and uncorrelated, as shown in Formulas (23)
and (24):

Ex[εi(x)] = 0 (23)

Ex
[
εi(x)ε j(x)

]
= 0 , i 6= j (24)

Now, let us build a new regression function, as shown in Formula (25), that will
average the values of each function:

a(x) =
1
n ∑n

i=1 bi(x) (25)

Its mean square error is:

En = Ex

[
1
n

n
∑

i=1
bi(x)− y(x)

]2

= Ex

[
1
n ∑n

i=1 εi

]2

= 1
n2 Ex

[
∑n

i=1 ε2
i (x) + ∑

i 6=j
εi(x)ε j(x)

]
= 1

n E1

(26)
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Therefore, by averaging the individual output answers, we reduce the mean squared
error by a factor of n.

Combining the CNN–LSTM network based on the attention mechanism in this study
with the bagging ensemble algorithm, the accuracy and robustness of the model are im-
proved after the model has been trained many times.

4. Model Evaluations

To evaluate the performance metrics of the models, we used mean absolute er-
ror (MAE) and coefficient of determination (R2) to evaluate the predictive power of
the model proposed in this study. The formula for the above indicators is shown in
Formulas (27) and (28):

MAE =
1
n

n

∑
i=1
|ỹi − yi| (27)

R2 = 1− ∑i(ŷi−yi)
2

∑i(yi−yi)
2 (28)

In the above formulas, n is the total number of data, yi is the predicted value, and ỹi is
the real value. MAE is the average value of the absolute error, which can reflect the actual
situation of the error of the predicted value. The smaller the value, the higher the model
accuracy. R2 is the coefficient of determination, which can judge the quality of the model,
and its value range is [0, 1]. Generally speaking, the larger the R2, the better the model
fitting effect.

5. Results
5.1. Hyperparameter Configuration

Two important factors to achieve good prediction results are efficient training strategy
and configuration of hyperparameters. Appropriate hyperparameter configuration can
enable the model to learn the deep features of the data and can make the model converge
faster and more accurately to achieve the best prediction effect.

In order to intuitively reflect the performance of the CNN–LSTM prediction model
based on the attention mechanism, the experiment compared SVR, CNN, LSTM, and CNN–
LSTM. In order to ensure fairness in the comparison, the depth and parameter settings of
the neural network should be as similar as possible. The list of hyperparameters is shown
in Table 2 below. The self-attention mechanism is also used in the two neural network
models of CNN and LSTM.

Table 2. The hyperparameter settings.

Model Parameter Details Value

CNN, LSTM,
CNN-LSTM

Minibatch
Batch size 128

Epoch 1000

L2 regularization Penalty parameters 0.01

Decayed learning rate

Initial learning rate 0.01
Decay rate 0.9

Decay steps 15
Minimum learning rate 1.00 × 10−4

Dropout Dropout rate 0.001

SVR Grid search
Kernel function RBF

C 1
Gamma 0.1

Cross-validation k-fold 5
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5.2. Feature Selection Results

As shown in Figure 10 below, the water level of the pumping station is determined by
many factors, and how to better select features will become an important factor affecting
the performance of the model. After the feature selection of the CNN and self-attention
mechanism, this model obtained a schematic diagram of the relative importance of each
feature and the water level of the pumping station.
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The figure above shows the global importance of each feature, where inlet pump blade
angle, outlet pressure, pump speed, inlet water level, fore pool water level, and rear pool
water level account for 50% of the features’ importance.

5.3. Comparison of Model Prediction Results

We used SVR, a separate CNN, a separate LSTM, and a CNN–LSTM network to predict
the water level of the pool behind the pumping station in August and December 2021,
respectively. The comparison between the predicted results and the actual values is shown
in Figure 11 below.
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6. Discussion

The results show that the one-dimensional CNN–LSTM model based on the self-
attention mechanism is very effective in predicting the water level of the pumping station.

From the comparison chart of the predicted value and the actual value of the water
level of the pumping station in August 2021 using the rainy season prediction model, it can
be seen that the rainy season prediction model has a higher degree of fit than the other three
models, and SVR, CNN, and LSTM have a lower water level. The fit is good, but the fit to
the water level peak is poor. In contrast, the CNN–LSTM model has a better fit in the face
of extreme weather. From the comparison chart of the predicted value and the actual value
of the water level of the pumping station in December 2021 using the non-rainy season
prediction model, it can be seen that the prediction effect of the non-rainy season water
level prediction model and the other three models is not relevant in the case of low water
level or peak water level. The fit is better.

From the specific error analysis in Table 3 below, it can be seen that among the four
models, the CNN–LSTM model has the smallest MAE value and the largest R2. The CNN–
LSTM model based on the self-attention mechanism performs relatively well in traditional
time series prediction tasks. Compared with the separate LSTM network model, the MAE
of the CNN–LSTM network was reduced by 6.53%, and the R2 was increased by 0.27%.
Although the effect of the rainy season water level prediction model still has advantages
over the effects of separate CNN and LSTM models, these are not particularly significant.
A large part of the reason for this is the extreme rainfall that has occurred frequently in
northern China in recent years, resulting in large fluctuations in water levels. Next, the
model will be improved by increasing the amount of data.

Table 3. Evaluation index.

Machine
Learning Model Neural Network Model

Indicator SVR CNN LSTM CNN-LSTM

MAE 31.02 29.37 25.67 19.14
R2 0.30 0.34 0.45 0.72
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7. Conclusions

This study developed a CNN–LSTM model based on the self-attention mechanism
for the predicting the water level of a pumping station and used a partially unknown
recursive prediction strategy to speed up the training efficiency of the model and improve
the model accuracy. TA CNN based on the self-attention mechanism was used to extract
short-term gap features and rank the feature importance; then, the hidden features extracted
by the CNN were input into LSTM according to different weights for long-term prediction.
Finally, using the idea of bagging integration algorithm, the training results of different
base learners were combined to form a pumping station water level prediction model for
the rainy season and non-rainy season of the pumping station.

There are many areas for improvement in the model. Although the CNN–LSTM model
demonstrated better performance than a separate CNN and a separate LSTM model, it also
has a certain time lag. It is also necessary to improve the robustness of the model in the
face of extreme cases.
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