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Abstract: Coagulation is the most sensitive step in drinking water treatment. Underdosing may not
yield the required water quality, whereas overdosing may result in higher costs and excess sludge.
Traditionally, the coagulant dosage is set based on bath experiments performed manually, known as
jar tests. Therefore, this test does not allow real-time dosing control, and its accuracy is subject to
operator experience. Alternatively, solutions based on machine learning (ML) have been evaluated as
computer-aided alternatives. Despite these advances, there is open debate on the most suitable ML
method applied to the coagulation process, capable of the most highly accurate prediction. This study
addresses this gap, where a comparative analysis between ML methods was performed. As a research
hypothesis, a data-driven (D?) fuzzy inference system (FIS) should provide the best performance
due to its ability to deal with uncertainties inherent to complex processes. Although ML methods
have been widely investigated, only a few studies report hybrid neuro-fuzzy systems applied to
coagulation. Thus, to the best of our knowledge, this is the first study thus far to address the accuracy
of this non-hybrid data-driven FIS (D?*FIS) for such an application. The D?FIS provided the smallest
error (0.69 mg/L), overcoming the adaptive neuro-fuzzy inference system (1.09), cascade-correlation
network (1.18), gene expression programming (1.15), polynomial neural network (1.20), probabilistic
network (1.17), random forest (1.26), radial basis function network (1.28), stochastic gradient tree
boost (1.25), and support vector machine (1.17). This finding points to the D2FIS as a promising
alternative tool for accurate real-time coagulant dosage in drinking water treatment. In conclusion,
the D2FIS can help WTPs to reduce operating costs, prevent errors associated with manual processes
and operator experience, and standardize the efficacy with real-time and highly accurate predictions,
and enhance safety for the water industry. Moreover, the evidence from this study can assist in filling
the gap with the most suitable ML method and identifying a promising alternative for computer-
aided coagulant dosing. For further advances, future studies should address the potential of the
D?FIS for the control and optimization of other unit operations in drinking water treatment.

Keywords: coagulant dosage; fuzzy; machine learning; water treatment

1. Introduction

To remove contaminants, such as suspended solids, colloidal material, and microor-
ganisms, coagulation is among the primary processes for the physical-chemical treatment
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of drinking water [1,2]. Jar tests are commonly used to determine the best dose of coag-
ulant in drinking water treatment plants (WTPs) [3,4]. Considering the quality of raw
water, the test simulates the coagulation step under laboratory conditions. Although this
test has been used for many years, improving both its accuracy and response speed with
respect to water quality changes, it remains very challenging [5]. Jar test experiments
are manually performed and, hence, were not conceived for real-time decision-making.
Additionally, coagulant dosing can become complex when raw water quality changes
rapidly and substantially [6], particularly due to the critical influence of the potential of
hydrogen (pH), turbidity, and color, among other properties of contaminants and hydraulic
conditions, on coagulation performance [7-9]. Therefore, the jar test is not feasible for
real-time adjustments [4,10].

On the other hand, reducing operating costs and improving efficacy in water treat-
ment are some of the main challenges in the water sector, which also faces natural water
degradation and strict standards and regulations. Therefore, the study and application
of data-driven and real-time technologies, such as machine learning (ML), are essential
to reduce costs and enhance water safety for the water industry [6,11]. However, the use
of alternatives based upon mechanistic models for the coagulation process is a difficult
task as it is a complex system in which there are uncertainties as interactions between the
mechanisms of transfer and kinetics are not yet deeply understood [9,12].

In several areas of knowledge, empirical models using ML methods have been evalu-
ated with a good ability to model complex non-linear problems [13]. Among the advantages
of this computer-aided alternative, the prevention of errors associated with the human
operator and the reduction in response times can be highlighted [10]. Another favorable
factor is that the development of solutions based on ML only requires the availability of
historical databases, which, in the case of drinking WTPs, are usually stored in sufficient
quantities for this alternative [14]. Thus, applications based on methods such as artificial
neural networks (ANNSs) have become increasingly popular [12]. However, even with
continual progress in research, highlighted among the most recent studies by Pandilov and
Stojkov [6], Najafzadeh and Zeinolabedini [15], Ju et al. [16], Zhang et al. [12], Ghasemi
et al. [8], Wang et al. [2], Narges et al. [5], and Zhu et al. [9], the results achieved on
computer-aided coagulant dosing have not yet led to the replacement of the jar test, which
is still widely performed in drinking WTPs [8]. Therefore, additional studies are still
needed to strengthen the evidence that makes it possible to reduce the dependence on bath
experiments, enabling more accurate predictions in real-time [2].

Several ML methods have been evaluated for coagulant dosing, with emphasis on
different ANN architectures, such as the Levenberg-Marquardt neural network [17], in-
verse neural network [18], generalized regression neural network [19], adaptive neuro-
fuzzy inference system [5,6], dynamic evolving neural-fuzzy system [20], radial basis
function [2,10,11], multilayer perceptron [4,10,21], genetic algorithm-enhanced artificial
neural network [12], variable structure neural network [8], and backpropagation neural
network [9]. Other tested ML methods include the linear regression model [22], k-nearest
neighbors [23], fuzzy linear and non-linear regression models [10], k-means clustering [11],
and random forest [2].

Despite advances in recent years, there are still gaps in terms of the best method of
ML applied to coagulation control. We hypothesize that a non-hybrid data-driven fuzzy
inference system (D?FIS), introduced in 2022, should provide the highest accuracy due
to its ability to deal with intrinsic coagulation uncertainties that are not fully controlled
during the WTP operation. To the best of our knowledge, this is the first study to date to
assess the performance of this DFIS in predicting coagulant dosage.

The theory of fuzzy sets was introduced by Lotfi Zadeh to address the uncertainties
that arise in complex systems [24]. To this end, inference systems based on fuzzy artificial
intelligence with non-linear functions and soft boundaries allow a gradual transition
between intervals and degrees of truth, admitting partial membership in more than one set
of linguistic values [25].
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The development of FISs that use data-oriented methods for regression tasks occurred
relatively recently, but they have already become one of the most popular approaches in sev-
eral areas [26]. Among the environmental applications reported in the literature, FISs have
been developed to support participatory planning [27,28] and impact assessment [29-31],
pattern recognition [32,33], and land reclamation [34].

In addition, this study should contribute to a better understanding of the following
questions: (i) which water quality parameters are most important for accurate coagulant
dosing? and (ii) how do variations in these parameters affect coagulant dosing in real time?

2. Methods

The dataset used in this study was derived from the drinking water treatment plant Dr.
Armando Pannunzio (WTP Cerrado) at Sorocaba, a city with a territorial area of 449.87 km?
and 695,000 inhabitants (1304.18 inhab/ kmz), one of the most important economic and
technological hubs of Sao Paulo State [35], in southwest Brazil (Figure 1).
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Figure 1. Drinking water treatment plant—WTP Cerrado at Sorocaba city, Sao Paulo State, southwest,
Brazil. Source: modified from Santinon [36].
The WTP Cerrado treats 2.2 m>/s of water via conventional treatment (coagulation—
flocculation-sedimentation—filtration) using coagulant polyaluminum chloride (PAC) within
the dose range of 30 to 40 mg/L (Figure 2).
A one-year database (January to December 2021) of quasi-daily tests (n = 291) was
used, monitoring PAC and raw water quality indicators (pH, color, turbidity, fluoride, and
chloride) (Table 1 and Figure 3).
Table 1. Database with quality indicator parameters of raw water and PAC.
pH Color Turbidity Fluoride Chloride
(PAN) * (HU) (NTU) (mg/L) (mg/L) PAC (mg/L)
Average 6.76 2.01 0.25 0.69 1.84 32.0
Median 6.80 2.00 0.20 0.07 1.90 32.0
St. Deviation 0.11 1.18 0.16 0.03 0.24 1.84
Minimum 6.40 0.00 0.03 0.60 0.90 30.0
Maximum 7.00 7.00 0.78 0.76 2.70 40.0
Asymmetry —0.25 1.14 1.29 —0.31 —0.63 1.40
Kurtosis 0.26 2.09 1.32 —0.03 1.68 2.39
Normality (p) ** <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Note: * Values based on the proton activity mean (PAN); ** Shapiro-Wilk test.
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Figure 2. WTP via conventional treatment (coagulation—-flocculation-sedimentation—filtration) with
manual or computer-aided coagulant dosing.
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Figure 3. Exploratory analysis of quality indicator parameters of raw water and PAC.



Water 2023, 15, 1126

5o0f 14

As an artificial intelligence method specifically developed for the D?FIS, the Wang-
Mendel algorithm (‘wm’) was adopted in the present study. A non-hybrid ML method
based on this algorithm was made available by Guillaume et al. [37] in the package ‘FisPro’
in the R programming language, which was used in our research. The ‘wm’ is a method of
inducing IF-THEN fuzzy rules within the general architecture of the inference system [38].
In this study, the ‘wm’ method was associated with the fuzzy hierarchical partition strategy
(‘hfp’), resulting in an inference system with high completeness and robustness, which is
able to achieve better forecast accuracy.

This D?FIS is a rule-based inference system capable of extracting knowledge from the
raw data and, at the same time, preserving the interpretability of the resulting model [39].
The modeling process of the fuzzy inference system includes the following main steps [40]:
(i) fuzzification: the input space partitioning of the predictors occurs using fuzzy mem-
bership functions, which model the linguistic values of each variable, using the ‘hfp’, for
instance; (ii) inference: an induction technique, such as the ‘wm’ method, in which logical
operators of conjunction (minimum, product, or Lukasiewicz) and disjunction (sum or max-
imum) are applied to build relational propositions (IF-THEN rules); and (iii) defuzzification:
the fuzzy output is converted to a crisp value (Figure 4).

knowledge extraction

r ‘hfp' L’wm’*l

raw membership rule base logical
database functions induction operators
L ‘ —~ ‘lukasiewicz’, ‘sum’ J
input — fuzzification defuzzification*‘
[X1, X, ooy Xy, O] \ ‘max. crisp’
fuzzy fuzzy
input output output
L~ inference _ [S]

Figure 4. Modeling process of the data-driven fuzzy inference system (D?FIS), considering the water
quality parameters as input and the coagulant dosage as output.

To test the research hypothesis, the accuracy of this D?FIS was compared to that
obtained by some of the primary methods applicable to prediction tasks: adaptive neuro-
fuzzy inference system (ANFIS), cascade-correlation network (CCN), gene expression
programming (GEP), polynomial neural network (GMDH), multilayer perceptron network
(MLP), probabilistic network (PNN), radial basis function network (RBFN), random forest
(RF), stochastic gradient tree boost (SGT), and support vector machine (SVM). As a standard
way to measure the performance of a model in predicting quantitative data, the root mean
square error (RMSE), the most common metric for comparing models [41], was calculated
to analyze the coagulant dosing accuracy (Equation (1)):

_ e A2
RMSE = ;ZMSI 0;) 1)

where O; are the observations, S; are the predicted values of the dose of the coagulant, and
n is the number of observations.

Each ML method has a different set of parameters according to its operating mecha-
nism, making it impossible to adopt the same values. Therefore, during machine learning,
a grid search method was used, which identifies the best parametrization values, that is,
the values capable of providing the highest accuracy for each ML method [42]. Considering
different combinations of parameters, the setting that minimized the RMSE was deter-
mined based on 5-fold cross-validation (Figure 5), using 70% of the dataset for the learning
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process and 30% for validation testing, a quite common split used to train and evaluate the
performance of regression models [43].
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Figure 5. Determining parameterization settings based on 5-fold cross-validation. Source: modified
from Scikit-learn developers [44].

To analyze which raw water quality parameters are most important for accurate
coagulant dosing and how their variations affect real-time prediction, the ‘Explain’ and
‘ICE’ (individual conditional expectation) widgets were used. Both widgets are available in
the Orange data mining software (version 3.34).

3. Results and Discussion

The performance of the ML methods is presented in Table 2, where the accu-
racy (RMSE) based on the testing data varies significantly between 1.28 (RBFN) and
0.86 mg/L (D?FIS).

Table 2. Overall accuracy of each ML method based on the RMSE.

ML Method Parameterization Setting BMSE (mg/L)
Train Test

ANFIS Model:. sgbtréctlve clustering; ?adu: 0.7: functions: 2; pre-overfitting epochs: 0.99 1.09

96; optimization method: hybrid.
. . . 102 . 103. 101031

CCN Kerngl..gaussmn, candldates.. 10. ; epochs: 10°; neurons range: [0-10°]; 1.10 118
overfitting control: cross-validation.

D2FIS Moclielz ,wm ; COI'1]'U.HC't10nZ Lulfa51ew1c;; disjunction: sum; functions: 6; grid: 0.44 0.86
150 ‘hfp’; defuzzification: maximum crisp.

GEP Populat'lon. 59, max1mum tries: 10%; gfgenes. 4; gene head length: 10; 1.10 115
generations without improvement: 10°.

GMDH Layer: 29; polynorme.il order: 16; neurons per layer: 20; function: linear; 117 1.20
connections: to previous layer.

MLP Layer: 3; h.1dden layer. function: smooth; output layer function: linear; train: 111 117
scaled conjugate gradient.

. - .90 < . : —4_10T- porei Hiro

PNN Kernel: gaussian; steps: 20; sigma: each variable [10~*~10]; prior probability: 071 117

frequency distribution.
S 103- e T10—2-1031- : P . e 9()-

RBEN Neuron.s. 10°; radius: [107°-10°]; population size: 200; generations: 20; 0.96 128
generation flat: 5.

RE Number of trees: 860; number of attributes considered at each split: 35; limit 0.48 1.26
depth of individual trees: 15. ) )

. 3_1021- . R : . 5. : . . .

SGT Trfee.& [10°-10]; depth: 10; minimum size node: 5; shrink factor: auto; prune: 0.56 125
minimum absolute error, smooth: 5.

SVM Kernel: RBF; model: epsilon-SVR; optimize: minimize total error; stopping 112 117

criteria: 1073,
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In general, although some ML algorithms stand out for their high performance in
specific applications, it is essential to note that task accuracy is also highly associated with
data behavior [45]. Therefore, comparing several ML methods is important to verify the
best alternative applicable to each case [46].

Analyzing Table 2, the results can be organized into three groups based on the per-
formance of the ML methods during the tests. In the first group, with low performance
(RMSE equal to or greater than 1.20 mg/L), are the GMDH, SGT, RBEN, and RF methods.
Wang et al. [2] proposed a method for optimizing the coagulation process during drinking
water treatment using distinct ML approaches, including the RBFN method. Although
it delivers better performance compared to multiple linear regression models, the RBFN
was outperformed by the random forest algorithm. In the present study, the SGT achieved
the second-worst accuracy with 1.25 RMSE. This algorithm develops a sequential training
through which the decision trees grow in series. In this way, a tree is built to correct the
errors of the previous one (boosting), which generally provides superior performance
unless there is influence from noisy data [32,47].

In the second group, with intermediate performance (RMSE from 1.15 to 1.20 mg/L),
were the CCN, GEP, MLP, PNN, and SVM. The CCN is a type of self-organizing neural
network whose size and topology are determined by adding neurons to its architecture to
guarantee improved learning over the training process [48]. Consequently, this algorithm
may overfit the training data and lose generalization ability. In this situation, we used
an overfitting control pruning strategy to minimize the cross-validation error. Despite
this, the CCN’s performance dropped from 1.10 in training to 1.18 RMSE during testing.
Wadkar et al. [49] also evaluated the CCN method to predict coagulant dose. The authors
indicated that beyond large amounts of training data, as required by most ANN-based ap-
proaches, the CCN method showed a sensitive/fragile relationship between the network’s
architecture and the prediction error rates. Consequently, this method may demand great
attention concerning its parametrization.

In turn, the MLP enables non-linear mappings using activation functions based on
the backward propagation of errors to adjust the ANN weight connections. Moreover,
the network architecture of minimum training error during the ML process was consid-
ered to prevent model overfitting, delivering a 1.17 RMSE. Additionally, according to
Jayaweera et al. [4], although the MLP method has been useful for predicting the optimum
coagulant dosage for water treatment, the high computational cost and requirement of
sufficient training data are the primary drawbacks.

Almost all analyzed ANNs achieved a similar performance, approximately 1.17 RMSE.
To minimize misclassification, the PNN uses probability density functions to define complex
decision boundaries, which generally improves its accuracy [32]. Zhang et al. [23] analyzed
the performance of the SVM method applied to predict coagulant dosage in water treatment
plants of distinct sizes and concluded that such a method performs better for large- and
medium-sized water systems compared to small ones. Although it shares similarities with
ANNSs, the SVM shows a better ability to deal with high-dimensional data and is less prone
to overfitting [50]. Despite this, the SVM also achieved only 1.17 RMSE.

Finally, with higher accuracy, the ANFIS and D?FIS reached 1.09 and 0.86 RMSE over
the test data, respectively. Despite acceptance among researchers, the ANFIS suffers from
limitations, such as the curse of dimensionality computational expense, and it is not good
at explaining how it reaches decisions [51], being overcome by the non-hybrid D?FIS in the
present study.

Of note, the D?FIS error is relatively low given that PAC variation ranges from 30 to
40 mg/L, thatis, less than +0.9 mg/L in a variation range more than 10 times greater [30,40].
The occurrence of outliers makes the capability of the D?*FIS to handle data behaviors that
are critical to other ML methods even more evident (Figure 6).
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Figure 6. Data behaviors and occurrence of outliers related to coagulant dose throughout the year
(January to December).

As outliers are data points that are significantly different from the rest of the dataset,
they are usually removed before ML to ensure that the trained model generalizes well to the
valid range of test inputs. However, in our study, the outliers were not removed because
they are not abnormal observations that arise due to inconsistent data entry, erroneous
measurements, etc. In other words, the outliers were maintained because they are a conse-
quence of abrupt variations characteristic of the phenomenon under analysis. Identifying
the occurrence of these outliers allowed us to understand why most ML methods showed
a significant drop in accuracy during the test in contrast to the D?FIS, which was able to
better deal with this challenge.

Using the Wang-Mendel rule induction technique, fuzzification of the linguistic values
of each variable was performed using triangular functions (Figure 7), which is one of the
most widely accepted and used fuzzy membership functions [25].

= 1

VA

8 L (0]
()" 6.4 6.5 6.6 6.7 6.8 6.9 7.0 (b) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
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o very large (LL) extra large (XL)
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Figure 7. Fuzzification of the predictor variables in the input space using triangular membership
functions and 6 linguistic values (SS, S, M, L, LL, and XL): (a) pH, (b) color (HU), (c) turbidity (NTU),
(d) fluoride (mg/L), and (e) chloride (mg/L).

The input space of the predictor variables shown in Figure 7 was partitioned into lin-
guistic values (S5, 5, M, L, LL, and XL) based on fuzzy soft boundaries. Khameneh et al. [52]
define a fuzzy soft boundary as a parameterization extension of the concept of a boundary
in the classical sense. The properties associated with this extension allow a fuzzy model to
make inferences based on partial degrees of certainty, which cannot be properly handled
using traditional tools [53].
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Considering these linguistic values and ranges, some examples of rules (R;) generated
by the D?FIS during machine learning are as follows:

Ry:if pHis S and color is LL and turbidity is XL and fluoride is M and chloride is SS, then
the dosage of coagulant (PAC) = 37 mg/L.
Ry: if pHis L and color is M and turbidity is XL and fluoride is SS and chloride is LL, then
the dosage of coagulant (PAC) = 30 mg/L.

During parameterization in the ML process, the ‘hfp” partitioning procedure provided
the best fit of the data to the model. For the Lukasiewicz conjunction operator, six an-
tecedent terms (linguistic values) were sufficient for the D2FIS to decrease the RMSE close
to 0.44 during training. Whereas some operators consider only the lowest membership
in the disjunction step, the sum t-norm considers all membership values, which provides
improved performance in the regression task [32].

In the present study, the coagulation process represents a complex system in which
there are uncertainties as interactions between the mechanisms of transfer and kinetics are
not yet deeply understood [9,12]. To address this challenge, ML helped identify patterns
of association between predictor and response variables based on a data-driven system
by extracting knowledge from the historical database. In particular, the data-driven fuzzy
approach proved to be efficient in solving this complex and poorly understood problem,
characterized by uncertainty due to imprecise knowledge. In other words, data-driven
fuzzy allows for dealing with uncertainties to provide a powerful framework for computa-
tional reasoning [25].

As a limitation, classical ML methods were not designed to deal with uncertainty.
Therefore, when the degree of uncertainty of the problem becomes significant, the so-
lution provided by classical ML methods is not able to provide a solution with greater
accuracy [53]. As verified in the experimental evidence of our study, such methods even
reach good accuracy during training, but the predictive performance drops during the
validation tests. To overcome this GAP, the approach proposed in our study demonstrated
that data-driven fuzzy outperformed the ML methods used in previous studies.

It is worth mentioning the fuzzy approach was initially developed aiming at using
knowledge-based systems without self-learning capability. Thus, to build a method capable
of combining self-learning ability with the ability to deal with uncertainty, hybrid neuro-
fuzzy systems were created, such as the ANFIS. The main novel point of the proposed
D?FIS method is that it is not a hybrid ML method, as has already been evaluated in
previous studies. Thus, to the best of our knowledge, this is the first study thus far to
address the accuracy of this non-hybrid D?FIS for coagulant dosage.

From these results, computer-aided coagulant dosage can be highly accurately deter-
mined using the D?FIS approach proposed in this study. As a practical implication, this
alternative avoids errors associated with the WTP operator’s experience; it can predict
dosages accurately and in real time, saving operational resources, the acquisition and
maintenance of equipment, and the consumption of raw material required by jar tests.
Considering that the jar test can result in underdosing or overdosing, further verification
from future studies will be needed to certify that the proposed method can predict the
optimal dose of coagulant.

On the other hand, considering that, with a smaller margin of error, the proposed
method can provide a dosage comparable to the dosage through a manual experiment,
the data-driven fuzzy can help the drinking water treatment system to overcome critical
limitations of the jar test, which are not conceived for real-time decision-making. As
previously pointed out, coagulant dosing can become complex when raw water quality
changes rapidly and substantially [6]. Thus, the jar test is not feasible for fast enough
adjustments [4,10].

The results of the "Explain” and ‘ICE” widgets are shown in Figure 8, where the effects
of each raw water quality parameter on coagulant dosing accuracy and the dependence of
real-time prediction on variation in these parameters can be seen.
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Figure 8. Individual conditional expectation and the impact of each water quality parameter on
the D2FIS prediction: (a) PAC x turbidity; (b) PAC x fluoride; (¢) PAC x chloride; (d) PAC x pH,
(e) PAC x color; and (f) water quality parameters x PAC.

In Figure 8a, it can be seen that PAC increases sharply with the increase in turbidity up
to the vicinity of 0.6 NTU, but after this value, the coagulant dosage starts to decrease. In
turn, there is also a directly proportional relationship between PAC and the color (Figure 8e)
but with a much smaller variation in the coagulant dosage compared to that caused by
turbidity. In all other cases, there are multiple inflection points in the curve of the mean
(yellow line) of PAC, suggesting that the increase or decrease in coagulant dosage due to
fluoride (b), chloride (c), and pH (d) depends on the range of variation in these parameters.
For example, the relationship between chloride and PAC is inverse up to a concentration of
1.2 mg/L, then it becomes directly proportional from this concentration up to 2.0 mg/L;
between this last value and 2.6 mg/L, it becomes inverse again and then changes to an
upward trend (Figure 8c). Figure 8f shows the increase in the prediction error if the
relationship between the parameter and PAC is broken. In short, a higher deviation from
the center of the graph means that the parameter has a bigger impact on the prediction.
The blue color represents a lower parameter value, whereas the red color is a higher value.
Thereby, red dots to the right and left of the center indicate that the parameter tends to
vary directly or is inversely proportional to PAC, respectively. In turn, the values in the
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In line with the ICE analysis, turbidity was the parameter with the greatest impact on the
coagulant dose prediction (—2.2 < (S — ;) < 3.1), followed by fluoride (—1.1 < (S — S;) <0.9),
chloride (—1.3< (S — S;) <0.6), pH(—0.3< (S — S;) <1.2),and color (—0.9 < (S — S;) < 0.5),
in descending order of importance. These findings can contribute to decision-making on
monitoring raw water quality as the most important parameters should be prioritized in
the case of limitations that make it impossible to evaluate all of them periodically. It is
worth noting that these appointments are based on the curve of the mean (yellow line) of
PAC, which allows for analyzing the expected effect of each parameter. If we take into
account the interdependent relationships between the water quality parameters, the effect
on PAC dosage becomes even more complex (Figure 9).

color fluoride chloride
(HU) (mg/L) (mg/L)
---—-  3.97 0.70 1.82 6.91
— 201 0.65 1.33 6.53
—— 3.74 0.67 2.12 6.81
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Figure 9. Impact on PAC prediction considering interdependent relationships between the water
quality parameters.

Figure 9 shows some scenarios with randomly selected values for each parameter. In
the first case (red line), it can be seen that for each range of turbidity, the relationship with
PAC is directly proportional. In the other cases (blue, green, and yellow lines), however,
this relationship changes significantly depending on the variation of the other parameters
(color, fluoride, chloride, and pH). This shows the complexity of the dependence of the
dose PAC on the raw water quality, which complicates the mathematical formulation of
mechanistic models and makes even more evident the importance of machine learning as
an alternative to cope with this complexity.

Based on this deeper understanding of the importance of each water quality parameter
for dosing PAC, new machine learning was performed for the model with the highest
performance in the previous analyzes (D?FIS), which included the following improvements:
(i) reducing the dimensionality of the inputs by suppressing the color variable due to
its lower impact on prediction; it is expected that the saved computational effort can be
used in an optimized way; (ii) fine-tuning the partitioning of the input space of the other
variables by increasing the number of membership functions (mfs) proportionally to the
importance of each parameter, so that turbidity increases to 10 mfs, fluoride to 9, chloride
to 8, and pH to 7 (originally, they all had 6 mfs). The other parameterization settings were
not changed. These adjustments did not significantly improve the training error (from 0.44
to 0.42 mg/L). However, the generalizability of the D?FIS increased significantly, with the
error decreasing from 0.86 to 0.69 mg/L, a 19.8% improvement in accuracy. Among the
recent studies reported in the literature, Achite et al. [21] compared different ML models for
predicting coagulant dosage in WTPs. As a result, a combination of the M5 tree and gorilla
troops optimizer models achieved an RMSE of 1.17 over the test dataset, which was up to 7,
10, 22, and 35% more accurate than the random forest (1.26), artificial neural network (1.30),
multivariate adaptive regression splines (1.50), and k-nearest neighbor (1.81), respectively.
Narges et al. [5], in turn, reported that the ANFIS achieved an RMSE value of 1.83 and
concluded that this model is an excellent approach for determining the best PAC doses in
WTPs. Therefore, to the best of our knowledge, the results of the present study indicate
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that the non-hybrid D2FIS (0.69 RMSE) can be considered the most promising alternative
evaluated so far as a computer-assisted tool for real-time, highly accurate coagulant dosing
in WTPs.

4. Conclusions

In this study, experiments were conducted to test and compare the accuracy of several
different ML algorithms, namely a data-driven fuzzy inference system, cascade-correlation
network, gene expression programming, polynomial neural network, multilayer percep-
tron network, probabilistic neural network, radial basis function network, stochastic gra-
dient boosting, and support vector machine for coagulant dosing of a drinking water
treatment plant.

As the main contributions from this comparative analysis, it is worth highlighting
(i) filling the gap with the more suitable ML method applied to the coagulation process;
(ii) identifying a promising alternative for computer-aided coagulant dosing; and (iii) stim-
ulating further studies to assess the potential of the D*FIS for the control and optimization
of other unit operations in drinking water treatment. From these findings, it was possible
to confirm the research hypothesis that the D?FIS presented the highest accuracy due to its
ability to deal with uncertainties inherent to complex processes.

By constituting a solution based on non-linear functions with soft boundaries, which
allows the measurement of partial memberships (uncertainties), the D?FIS affords the best
generalization ability and provides a highly accurate prediction. In conclusion, the accuracy
of the D?FIS-based alternative (0.86 error) outperformed the other assessed ML algorithms,
including the ensemble models (1.25), ANNs (1.20), and kernel-based methods (1.17) widely
used in regression tasks. In addition, a deeper understanding of the importance of each
water quality parameter for dosing PAC improved the accuracy of the D?FIS by nearly 20%,
reducing the RMSE in the tests to 0.69 mg/L.

In conclusion, the non-hybrid data-driven fuzzy inference system can be considered a
promising alternative tool for real-time and highly accurate coagulant dosing in drinking
water treatment. The outcomes indicate that the D?FIS can help WTPs to reduce operating
costs, prevent errors associated with manual processes and operator experience, standardize
efficacy, and enhance safety for the water industry.
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