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Abstract: The Yellow River has long been known for having low water and abundant sediment. The
amount of sediment transported in the upper and middle reaches of the Yellow River (UMRYR)
has changed significantly in recent years, resulting in an obvious imbalance in the spatiotemporal
distribution of the water resources in the Yellow River Basin (YRB). The changes in the sediment
transport in the Yellow River significantly affect ecological security and socioeconomic development
in the YRB. In this study, the Google Earth Engine (GEE) platform was used to obtain the potential
driving factors influencing the five main gauge stations in the UMRYR: vegetation, soil moisture,
population, precipitation, land types, etc. The data on the annual sediment transport (AST) were from
the River Sediment Bulletin of China (2001~2020). Linear regression and the Mann–Kendall test were
used to study the temporal variation in the AST. The first-order difference was determined from the
original data to remove the autocorrelation, and it met the requirement of sample independence. The
factors without collinearity were used for the driving force analysis using linear regression (linear
model) and random forest regression (nonlinear model). We used the selected driving factors to
establish the linear regression, the random forest model for predicting the AST, and cross-validation
for verifying the prediction accuracy. Furthermore, the prediction outcomes were compared with the
simplest ARIMA time-series model (control model). Our findings showed that the changing trend and
the mutation of the AST were different in the UMRYR during the past 20 years. However, after the
first-order difference of the AST, the amount of interannual variation in the annual sediment transport
(∆AST) was almost unchanged in the UMRYR. The five driving factors were chosen to establish the
prediction models of linear regression and random forest regression, respectively. Compared with
the control model, ARIMA, the prediction accuracy of the random forest model was the highest.

Keywords: sediment transport; driving factors; trend prediction; Yellow River; Google Earth Engine

1. Introduction

In recent years, owing to the influence of climate warming and human activities, the
water cycle process in the Yellow River Basin (YRB) has changed significantly. As the
second largest river in China, the Yellow River has long been known for having low water
and abundant sediment [1]. With the large-scale implementation of water conservation
projects, along with soil and water conservation projects in the past 20 years, the runoff
and sediment transport have changed significantly in the upper and middle reaches of
the Yellow River (UMRYR) [2,3]. These changes have led to prominent problems, such
as the unbalanced spatiotemporal distribution of the water resources in the YRB [4,5].
Studying the spatiotemporal variation characteristics of the factors driving the annual
sediment transport (AST) in the UMRYR is the basis for comprehensive management of the
YRB, together with providing technical support for the implementation of soil and water
conservation projects in the UMRYR.

Many studies have shown that the annual runoff and sediment transport in the
UMRYR have experienced a significant downward trend in the last few years [4,5]. In their
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analyses of the driving factors responsible for the downward trend in sediment transport in
the UMRYR, scholars have expressed different views. According to research by Hu et al. [6],
the main causes for the decrease in sediment transport in the YRB from 1986 to 2005 were
human activities and natural environmental changes. Yao et al. [7,8], Xu et al. [9], Shi
et al. [5], and Gu et al. [10] demonstrated that precipitation had a significant impact on the
runoff and the sediment transport when they studied how the climate and human activities
affected these phenomena in the UMRYR. However, Shretha et al. [11] demonstrated that
there is a connection between increased air temperatures and sediment accumulation.
Additionally, according to Yin et al. [12], vegetation cover and land type accounted for
35% of the soil erosion, which in turn affected the sediment transport in the Yellow River.
In the study by Luo et al. [13], an analysis of the spatiotemporal changes among the
sediment transport and the driving factors was presented. They found that precipitation,
the normalized difference vegetation index (NDVI), and net primary production (NPP)
each had a significantly positive correlation with sediment transport in the UMRYR.

Many scholars have shown that changes in land type have a great influence on the
spatial distribution of sediment transport along the Yellow River. According to Wang
et al. [14], the AST at the Tongguan gauge station will be 283, 313, and 412 Mt yr−1 during
the next 10, 20, and 50 years, respectively. According to a large number of existing research
results, it could be argued that the process of sediment transport in the YRB had highly
nonlinear characteristics. However, commonly used methods only offer a qualitative
understanding of the changes in sediment transport, and do not yet provide quantitative
predictions [15]. Yu et al. [16] used the Soil and Water Assessment Tool (SWAT) and the
Coupled Model Intercomparison Project Phase 5 (CMIP5) to predict the changes in the
runoff and sediment transport at the Tangnaihai gauge station. In addition, Gao et al. [17]
used gray system theory to predict the long-term trend in the runoff and sediment transport
in the UMRYR. They discovered that the predicted values for the runoff and sediment
transport were greater than the actual values, indicating that the long-term forecasting
of runoff and sediment transport was still at the development and exploration stage. In
these studies, the effect of changes in the climatic factors and human activities on the
sediment transport in the Yellow River was confirmed, but the driving factors considered
were relatively simple. At the same time, since the prediction models of the sediment
transport in the UMRYR were too complex and their prediction results were not sufficiently
accurate, it was not possible to apply these models widely.

In order to resolve this problem, we used the Google Earth Engine (GEE) platform to
extract historical remote sensing data on the potential driving factors, such as vegetation,
soil moisture, precipitation, land type, and population, among others. The correlations
between the driving factors and their correlation with the amount of interannual variation
in annual sediment transport (∆AST) were analyzed simultaneously, using the Spearman
correlation combined with stepwise regression for collinearity diagnosis. The driving
factors without collinearity were applied in the driving force analysis using linear regression
(linear model) and random forest regression (nonlinear model). Based on the results of
the analysis of the driving force, a linear and nonlinear regression model was established
to predict the AST in the UMRYR. Our research aimed to establish a simple, feasible, and
accurate model to predict the changes in the AST in the UMRYR and reveal the factors
affecting the sediment variation along the Yellow River.

2. Study Area

The Yellow River, with a total length of 5464 km, and a total basin area of approxi-
mately 800,000 km2, originates in the Bayan Har Mountains, and eventually, flows into
the Bohai Sea. The UMRYR account for 91% of the total area of the YRB. Our study area
(94–114 E, 32–42 N) covers five main gauge stations along the Yellow River: Tangnahai,
Lanzhou, Toudaoguai, Longmen, and Tongguan. The elevation is between 258 and 6254 m
(Figure 1). The characteristics of the UMRYR include unconsolidated soil, broken terrain,
a low vegetation coverage rate, and an uneven distribution of precipitation [15,18]. The
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upper reaches have an area of 386,000 km2, accounting for 51.3% of the YRB, located in
arid and semiarid areas, with average temperatures ranging from 1 to 6 ◦C, and average
annual precipitation of 105–756 mm. The middle reaches are located in semi-humid and
semiarid monsoon climate regions, with average annual precipitation of 320–836 mm, and
average temperatures between 7 and 11 ◦C. The area of the middle reaches accounts for
45.7% of the total area of the YRB, but the sediment transport in this area accounts for 92%
of the YRB total. The area is characterized by large volumes of coarse sand, and it is one of
the most frequent sites of rainstorms in China. In the UMRYR, the spatial distribution of
precipitation is extremely uneven, decreasing from southeast to northwest.
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3. Materials and Methods
3.1. Data

Using judgment based on professional knowledge, the 15 driving factors that might
affect the AST of the UMRYR were selected. These 15 driving factors were derived from
the Google Earth Engine (GEE) platform (https://earthengine.google.com, accessed on
5 November 2022), and all the driving factors data pre-processing was conducted on the
GEE platform. For example, the remote sensing image was clipped according to the reaches,
and the annual precipitation was averaged pixel by pixel, etc. We obtained 100 samples
through 20 years of observations in five reaches. The MOD13Q1 V6 satellite data with a
spatial resolution of 250 m and a temporal resolution of 16 days were used to obtain the
enhanced vegetation index (EVI) and NDVI data. The normalized difference water index
(NDWI) data were derived from the Landsat 5 and Landsat 8 datasets. The NPP data were
from the Landsat net primary production CONUS dataset, with a spatial resolution of 30 m.
The summer precipitation (SP) data and the soil moisture (SM) data were derived primarily
from the CHIRPS daily dataset and the ERA5-Land dataset, and their spatial resolutions
were 5566 m and 11,132 m, respectively. The population (POP) data were derived from the
WorldPop global project population dataset, which has a spatial resolution of 100 m and a
temporal resolution of 1 year. The land type (water body (WB), forest (FO), shrubland (SL),

https://earthengine.google.com
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and farmland (FL)) data came from the MCD12Q1.006 dataset, with a spatial resolution
of 500 m. The DMSP–OLS dataset was used for the night light (OLS) data, and its spatial
resolution was 927.67 m.

The AST data for the five gauge stations were obtained from the River Sediment
Bulletin of China (http://xxzx.mwr.gov.cn, accessed on 20 November 2022). The River
Sediment Bulletin of China is an official endorsement. The daily runoff and sediment data
were measured by the basin organization using sediment runoff meters within the control
range of the reaches, and were published in the River Sediment Bulletin of China every
year, which has an official endorsement. For example, Hu et al. [2], Liu et al. [5], and Yao
et al. [7] used water and sediment data from the River Sediment Bulletin of China to study
the temporal and spatial variation trends of the water and sediment in the YRB. They also
analyzed the driving forces behind these trends. The vector boundaries used in this study
were obtained from the National Earth System Science Data Center, National Science and
Technology Infrastructure of China (https://www.geodata.cn, accessed on 20 November
2022). Table 1 shows the sources and abbreviations for the data.

Table 1. Driving factors and data sources.

Value (Abbreviation) Unit Data Source

1 Annual sediment transport (AST) Mt yr−1 The River Sediment Bulletin of China
(2001–2020)

2 Normalized difference vegetation index (NDVI) / MOD13Q1 V6
3 Enhanced vegetation index (EVI) / MOD13Q1 V6
4 Normalized difference water index (NDWI) / Landsat 5 and 8
5 Net primary production (NPP) Kg C/m2 Landsat Net Primary Production CONUS
6 Population (POP) individuals WorldPop Global Project Population Data

7 Soil moisture 0–7 cm (SM(0–7)) m3/m3 ERA5-Land Monthly Averaged—ECMWF
Climate Reanalysis

8 Soil moisture 7–28 cm (SM(7–28)) m3/m3 ERA5-Land Monthly Averaged—ECMWF
Climate Reanalysis

9 Soil moisture 28–100 cm (SM(28–100)) m3/m3 ERA5-Land Monthly Averaged—ECMWF
Climate Reanalysis

10 Soil moisture 100–289 cm (SM(100–289)) m3/m3 ERA5-Land Monthly Averaged—ECMWF
Climate Reanalysis

11 Water body (WB) % MCD12Q1.006
12 Forest (FO) % MCD12Q1.006
13 Summer precipitation (SP) mm CHIRPS Daily
14 Night light (OLS) nanoWatts/cm2/sr DMSP OLS
15 Shrubland (SL) % MCD12Q1.006
16 Farmland (FL) % MCD12Q1.006

3.2. Research Methods
3.2.1. Mann–Kendall Mutational Test

Linear fitting was performed on the AST data from the five gauge stations to determine
the variation trend in AST for the past 20 years. The Mann–Kendall (MK) test [19] is a
method commonly used in meteorology to study mutations. In this study, the MK mutation
test was used to analyze the mutation of the AST in the UMRYR. We supposed that time
series (x1, x2, . . . , xn) existed. The specific method is as follows. Sk is defined as Equation (1):

Sk = ∑k
i=1 ∑i−1

j=1 αij (k = 2, 3, 4, . . . , n) (1)

αij =

{
1 xi > xj
0 xi ≤ xj

1 ≤ j ≤ i (2)

The statistic UFk is defined as Equation (3):

UFk = Sk − E(Sk)/
√

var(Sk) (k = 1, 2, 3, . . . , n) (3)

http://xxzx.mwr.gov.cn
https://www.geodata.cn
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E(Sk) = k(k− 1)/4 (4)

var(Sk) = k(k− 1)(2k + 5)/72 (5)

Time series x is arranged in reverse order and calculated with Equation (3), while
ensuring Equation (6): {

UBk = −UFk′
k′ = n + 1− k

(k = 1, 2, . . . , n) (6)

By analyzing statistical series UFk and UBk, the change trend in series x can be further
analyzed. The mutation time and region can be determined. If UFk > 0, the data sequence
is in an upward trend; if UFk = 0, the data sequence has no changing trend; if UFk < 0,
the data sequence is in a downward trend. When the UFk exceed the significant critical
values, they show an obvious increasing or decreasing trend. If an intersection point is
present between the curves of UFk and UBk, and falls between the credibility lines, the
corresponding time of the intersection point is the starting moment of the mutation [20].

3.2.2. Driving Force Analysis Method

(1) Spearman correlation analysis

Since the AST is a time series, there is a certain autocorrelation. The first–order
difference method was used in this study to reduce the influence of autocorrelation and
transform the AST data into ∆AST data. The Spearman correlation coefficient was used to
study the correlations among 16 variables, because the distribution of the variables was
unknown [21]. The Spearman correlation coefficient rs is computed as follows:

rs = cov(rgxi, rgyi)/σrgxi
, σrgyi

(7)

For a sample of size n, the original data xi and yi are converted into ranks rgxi and
rgyi, respectively, which are the ascending orders of xi and yi. The cov(rgxi, rgyi) is the
covariance of the rank variables σrgxi

, and σrgyi
are the standard deviations of the rank

variables. However, a multiple regression model that involves more than one driving
factor often contains the problem of multicollinearity. There are several ways to determine
whether there is a multicollinearity:

(a) The value of the correlation (the Spearman correlation between the driving factors).
A high correlation value between the two driving factors shows that there is a linear
relationship, and indicates that there may be a problem of collinearity [22].

(b) The value of the variance inflation factor (VIF) is used as a criterion to detect the
presence of multicollinearity in a multiple linear regression. When the value of the
VIF is greater than 3, there may be a problem of multicollinearity [23].

(2) Linear model

In this study, a stepwise regression model (SRM) was used to analyze the linear driving
force of the ∆AST. The driving variables in the SRM were selected, one by one, from a group
of potential driving factors without multicollinearity, based on the Akaike information
criterion (AIC). After screening the driving factors, the prediction model for ∆AST was
established by using multiple linear regression (MLR). All analyses were conducted using
RStudio software (https://cran.r-project.org, accessed on 4 November 2022).

(3) Nonlinear model

A random forest model (RFM) was used to analyze the nonlinear driving force of the
∆AST, and the driving factors without multicollinearity were ranked according to the most
important value for each driving factor. The number of decision trees, the maximum depth
of trees, and the maximum number of leaf nodes in the model were set to 100, 10, and
50, respectively, in the R program. After training, the driving factors were selected based
on the importance of the IncNodePurity value. After the nonlinear driving factors were
screened out, the driving factors were used for modeling and prediction.

https://cran.r-project.org
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3.2.3. Accuracy Validation and Prediction of Models

(1) Model accuracy validation

Cross-validation was used to evaluate and select the model in this study [23]. The
two prediction models (MLR and RFM) were 5–fold cross–validated. In this method, the
dataset was shuffled randomly, after which it was partitioned into k groups. In this case,
we considered the value of k as 5. Of these folds, one was considered the testing dataset,
and the others were considered the training dataset. The boosted classifier was then fitted
to the training dataset and the evaluation was processed on the testing dataset. For each of
these folds, the evaluation scores were accumulated, and the mean score was calculated as
the final evaluation score.

(2) Prediction of AST

The model with the highest accuracy was obtained by the cross–validation (compar-
ison between the MLR and RFM), and the ∆AST at the five gauge stations during the
following 3 years was predicted. Next, through the R language, the ∆AST was restored to
the AST by using the first–order difference restoration code. The results were compared
with the simplest ARIMA, which only considered the AST time series, and did not consider
the driving factors.

ARIMA is a popular and simple method of analysis used in the prediction of time
series. In the ARIMA model, the future value of a variable is a linear combination of past
values and past errors, expressed as follows:

Yt = ∅0 +∅1Yt−1 +∅2Yt−2 + . . . +∅pYt−p + εt − θ1εt−1 − θ2εt−2 − . . .− θqεt−q (8)

where Yt is an actual value and εt is a random error at t; ∅p and θq are coefficients; and
p and q are integers that are often referred to as the autoregressive and moving average,
respectively [24]. The technical flowchart for this paper is shown in Figure 2.
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amount of the interannual variation in the annual sediment transport, respectively. Table 1 shows
the short meanings of the variables. The abbreviations, MLR and RFM, denote the multiple linear
regression and random forest model, respectively.

4. Results
4.1. Analysis of Variation Trend and Mutation of the AST

Through the linear fitting (Figure 3), we found that during the past 20 years, the varia-
tion trend in the AST in the UMRYR has not remained stable. The AST in the upper reaches
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of the Yellow River (URYR), from the Tangnaihai to the Toudaoguai gauge station, showed
an upward trend (Figure 3a–c). The annual change rates of the AST were 0.355 Mt yr−1

(p > 0.05), 0.371 Mt yr−1 (p < 0.05), and 3.423 Mt yr−1 (p < 0.05) at the Tangnaihai, Lanzhou,
and Toudaoguai gauge stations, respectively. However, the AST in the middle reaches of the
Yellow River (MRYR), from the Toudaoguai to the Tongguan gauge station, showed a down-
ward trend (Figure 3d,e). The annual change rates of the AST were 3.565 Mt yr−1 (p > 0.05),
and 12.771 Mt yr−1 (p < 0.05) at the Longmen and Tongguan gauge stations, respectively.
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Figure 3. Variation trend in AST and ∆AST in the UMRYR, showing the gauge stations in the URYR
(a–c) and the gauge stations in the MRYR (d,e), and the equation for the variation trend in the
AST and ∆AST in the UMRYR (f). The abbreviations, AST and ∆AST, denote the annual sediment
transport and the amount of interannual variation in the annual sediment transport, respectively.
The abbreviations, UMRYR and MRYR, denote the upper and the middle reaches of the Yellow
River, respectively.

At the same time, after the first–order difference of the AST, the ∆AST was almost
unchanged in the UMRYR (red line in Figure 3), and the p values were all greater than
0.05. The temporal trend influence of the AST in the UMRYR was effectively eliminated
by the first–order difference. The driving factors in this study were treated in the same
way. The processed data (∆AST) had no autocorrelation, therefore, they were used for the
statistical analysis.

Figure 4a shows the Friedman test and violin plots of the AST and ∆AST data at
each gauge station. It can be observed that the AST in the UMRYR differed significantly
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(χ2 = 73.84, p < 0.001). Multiple comparisons showed that there was a significant difference
between the Tangnaihai and Toudaoguai gauge stations in the URYR (p = 0.002). Similarly,
there was a significant difference between the Toudaoguai and Tongguan gauge stations
in the MRYR (p = 0.001). However, after the first difference, there was no difference in the
∆AST at each gauge station (Figure 4b, χ2 = 1.425, p < 0.840). The ∆AST data for the five
gauge stations met the requirement of sample independence. The linear trend in the AST
data was removed by the first-order difference.
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Figure 4. Friedman test of AST (a) and ∆AST (b) at the five gauge stations. The abbreviations, AST
and ∆AST, denote the annual sediment transport and the amount of interannual variation in the
annual sediment transport, respectively. The red line in (a) is the trend line for the annual mean
sediment transport (2001–2020) at each gauge station. The symbol ‘***’ indicates that there is a
significant difference between the two gauge stations.

According to the Mann–Kendall mutation analysis of the AST for the past 20 years,
the mutations occurred more frequently in the URYR (Figure 5a–c) than in the MRYR
(Figure 5d,e). In the past twenty years, there were two or three mutation points within
the gauge stations in the URYR. However, regarding the gauge stations within the MRYR,
there was only one mutation point at the Longmen gauge station, and no mutation point at
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the Tongguan gauge station (the intersection point was not within the confidence interval).
Through the change in the UFk value, we can also understand in detail the changing trend
in the AST. In Figure 5a–c, the value of UFk fluctuated significantly around zero. Although
the overall trend in the AST increased (Figure 3a–c), there was also a downward trend in
some years, and the trend fluctuated greatly in the URYR. By contrast, the value of the UFk
was mostly below zero (Figure 5d,e) in the MRYR, indicating that the overall trend in the
AST decreased (Figure 3d,e), but there was also an upward trend during the first few years.
In addition, it can also be seen in Figure 5f that the cumulative amount of AST at the gauge
stations in the MRYR (Longmen and Tongguan) was significantly higher than that of the
gauge stations in the URYR. This indicates that the AST along the Yellow River was mainly
concentrated in the MRYR.
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Figure 5. Mann–Kendall mutation test of the AST: URYR (a–c), MRYR (d,e), and a graph showing the
cumulative amount of AST for the five gauge stations (f). The abbreviation AST denotes the annual
sediment transport. The abbreviations, URYR and MRYR, denote the upper and the middle reaches
of the Yellow River, respectively.

4.2. Driving Force Analysis
4.2.1. Spearman Correlation Analysis

In this study, there were 16 variables, including dependent variables (∆AST). The first
difference was applied to all the data (in Figure 6, the prefix ‘∆’ indicates the amount of
interannual variation in the data, that is, the first-order difference). As shown in Figure 5,
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there was a strong positive correlation between the factors reflecting the vegetation status
(i.e., ∆NDVI, ∆EVI, and ∆NPP) and the ∆AST, with correlation coefficients of 0.591, 0.538,
and 0.429, respectively. This was followed by the factors reflecting the environment and
climate (i.e., ∆SM (28–100) and ∆SP) with correlation coefficients of 0.346 and 0.282, respec-
tively. Additionally, it was found that the correlation coefficients between the ∆NDVI and
∆EVI, ∆SM (0–7) and ∆SM (7–28) were 0.931, and 0.941, respectively. It can be argued that
there were collinearity problems between them.
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Figure 6. Spearman correlation analysis of ∆AST in the UMRYR. The prefix ‘∆’ indicates the amount
of interannual variation in the data. In particular, the symbol ‘*’ indicates that there is a significant
relationship between the two variables (p < 0.1). Refer to Table 1 for the abbreviated meanings of
the variables.

4.2.2. Multicollinearity Test

The amount of the interannual variation in the data needed to be tested for multi-
collinearity before creating the RFM (nonlinear model) driving force analysis, as shown in
Table 2. The VIF values of the ∆NDVI, ∆EVI, ∆NPP; ∆SM (0–7), ∆SM (7–28), ∆WB, and
∆FO; and ∆FL were greater than 3, implying potential collinearity between these driving
factors. As a result, eight driving factors were finally added into the RFM (nonlinear model):
∆NDVI, ∆NDWI, ∆NPP, ∆SM (100–289), ∆SP, ∆OLS, ∆SL, and ∆FL, when combined with
the results of the Spearman correlation analysis.
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Table 2. Multicollinearity diagnosis of the driving factors. Dependent variable: ∆AST. The definitions
of the abbreviated variables can be found in Table 1.

Model
Unstandardized Coefficients

Standardized
Coefficients t p

Collinearity Statistics

B SE Beta Tolerance VIF

(Intercept) −0.058 0.107 −0.538 0.592
∆NDVI 7.426 13.316 0.220 0.558 0.579 0.044 22.857
∆EVI 5.246 13.101 0.151 0.400 0.690 0.048 20.733
∆NDWI 0.533 1.137 0.043 0.469 0.641 0.827 1.210
∆NPP −2.367 6.609 −0.054 −0.358 0.721 0.299 3.350
∆POP 0.000 0.000 −0.158 −1.359 0.178 0.503 1.987
∆SM (0–7) 4.199 26.598 0.046 0.158 0.875 0.080 12.430
∆SM (7–28) 9.073 31.783 0.080 0.285 0.776 0.086 11.564
∆SM (28–100) 1.466 3.648 0.035 0.402 0.689 0.876 1.142
∆SM (100–289) −55.202 16.815 −0.324 −3.283 0.002 0.700 1.429
∆WB −96.096 128.584 −0.167 −0.747 0.457 0.137 7.281
∆FO 70.096 192.925 0.059 0.363 0.717 0.262 3.814
∆FL 50.005 150.836 0.080 0.332 0.741 0.118 8.475
∆SP 0.004 0.003 0.214 1.578 0.119 0.370 2.703
∆OLS 0.528 0.168 0.304 3.141 0.002 0.727 1.375
∆SL −16.074 232.564 −0.008 −0.069 0.945 0.553 1.810

4.2.3. Stepwise Regression

An SRM (linear model) analysis was conducted using the RStudio software, and
the model with the lowest AIC value was selected based on the 15 previously identified
∆AST driving factors that may have affected the ∆AST in the UMRYR. Table 3 presents the
results of the analysis to determine the primary driving factors that affected the changes in
the ∆AST. The results of the SRM analysis indicated that ∆NDVI, ∆SM (100–289), ∆WB,
∆SP, and ∆OLS (p < 0.05) were the significant driving factors affecting the ∆AST in the
UMRYR. Furthermore, the VIF values of the five driving factors were less than 3, indi-
cating the absence of multicollinearity between them. Additionally, the p value for the
equation was less than 0.05, indicating that the equation was significant and had a fit of
R2 = 0.445 (Table 3).

Table 3. Stepwise regression analysis. Dependent variable: ∆AST. The definitions of the abbreviated
variables can be found in Table 1.

Unstandardized Coefficients Standardized
Coefficients t p

Collinearity Statistics

B SE Beta Tolerance VIF

(Intercept) −0.161 0.076 −2.127 0.036
∆NDVI 12.388 3.000 0.368 4.129 0.000 0.812 1.232
∆OLS 0.481 0.144 0.277 3.332 0.001 0.929 1.076
∆SP 0.005 0.002 0.247 2.854 0.005 0.858 1.166

∆SM (100–289 cm) −44.362 14.160 −0.261 −3.133 0.002 0.930 1.076
∆WB −100.358 47.795 −0.174 −2.100 0.039 0.936 1.068

Multiple R-squared: 0.445 Adjusted R-squared: 0.407
F-statistic: 11.75 p-value: 1.236 × 10−9

4.2.4. RFM Regression

Following the results of the multicollinearity analysis, an RFM (nonlinear model)
analysis was conducted to analyze the driving forces and rank their importance (Figure 7).
The results showed that the ∆NDVI was the most important driving factor in predicting
the ∆AST in the UMRYR, followed by the ∆OLS and ∆NPP, which were very significant
(p < 0.01) influences on the ∆AST, and ∆SP and ∆SM (100–289) were significant (p < 0.05).
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The effects of the ∆NDWI, ∆FL, and ∆SL on the ∆AST were not significant (p > 0.05),
which differed from the results of the stepwise regression analysis. Additionally, the
RFM model had a fit R2 of 0.515, which was greater than that of the stepwise regression
(R2 = 0.445). Based on the driving force analysis of the ∆AST in the UMRYR, the following
five variables were selected for further modeling and prediction: ∆NDVI, ∆OLS, ∆NPP, ∆SP,
and ∆SM (100–289).
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4.3. Modeling and Prediction
4.3.1. Cross–Validation and Selection of the Model

The driving factors obtained from the driving force analysis of the SRM and the RFM
were used to establish a linear model (MLR) and a nonlinear model (RFM), respectively,
to predict the ∆AST. The accuracy of the MLR and RFM models was verified by 5–fold
cross–validation. To compare the prediction accuracy of the models, evaluation metrics
such as R2, the mean absolute error (MAE), and the root mean squared error (RMSE) were
used. In Table 4, for the RFM prediction results, the evaluation metrics R2, RMSE, and MAE
were 0.545, 0.485, and 0.322, respectively; for the MLR, the evaluation metrics R2, RMSE,
and MAE, were 0.340, 1.128, and 0.875, respectively.

Table 4. Comparison of the model prediction accuracies. The RMSE and MAE indicate the root mean
squared error and mean absolute error. The RFM and MLR indicate the random forest model and
multiple linear regression model, respectively.

Models R2 RMSE MAE

RFM Prediction Model 0.545 0.485 0.332
MLR Prediction Model 0.340 1.128 0.875

In particular, a higher R2 value indicates a better fit. Furthermore, lower values for the
RMSE and MAE indicate a better fit and higher prediction accuracy. In this case, the RFM
had the higher R2 and the lower RMSE and MAE values, indicating that it had the better
fit and higher prediction accuracy of the two models. Therefore, we used the RFM for the
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final modeling and prediction of the AST, while the simplest ARIMA model was used as a
control model (CK) for the RFM model.

4.3.2. Prediction of AST

Before predicting the AST, a simple forecast of the values for the five driving factors,
included in the prediction model for the next three years, was performed using a linear
regression method (Table 5). Before predicting the five driving factors, scatter plots were
created for each driving factor, and it was found that most of them exhibited linear corre-
lation. Therefore, the method of univariate linear regression was used for prediction. As
illustrated in Figure 8, the prediction of the AST in the UMRYR uses the random forest
model (RFM), established above, and the CK model (ARIMA). The forecast was divided
into two parts. The left side of the black dotted line shows the forecast for the known years
(from 2001 to 2020), and the right side of the black dotted line indicates the forecast for the
unknown years (from 2021 to 2023) (Figure 8a–e). From the comparison of the results of the
RFM prediction and the CK model prediction, it was found that the R2 results for the RFM
were higher for the five gauge stations than the R2 results for the CK model. Furthermore,
the RFM’s average interpretation rate of 0.777 was higher than that for the CK model (0.318)
(Figure 8f). This demonstrates that the prediction result for the RFM for the AST was better
than that of the CK model. In addition, for the RFM, the goodness-of-fit order of the five
gauge stations, from high to low, was: Lanzhou > Tangnaihai > Longmen > Toudaoguai >
Tongguan. As a result, the nonlinear machine learning RFM was used to forecast the AST
for the following 3 years. Table 6 uses the RFM to predict the specific values of the AST
for the five gauge stations from 2021 to 2023. When the predictions were compared with
the current measured AST for 2021, the predicted values at the Lanzhou, Longmen, and
Tongguan gauge stations were close to the measured AST, and the prediction results were
relatively accurate.

Table 5. Predicted values for the five driving factors (2021–2023). The definitions of the abbreviated
variables can be found in Table 1. The prefix ‘∆’ indicates the amount of interannual variation in
the data.

Gauge Stations Year ∆NDVI ∆OLS ∆NPP ∆SP ∆SM (100–289)

Tangnaihai
2021 −0.008469776 0.047935561 0.00049489 −28.92988857 −0.003606281
2022 0.003678309 0.036382925 0.00022413 −7.465995264 0.000653275
2023 0.003789897 0.03863334 −0.00004662 −8.100876928 0.000702471

Lanzhou
2021 −0.013486897 0.065244886 −0.0012948 −34.85416005 −0.004571964
2022 0.004905457 0.006091741 −0.0016423 −9.49682083 −0.000427942
2023 0.004750819 0.005208895 −0.0019899 −36.16739651 −0.000340503

Toudaoguai
2021 −0.02532223 0.079224243 −0.0022115 −49.84926486 −0.002503088
2022 −0.0021852 −0.107179825 −0.0027162 −14.74115543 −0.001866121
2023 −0.00266316 −0.114141706 −0.0032208 −15.27368132 −0.001730933

Longmen
2021 −0.03150929 0.074433277 −0.0026485 −57.20250634 −0.002363319
2022 0.024095419 −0.149968857 −0.0033447 −18.36618505 0.00259626
2023 −0.02737186 −0.159664341 −0.0040409 −18.97639053 0.004800315

Tongguan
2021 −0.027818798 0.091943714 −0.0030094 −33.88406194 0.003120987
2022 −0.003459783 −0.161176695 −0.003814 −9.50323058 0.000239401
2023 −0.00427008 −0.175411692 −0.0046185 −9.723017661 0.000325405
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Figure 8. (a–e) The prediction of AST at the five gauge stations in the UMRYR using the RFM and
ARIMA models, and a comparison with the measured AST data. The left side of the black dotted
line represents the forecast for the known years (2001 to 2020), while the right side represents the
forecast for the unknown years (2021 to 2023). (f) The prediction accuracy comparison for the five
gauge stations using the RFM and ARIMA models.

Table 6. AST data for the five gauge stations for the next 3 years, predicted by the RFM. The
abbreviation AST denotes the annual sediment transport and RFM denotes the random forest model.

Year Tangnaihai (Mt yr−1) Lanzhou (Mt yr−1) Toudaoguai (Mt yr−1) Longmen (Mt yr−1) Tongguan (Mt yr−1)

2021 23.249 3.358 162.733 52.650 165.658
2022 23.912 1.409 167.035 21.293 224.810
2023 24.575 16.460 170.318 156.870 220.370
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5. Discussion
5.1. Changes in AST in the UMRYR

Through the results of this study, it was found that the AST in the UMRYR was
inconsistent. The AST in the MRYR showed a significant downward trend during the past
20 years, and the AST in the URYR showed an upward trend (Figure 3). The changing
trend and the mutation change in the AST in the MRYR were consistent with most research
results [13,17]. However, the variation in sediment transport in the URYR is different from
the results in other studies. This is because the previous studies [25,26] on AST in the
URYR were conducted on a time scale of more than 40 years, and in this time series, the
AST in the URYR showed a downward trend. Most scholars, such as Hu et al. [27,28], for
example, have suggested that human activities have played a dominant role in the sharp
reduction in the AST in the YRB, in which the main driving factors included large-scale
soil and water conservation measures, such as terraced fields, check dams, and reservoir
construction [29]. This was similar to the research results in this paper, because in the
analysis of ranking the driving factors by importance (Figure 7), the two highest ranking
driving factors (NDVI and OLS) both had a certain correlation with human activities. The
Bulletin of the First National Water Resource Census (http://www.mwr.gov.cn, accessed
on 13 January 2023) suggests that there are 5340 key dams in the tributaries feeding the
MRYR, and that sediment fills 1090 of these dams. In addition, the reservoirs data in
Figure 9 came from the Yearbook of the Yellow River (https://navi.cnki.net, accessed on
5 December 2022). It can be seen that in the past 20 years the number of reservoirs in the
MRYR stabilized around a figure between 1700 and 1800, which is more than the number
of reservoirs in the URYR. Furthermore, after 2000, the average AST reduction in the check
dams in the MRYR was about 135 MT yr−1, the average AST reduction in the terraces
in the main sand-producing areas in the MRYR was 422 MT yr−1, and the average AST
retention volume of the reservoirs in the MRYR was 98 MT yr−1 [30]. This proves that
the implementation of soil and water conservation projects can indeed effectively reduce
AST in the YRB. Therefore, in this study, it was considered that the possible reason for the
inconsistent variation in the AST in the UMRYR was that there were more soil and water
conservation projects in the MRYR. In addition, more mutations occurred in the AST in
the URYR than in the MRYR (Figure 5). This study considered that a possible reason for
this was that the mountainous terrain in the URYR is relatively fragile and prone to flash
flood disasters, resulting in the occurrence of more mutations in the AST [6]. In contrast,
the MRYR area is relatively gentle, with stable riverbeds and relatively stable changes in
the AST.

Because the AST recorded at the five gauge stations in the UMRYR had obvious
changing trends and autocorrelation, the data did not meet the statistical requirements.
In time–series analysis, the first–order difference is often used as a preprocessing step to
create the time–series data, eliminate the random trends they contain, and stabilize them
to ensure the independence of the data samples [31]. In this research, after the first–order
difference (∆AST), there was no trend, the data were, therefore, used for the statistical
analysis (Figure 4).

http://www.mwr.gov.cn
https://navi.cnki.net
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5.2. Analysis of Driving Force of ∆AST and Modeling

In this study, after analyzing the ∆AST data’s linear and nonlinear driving forces, it
was found that the ∆AST data were more suitable for the nonlinear driving force analysis,
for which the R2 (0.515) (Figure 7) was better than the R2 (0.445) (Table 3) for the linear
driving–force analysis. At the same time, after the 5–fold cross–validation of the RFM
and MLR prediction models (Table 4), it was also found that the nonlinear driving-force
analysis of the ∆AST data was a better method.

Therefore, in this study, the driving factors that had a significant effect on the ∆AST in
the UMRYR were ∆NDVI, ∆OLS, ∆NPP, ∆SP, and ∆SM (100–289), obtained through the
RFM. As the NDVI increases, the capability of the vegetation to protect against erosion
and sediment deposition was enhanced [32]. Furthermore, other studies [13,33] showed
that the annual average NDVI of the YRB increased significantly, and sediment transport
decreased exponentially with increasing NDVI. According to the research results presented
by Luo et al. [13], the degree of variation in the NPP was found to be most similar to that of
sediment transport in the YRB, which was the same as the result presented in this paper.
Both NDVI and NPP are vegetation indices. Studies have shown that changes in the water
and sediment in the YRB were closely related to changes in the vegetation. When vegetation
recovery reaches a certain level, the soil and water conservation function of the vegetation
undergoes a qualitative change, and it plays a more significant role in conserving soil and
water. In particular, when vegetation coverage exceeds 60%, soil erosion can be effectively
controlled. Thus, effectively controlling the sediment transport variation in the YRB [10,14].
According to research by Shi et al. and Gu et al. [5,10], precipitation is also considered
to have a significant effect on sediment transport in the UMRYR. High–intensity rainfall
causes a greater change in sediment transport in the UMRYR compared to medium– and
low–intensity precipitation. Moreover, the high-intensity precipitation in the UMRYR is
mainly concentrated in June to September. Additionally, deep soil moisture is a highly
important source of water for vegetation in arid and semiarid regions. Different types of
vegetation respond differently to deep soil moisture, which is itself affected by precipi-
tation [34]. Therefore, the SM (100–289) indirectly affects the change of the ∆AST in the
UMRYR by influencing the vegetation. The OLS images were formed by the detected light
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radiation induced by human activities on the Earth’s surface; such images can directly
reflect artificial surface regions and locations with significant human activities [35,36]. The
impact of the OLS on sediment transport in the watershed is mainly due to its influence
on urbanization and human activity levels, which in turn affect factors such as land use,
coverage, and management, and thereby, impact hydrological cycles and sediment trans-
port processes in the UMRYR. Additionally, the OLS can affect human behavior, such as
increased traffic flow at night and nighttime entertainment activities, which can increase
the likelihood of soil erosion and sediment production in the UMRYR, further impacting
sediment transport rates and variations. Therefore, this study suggests that the drivers
screened by the RFM to build an RFM prediction model can be used to accurately predict
future AST in the UMRYR.

5.3. Limitations and Future Work

After analyzing previous studies [25,28], it was found that when analyzing the runoff
and sediment transport in the YRB, the time range covered by most of the research was
more than 40 years. In this research, the time series of the sediment transport data was
short, and only the AST data were used, resulting in a small sample size, and no analysis
of the periodicity of the sediment transport changes was conducted. In future research,
it is recommended that data from longer time series are collected, including quarterly or
monthly data, to increase the sample size and provide a more comprehensive analysis of
the trend, mutation, and periodicity of sediment transport in the YRB. This will enable a
more in-depth understanding of the sediment transport dynamics in the region and aid in
the development of effective management strategies. According to previous research [4],
human activities were responsible for 70% of the sediment transport in the UMRYR in
recent years, with soil and water conservation measures contributing to 40% of this value.
Large–scale soil and water conservation measures, such as terraced fields and check dams,
can have a significant impact on the processes of surface water production and sediment
transport in the YRB. These measures can effectively improve the ecological environment
in the region, reduce soil erosion, and decrease runoff and sediment transport [37,38]. This
results in a positive effect on the underlying surface characteristics, and helps to maintain a
healthy and sustainable environment in the YRB.

In this study, the driving factors behind the ∆AST in the UMRYR were not sufficiently
comprehensive, as they did not take into account human-induced factors such as terraced
fields and check dams. Therefore, the coefficient of determination (R2) for the ∆AST
prediction model was relatively low, at 0.545 (Table 4). To address this limitation, future
research should aim to incorporate these human-induced factors into the analysis in order
to enhance the interpretability of the model.

6. Conclusions

This study used AST data from five gauge stations in the UMRYR and satellite remote
sensing image data of the GEE to study the variation trend and mutation in the AST in the
UMRYR. The ∆AST (the first–order difference of the AST) and the SRM and RFM were
used to study the driving factors affecting the change in the AST in the UMRYR, and the
prediction of the AST in the UMRYR was eventually completed by using the RFM.

The main conclusions in this study are that from 2001 to 2020, in the UMRYR, the AST
recorded at the gauge stations in the URYR exhibited an upward trend, while the AST at
the gauge stations in the MRYR displayed a downward trend, and the mutation point of
the AST in the URYR was higher than that in the MRYR. This suggests that the change
in the AST in the URYR was more complex than that in the MRYR. Furthermore, it was
found that the cumulative amount of AST in the MRYR was significantly higher than that
in the URYR. This indicates that the AST along the UMRYR was mainly concentrated in
the MRYR.

Through the use of data from satellite remote sensing images and statistical analyses,
it was determined that the main drivers of this change were the ∆NDVI, ∆OLS, ∆NPP,
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∆SP, and ∆SM (100–289). This study also found that the RFM established by these five
driving factors was a simple, feasible, and accurate model for analyzing and predicting
the changes in the AST in the UMRYR. In future studies, it is recommended that greater
consideration is given to anthropogenic activities, such as the implementation of soil and
water conservation measures, e.g., terraced fields and check dams, to improve the accuracy
of the AST prediction. The present study provides significant perspectives on the AST
dynamics in the UMRYR and demonstrates the potential of remote sensing and statistical
analyses as powerful tools for identifying the underlying factors that drive changes in
sediment levels.
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