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Abstract: The over-exploitation of groundwater has led to a significant drop in groundwater levels,
which may lead to a series of geological disasters and ecological environmental problems such as
ground subsidence and ground cracks. Therefore, through studying the dynamic change characteris-
tics of groundwater, we can grasp the dynamic changes in groundwater level over time and invert the
hydrogeological parameters, which provides an important basis for the management of groundwater
resources. In this study, the confined aquifer III groundwater between 2005 and 2014 in Yancheng City
was selected as the research object, and the Back Propagation (BP) neural network, Spatial-temporal
Auto Regressive and Moving Average (STARMA) model, and BP-STARMA model were used to
predict the spatial and temporal evolution trends of groundwater. In order to compare the prediction
effectiveness of the BP-STARMA model, the fitting and prediction accuracies of the three models
were measured from the perspectives of time and space. The results of the Relative Squared Error
(RSE), Normal Mean Squared Error (NMSE), Root-Mean-Squared Error (RMSE), and Mean Absolute
Error (MAE) were used to assess the robustness of the BP-STARMA model. The results showed that
the fitting of the RMSE of BP-STARMA model was reduced by 39.92%, 38.35%, 30.25%, 31.55%, and
13.57% compared with the STARMA model, and by 22.2%, 8.7%, 15.9%, 28.5%, and 4.42% compared
with the BP neural network model, respectively. Collectively, this shows that the BP-STARMA model
has a better spatiotemporal prediction of groundwater level than the STARMA and BP neural network
models, is more applicable to spatially continuous time-discrete spatiotemporal sequences, and is
more applicable to spatiotemporal sequences that respond to natural geographic phenomena.

Keywords: BP; STARMA; BP-STARMA; groundwater level; spatiotemporal prediction

1. Introduction

Water is an indispensable resource for human beings, of which groundwater is one
of the most important freshwater resources in geological structures [1–3]. With the rapid
development and increase in the urban population and economy in eastern coastal areas of
China, the demand for water resources is also increasing, and the intensity of groundwater
mining is also strengthening gradually. However, excessive exploitation of groundwater
will not only lead to the decrease in groundwater level, but also lead to water pollution [4],
land subsidence [5,6], seawater intrusion [7–9], and other environmental hazards. In
the eastern coastal areas of China, groundwater extraction reached its peak in the early
1990s, resulting in the continuous decline in groundwater level in these areas and the
continuous development of geological disasters such as land subsidence and ground cracks.
According to official groundwater monitoring reports, by the end of 2014, the cumulative
land subsidence of coastal areas of Jiangsu Province is more than 200 mm, and the area of
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funnel formation is nearly 14,000 km2. The largest settlement center is located at Dafeng
Haifeng Farm in Yancheng City, and the cumulative land subsidence is more than 700 mm.

Compared with surface water systems, the internal mechanisms of groundwater
systems are more complex. As the change in water quantity and the migration laws of
groundwater cannot be directly observed, and the geological harm caused by groundwater
over-extraction is slow, once accumulated to a certain extent, it will cause irreversible
damage. Therefore, relying on the monitoring data of groundwater dynamics, timely and
accurate prediction of the dynamic change process of groundwater level and analysis of the
dynamic change characteristics of groundwater are of great significance for groundwater
exploitation and effective and sustainable management of water resources [10–13].

According to a review of the literature, dynamic prediction of groundwater levels is
usually performed using either deterministic or stochastic models [14–19]. Deterministic
models are solved by numerical model equations for known data, but deterministic models
often require high data requirements and high costs, and realistic data inaccuracies and
limited hydrogeological parameters make classical numerical models more uncertain [20].
The uncertainty of classical numerical models is compounded by the reality of inaccurate
data and limited hydrogeological parameters. At the same time, changes in groundwater
level are nonlinear and affected by multiple factors, such as precipitation, geological condi-
tions, surface recharge, and human activities, which makes the prediction of groundwater
very complicated. Therefore, it is necessary to establish a model reflecting the dynamic
change law of groundwater levels by combining statistical theories [21,22]. As a natural
phenomenon, the variations in groundwater tables are spatially continuous [23–26]. There-
fore, the prediction of groundwater level changes should take into account both spatial and
temporal factors [27].

With the rapid development of artificial intelligence computing, data-driven methods
such as the artificial neural network (ANN) [28], support vector regression (SVR) [29],
wavelet transform model [30,31], and extreme learning machine (ELM) [32,33] have been
widely used in groundwater level prediction, and also provide a new method for modeling
spatiotemporal series to solve complex nonlinear problems. Daliakopoulos investigated
the performance of different neural networks in groundwater prediction and determined
the optimal neural network structure to simulate the decreasing trend of groundwater level
and predict the groundwater level over the next 18 months [34]. Lallahem proposed an
artificial-neural-network-based approach using minimum lag and the number of hidden
nodes to simulate the effective parameters and data in the groundwater level to generate
the best performing simulation model [35]. Taormina and Mohammadi trained artificial
neural network (ANN) simulations based on limited groundwater data to simulate and
predict groundwater levels [36,37]. On the basis of principal component analysis, Sun
combined the phase space reconstructed by chaos theory with a Back Propagation (BP)
neural network, established the BP neural network model based on chaos theory, and
predicted the groundwater level of Heihu Spring in Jinan [38]. Raj used artificial neural
networks to predict rainfall and groundwater table depth [39]. Crespo [40] used the
spatiotemporal autoregressive and moving average (STARMA) model for the short-term
prediction of compressed sequence images, and the results showed that the STARMA model
has good short-term prediction capability. Stroud [41] proposed a state-space framework for
non-stationary spatiotemporal data and used tropical rainfall to demonstrate that the state-
space model can handle non-stationary spatial processes and spatiotemporal correlations.
Building on these premises, the current study set out to investigate space–time prediction
using BP and STARMA models. In various studies, the STARMA model has been applied
to rainfall forecasting [42,43], ecological management [44], temperature forecasting [45,46],
and groundwater forecasting [47,48].

The groundwater levels are affected by a variety of factors, such as precipitation,
hydrological conditions, surface recharge, and human activities, so it is difficult to predict
dynamic groundwater levels [49,50]. The groundwater level monitoring data are typical
spatiotemporal series with discrete time and continuous space [51]. The spatial distribution
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of aquifers is often continuous, and the spatial structure of time series changes slowly with
the evolution of the environment, which belongs to the non-stationary spatial series, so the
difference method is not applicable. For such spatiotemporal sequences, some methods
that have been used to simulate and model non-stationary spatiotemporal data include
Bayesian models [52], state-space models [53], and Kalman filtering methods [54], but
most of these models are only applicable to specific areas. Therefore, it is necessary to
seek a more general and applicable spatiotemporal modeling method for the nature of
spatiotemporal sequences. The STARMA model has good applicability to smooth spatial
and temporal series that are discrete in both time and space, but in fact, most spatial and
temporal series are non-smooth. Martin proposed to use the difference method to transform
non-smooth series into smooth ones and then apply the STARMA model to model them,
but the difference method can only deal with temporal non-smoothness but not spatial
non-smoothness. The BP neural network model can provide solutions for the realization
and training of multi-layer neural networks, and is good at solving nonlinear problems. In
addition, the groundwater level is affected by many factors such as climate and human
activities, and its change law is nonlinear. The BP neural network model can effectively
predict the nonlinear groundwater level. However, the prediction of the groundwater table
should consider not only the temporal distribution but also the spatial heterogeneity. The
STARMA model belongs to spatiotemporal modeling, which can consider the distribution
of groundwater level data in time and space, and better cater to the spatiotemporal variation
trend of groundwater level. This study focuses on the spatiotemporal series analysis of
groundwater monitoring data and the interaction between the three models. The BP neural
network model and STARMA model are combined effectively to simulate and predict
the dynamic groundwater level, which can effectively improve the prediction accuracy of
groundwater level.

2. Study Area and Methods
2.1. Overview of the Study Area

The study area of this paper was Yancheng City, Jiangsu Province, located in the east-
central part of Jiangsu Province, China, with geographical coordinates of 33◦15′~34◦12′ N
and 119◦34′~120◦41′ E. The total land area is about 6177.11 km2. The geographical location
is shown in Figure 1. The study area is densely networked with water and meanders, and
belongs to the coastal water network plain landform type. The topography of the study
area is flat, with a general trend of high elevation in the southeast and low elevation in
the northwest. The topography of the area is flat and slopes slowly from southeast to
northwest.

The study area has deposited about 200.0~1600.0 m thick loose deposits since the Ceno-
zoic, constituting a set of large thick underground water-bearing systems. The confined
aquifers in the study area are mainly stored in the voids of loose sedimentary rock layers,
with the burial depth range of 7.0~300.0 m, as shown in the hydrogeological profile in Fig-
ure 2. The lithology of the aquifers is mostly powdered sand, fine sand, and medium-fine
sand, with abundant and stable water content. According to its stratigraphic conditions and
hydrogeological characteristics, the area contains five aquifer groups: shallow groundwater
and confined aquifers I, II, and III. The pore phreatic water and the confined aquifer I
mainly receive infiltration recharge from atmospheric precipitation, surface water, and
agricultural irrigation water, and the discharge mainly occurs through evaporation and
exploitation, with poor water quality and little use value. The main exploitation is of the
confined aquifers II and III, whose burial depth is determined by the basement structure,
with a general trend of deep in the southeast and shallow in the northwest. The depth range
of confined aquifer III is −126.0~−276.0 m, and the thickness is 5.0~70.0 m. It has good
water richness and good water quality, so it is suitable for use as the main mining layer.
Therefore, this paper selected confined aquifer III as the research object for the prediction
of dynamic changes in groundwater.



Water 2023, 15, 1085 4 of 19
Water 2023, 15, x FOR PEER REVIEW 4 of 20 
 

 

 
Figure 1. Geographical location map of the study area. (a) Jiangsu Province, China; (b) Yancheng 
City; (c) spatial location of boreholes in the study area. 

The study area has deposited about 200.0~1600.0 m thick loose deposits since the Ce-
nozoic, constituting a set of large thick underground water-bearing systems. The confined 
aquifers in the study area are mainly stored in the voids of loose sedimentary rock layers, 
with the burial depth range of 7.0~300.0 m, as shown in the hydrogeological profile in 
Figure 2. The lithology of the aquifers is mostly powdered sand, fine sand, and medium-
fine sand, with abundant and stable water content. According to its stratigraphic condi-
tions and hydrogeological characteristics, the area contains five aquifer groups: shallow 
groundwater and confined aquifers I, II, and III. The pore phreatic water and the confined 
aquifer I mainly receive infiltration recharge from atmospheric precipitation, surface wa-
ter, and agricultural irrigation water, and the discharge mainly occurs through evapora-
tion and exploitation, with poor water quality and little use value. The main exploitation 
is of the confined aquifers II and III, whose burial depth is determined by the basement 
structure, with a general trend of deep in the southeast and shallow in the northwest. The 
depth range of confined aquifer III is −126.0~−276.0 m, and the thickness is 5.0~70.0 m. It 
has good water richness and good water quality, so it is suitable for use as the main min-
ing layer. Therefore, this paper selected confined aquifer III as the research object for the 
prediction of dynamic changes in groundwater. 

Figure 1. Geographical location map of the study area. (a) Jiangsu Province, China; (b) Yancheng
City; (c) spatial location of boreholes in the study area.

Water 2023, 15, x FOR PEER REVIEW 5 of 20 
 

 

 
Figure 2. Hydrogeological profile of the study area [55]. 

The raw water level data for this experiment were taken from the database of ground-
water level monitoring values for the area under the jurisdiction of the Yancheng Water 
Resources Bureau from 2005 to 2014. There are 133 monitoring wells in the city where the 
study area is located, of which 73 monitoring wells are distributed in the study area and 
27 are confined aquifer III monitoring wells. The water level change values are monitored 
twice a month for each aquifer monitoring well and recorded in the database. The data 
from the monitoring wells selected in this paper were the water level monitoring data of 
the confined aquifer III monitoring wells from 2005 to 2014. 

2.2. Data Analysis and Modeling Process 
Figure 3 shows the construction process of the BP-STARMA model for the ground-

water-level simulation, which consists of four parts, including the analysis of the spatio-
temporal series of groundwater monitoring data, the establishment of the STARMA 
model, the establishment of the BP neural network model, and the establishment of the 
BP-STARMA model. 

Figure 2. Hydrogeological profile of the study area [55].



Water 2023, 15, 1085 5 of 19

The raw water level data for this experiment were taken from the database of ground-
water level monitoring values for the area under the jurisdiction of the Yancheng Water
Resources Bureau from 2005 to 2014. There are 133 monitoring wells in the city where the
study area is located, of which 73 monitoring wells are distributed in the study area and
27 are confined aquifer III monitoring wells. The water level change values are monitored
twice a month for each aquifer monitoring well and recorded in the database. The data
from the monitoring wells selected in this paper were the water level monitoring data of
the confined aquifer III monitoring wells from 2005 to 2014.

2.2. Data Analysis and Modeling Process

Figure 3 shows the construction process of the BP-STARMA model for the groundwater-
level simulation, which consists of four parts, including the analysis of the spatiotemporal
series of groundwater monitoring data, the establishment of the STARMA model, the
establishment of the BP neural network model, and the establishment of the BP-STARMA
model.
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2.2.1. Spatiotemporal Data Analysis

Spatiotemporal sequence modeling is the modeling of spatiotemporal data by fit-
ting properties to unobserved spatiotemporal locations. The modeling of spatiotemporal
series data must take into account possible spatiotemporal dependencies in order to bet-
ter represent spatiotemporal patterns and spatiotemporal relationships. Spatiotemporal
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autocorrelation is a measure of temporal and spatial correlation [56]. In this paper, the
experimental data were analyzed and examined using exploratory spatiotemporal data
analysis (ESTDA). ESTDA refers to the comprehensive application of the statistical method,
exploratory spatial analysis method, and time series analysis method to test spatiotemporal
data, which mainly include the following: the application of the calculation method to test
the normal distribution of data; the spatial and temporal stationarity of data being tested
by using spatial trend surface and time series graphs; the semi-variogram and Kriging
interpolation being used to test the spatial correlation and spatial heterogeneity of the data.

(1) Skewness coefficients, kurtosis coefficients, and non-parametric tests were used to
determine whether the data were normally distributed. Analysis was performed
using SPSS software(Version 21.0), and when the sample content n ≤ 2000, the results
were based on the Shapiro–Wilk (W-test); when the sample content n > 2000, the
results were based on the Kolmogorov–Smirnov (D-test). For unweighted or integer
weights, the Shapiro–Wilk statistic was calculated when the weighted sample size
was between 3 and 5000, while for single samples, the Kolmogorov–Smirnov test can
be used to test whether the variables are normally distributed.

(2) Time stationarity test [57]. This paper used the spatial trend analysis tool in ArcGIS
to analyze the groundwater dynamic monitoring data in the study area as a trend
surface to test the spatial smoothness; the test of temporal smoothness is mainly
achieved through time series analysis. Time series analysis means that the time series
is regarded as a random process that does not vary with time [58]. For a time series
zi(t), the expression for the mean is

uzi(t) =
∑N

i ∑T
t zi(t)

NT
(i = 1, . . . , N; t = 1, . . . , T) (1)

In Equation (1), the uzi(t) denotes the mean value of the spatiotemporal series;zi(t)
still denotes the spatial location i at the time t of observations; N denotes the number of
spatial cells; T denotes the number of data periods.

(3) Spatial variability analysis uses semi-variance functions to analyze spatial data. The
semi-variance function r(h), also known as the semi-variance function, is expressed
as half of the variable between zi at points i and i + h and zi+h with the expression

r(h) =
1

2N(h)∑
N(h)
i=1 (zi − zi+h)

2 (2)

In this paper, the kriging interpolation in ArcGIS was used to analyze the spatial
variability of the object data.

2.2.2. STARMA Modeling

A spatiotemporal series analysis model involves the analysis, modeling and prediction
of spatiotemporal series data, which can be viewed as a collection of spatially correlated
time series [59–62]. The Spatiotemporal Auto Regressive and Moving Average (STARMA)
model, which is essentially based on the Autoregressive and Moving Average (ARMA)
model, considers the effect that spatial proximity has on it by using a time delay operator
and a spatial delay operator to express how spatiotemporal variables are simultaneously
affected by both time and space [56,63–66]. The STARMA model is more suitable for mod-
eling geospatial and temporal sequence data as it fully takes into account the characteristics
of geospatial and temporal autocorrelation [67].

According to the literature [68], STARMA modeling has three iterative steps: model
identification, parameter estimation, and model testing.

(1) The identification of the model is based on the truncated or trailing nature of its space–
time autocorrelation function (STACF) and space–time partial autocorrelation function
(STPACF). In this paper, based on the autocorrelation and bias correlation coefficients
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on the spatiotemporal data, the model chosen was identified as the spatiotemporal
autocorrelation model STAR (2), with the specific expression

z(t) = ϕ10z(t− 1) + ϕ20(t− 2) + ϕ11W(1)z(t− 1) + ϕ21W(1)z(t− 2) + ε(t) (3)

(2) Estimation of the parameters in the model is carried out using the least-squares and
greatest likelihood methods. That is, in order to make the model output value as close
as possible to the actual monitoring value, the sum of squares of the error between
the model output value and the actual monitoring value are used to measure, and the
parameter value with the smallest sum of squares is the parameter value of the model.

(3) Model validation. The residual sequence of the model is tested to determine whether
it is a random error. If the residual of the model is random error—that is, the mean
and auto-covariance of the model residual are 0, and the variance is σ2—then the
model is reasonable; otherwise, the selected model is unreasonable, which means that
there is a certain pattern in the residual sequence—that is, there is a certain correlation
or variability in space–time. If the selected model is unreasonable, it means that there
is still some important information in the original space–time sequence that has not
been extracted, and then the model and parameter estimation need to be re-selected.

2.2.3. BP Neural Network Model Building

In this study, the MATLAB neural network toolbox was used to build the BP neural
network topology. Spatiotemporal trends ui(t) were extracted from the constructed BP
neural network topology with the model functions of

ui(t) = f2(∑n
k=1βk f1(i, t) + β0) (4)

In Equation (3), i denotes the spatial location; n denotes the number of neurons in the
hidden layer; ui(t) denotes the trend value of the BP neural network at position i and time
t; βk denotes the connection matrix weights of the hidden layer; β0 denotes the threshold
value; f1 denotes the transfer function of the implicit layer; f2 denotes the transfer function
of the output layer.

In MATLAB, the premnmx function was used to normalize the input and output data
of the network to between [−1, 1]; the Sigmoid transformation function was used to enable
a BP network with an implicit layer to approximate any rational function with arbitrary
accuracy; the Log-sigmoid function was used as the implicit layer transfer function and
the purelin function as the output layer transfer function. Following this, the BP neural
network was trained to fit the groundwater nonlinear variation trend values as a way to
compare the effectiveness of the BP neural network fitting.

2.2.4. BP-STARMA Model Building

To address the spatial and temporal variability of the pore-bearing groundwater level
monitoring data in nature, the BP neural network was first used to extract the spatial and
temporal trend values of groundwater with its strong nonlinear fitting ability, and the
sample residuals with the spatial and temporal trend values removed were fitted with the
STARMA model.

As a typical spatiotemporal series, the dynamic monitoring sequence of the pore
groundwater level can be described as:

zi(t) = µi(t) + ei(t)
µi(t) = f (i, t)

(5)

In Equation (5), i denotes the spatial location of the spatiotemporal variables; t denotes
the predicted time of the spatiotemporal variable;zi(t) denotes the spatiotemporal variable
in time t and spatial location i of the water level monitoring value; µi(t) denotes the global
deterministic spatiotemporal trend as a nonlinear variation function of f (i, t); ei(t) denotes
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local stochastic spatiotemporal variability and is a spatiotemporal correlated error with a
mean of zero.

In the BP-STARMA model, the BP neural network is first used to extract the trend of
nonlinear dynamic changes in the spatiotemporal training dataset µi(t) and then carry out
the spatial correlation test for ei(t) after removing the trend; if the ei(t) spatial correlation
condition is satisfied, then STARMA is applied to model the sample residuals after removing
the spatiotemporal trend values; otherwise, the convergence accuracy of the neural network
is appropriately reduced, and then the adjusted BP neural network is re-applied here to
extract the trend values in the spatiotemporal series. In this paper, the BP network was
used to extract the global deterministic spatiotemporal trend values in the spatiotemporal
groundwater level series, and the STARMA model was applied to explain the residual
series after the spatiotemporal trend values were removed; for the convenience of the latter,
the above two models are jointly referred to as the BP-STARMA model.

3. Results and Discussion
3.1. Data Processing and Analysis
3.1.1. Monitoring Data Processing

The depth of the water level of confined aquifer III in the study area is higher in the
east and lower in the west. The confined aquifer III in the eastern coastal area is buried
at a depth of about 8.0 m. With the gradual extension of the aquifer to the west, the
water level of confined aquifer III is also decreasing gradually. The buried depth of the
groundwater level in the western region is mostly deeper than 20.0 m, and the buried
depth of the groundwater level reaches about 32.0 m in Fuyang County and Yancheng
urban area, which indicates that the groundwater in the study area has strong spatial
heterogeneity. From the scope of the study area and the scope of a single monitoring well,
the water level monitoring data of the confined aquifer III monitoring well from 2005 to
2014 in the study area were drawn, respectively, as the ‘water level–time’ variation curve,
as shown in Figure 4, to analyze the dynamic variation characteristics of the groundwater
level. In Figure 4, the average water level of each quarter in the horizontal coordinate is
accumulated quarter by quarter since the first quarter of 2005. Figure 4a represents the
change in the average lower water level of the whole study area over time, and Figure 4b
represents the change in the water level of a single monitoring well over time. According to
the analysis in Figure 4a, it can be seen that the groundwater level in the whole study area
presents a downward trend. The blue in the Figure 4a represents the trend line of water
level change; that is, there is a definite downward trend of water level in the entire study
area. It can be seen from Figure 4b that the water level change curves of different water
level monitoring wells show a certain randomness in different periods; that is, the water
level change within the range of a single monitoring well shows a certain randomness. A
comprehensive analysis shows that the characteristics of water level variation in the study
area shows a certain decline trend in the global area and a certain random variation in the
local area.

Groundwater level monitoring data of confined aquifer III in the study area were se-
lected from the original database, and their spatial distribution is shown in Figure 1c. Most
monitoring wells are distributed in the western part of the study area, while monitoring
wells in the eastern coastal zone are less distributed. For individual monitoring wells with
missing water level values in certain years, the ArcGIS spatial difference module or data
statistics were used to obtain the results.
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3.1.2. Data Analysis

Normal distribution test: This study used skewness and kurtosis coefficients and
non-parametric methods to test the spatiotemporal data. The data from all monitoring
wells were examined, and it was found that the monitoring wells numbered 51073006#,
51073509#, 51073512#, and 51074507# have a skewness or kurtosis greater than 1, as shown
in Table 1, and their skewness u is greater than U0.05 = 1.96, which is tentatively considered
not to conform to a normal distribution.

Table 1. Results of skewness and kurtosis coefficient tests.

Monitoring Well Number Bias u Peak State u

51073006# 3.075023 0.559089
51073509# 3.136233 0.852506
51073512# 2.765471 1.891852
51074507# 2.712559 0.273745

These four groups of data were re-run using SPSS for non-parametric tests, and the
results are shown in Table 2. It was found that their P-test values (Sig2-tailed) are all less
than 0.05; therefore, they do not conform to a normal distribution. In order not to affect
the modeling accuracy, these 4 groups of monitoring data were removed from the dataset,
and the remaining 23 monitoring wells’ monitoring data were selected as the experimental
data.

Table 2. Results of the non-parametric test.

51073006# 51073509# 51073512# 51074507#

N 40 40 40 40
Normal Mean −30.8653 −19.5038 −7.69125 −36.1275

Parameters a,b Std. Deviation 2.783878 2.366837 0.55931 3.325536

Most Extreme
Differences

Absolute 0.320592 0.195934 0.159134 0.166015
Positive 0.320592 0.195934 0.159134 0.166015
Negative −0.17658 −0.10716 −0.08156 −0.15888

Test Statistic 0.320592 0.195934 0.159134 0.166015
Asymp. Sig. (2-tailed) 0.000 c 0.000 c 0.012 c 0.007 c

Notes: a. Test distribution is normal. b. Calculated from data. c. Lilliefors significance correction.

Test of time smoothness: The test of time smoothness is mainly achieved through
time series analysis. The average groundwater level of confined aquifer III in the study
area from 2005 to 2014 was calculated as shown in Table 3. In turn, a trend analysis of the
time series water level monitoring data in Table 3 was made, as shown in Figure 4a, from
which it can be seen that the average water level in the study area for 40 periods shows a
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decreasing trend. From Figure 5, it can be seen that the series only converges to zero after
the delay interval of period 9 for the time autocorrelation function value (the area between
the two grey bars in the graph), indicating that there is a degree of temporal correlation in
the series and that the series is non-stationary in time.

Table 3. Average water level data for the study area.

Number of
Issues

Water Level
(m)

Number of
Issues

Water Level
(m)

Number of
Issues

Water Level
(m)

Number of
Issues

Water Level
(m)

1 −22.322 11 −23.344 21 −25.103 31 −25.977
2 −22.161 12 −23.540 22 −25.182 32 −26.212
3 −22.323 13 −24.108 23 −25.285 33 −26.154
4 −22.492 14 −24.138 24 −25.327 34 −25.336
5 −22.468 15 −24.268 25 −25.345 35 −26.486
6 −22.726 16 −24.574 26 −25.461 36 −26.536
7 −22.556 17 −24.646 27 −25.751 37 −26.553
8 −22.879 18 −24.744 28 −25.810 38 −26.621
9 −22.833 19 −24.971 29 −25.698 39 −26.703
10 −22.338 20 −25.090 30 −25.810 40 −26.844
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Spatial variability analysis: The Kriging spatial interpolation method was used to
obtain the elevation maps of the groundwater levels in the study area for the 10th, 20th,
and 30th phases of the sample data and the 35th and 40th phases of the verification data.
In the Figure 6b(elevation maps of the groundwater levels for 10th, 20th and 30th ), it can
be seen that: first, there is a clear trend of decreasing water levels with the increase in
years; secondly, there is a trend of decreasing minimum water level values year by year,
while the maximum water level also decreases year by year; thirdly, the area of water levels
in each class in the study area is also gradually increasing; fourthly, the water levels in
the western part of the study area are clearly lower than those in the eastern part. The
above combination indicates that the mean water levels in the study area have spatially
heterogeneous characteristics for each period.

3.2. BP-STARMA Model Building
3.2.1. BP Neural Network to Extract Nonlinear Spatiotemporal Trends

After the spatiotemporal smoothness test described above, it was concluded that
the spatiotemporal monitoring series of pore groundwater in the study area was a spa-
tiotemporal non-smooth series and showed a decreasing trend throughout the study area,
showing some randomness in the range of individual monitoring wells. Therefore, the BP
neural network was used to extract the definite spatiotemporal trend values present in the
groundwater of the study area.
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In order to analyze the trend of groundwater level with seasonality, each quarterly
data sample of water level monitoring was taken as one period and the data were the
average of water level in each quarter; therefore, there were 40 periods (quarters) of data for
each monitoring well in the study area for the 10 years from 2005 to 2014. In the BP neural
network, the learning training data accounted for 70–80% of the total sample data and the
validation data accounted for 20–30% of the total sample data, so the first 32 periods of
all monitoring data of groundwater level in the study area were used as network learning
training data and the last 8 periods were used as network validation data.

The trained BP neural network was used to fit the nonlinear trend value of the confined
aquifer III in the study area, and the average groundwater level fitting value of the 10th, 20th,
and 30th stages was obtained as shown in Figure 6. In the figure, green represents areas where
water levels are deeply buried, while white represents areas where water levels are shallower.
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Figure 6. (a) Spatiotemporal trend map extracted by BP neural network; (b) Average groundwater
level of the 10th, 20th, and 30th periods.

3.2.2. STARMA Modeling

For the underground hydrogeological conditions in the study area, the spatial au-
tocorrelation of the sample residuals used the semi-variance function (Equation (2)) to
determine whether there was a spatial correlation distance between the sample residuals
after removing the temporal trend values. The spatial variation in the study area was
isotropic; that is, from west to east, and the semi-variance function analysis was carried
out by selecting the appropriate number of periods of groundwater level values from the
sample residuals to obtain the analysis results shown in Table 4. From the table, it can
be seen that there is a spatial correlation distance in the residual series, which indicates
that the sample residuals after removing the trend values are spatially correlated. In other
words, the STARMA was used to model the residual series. The analysis results show that
the residual series has relatively large bias abutment values and relatively small block gold
values, indicating that the residual series has a strong spatial correlation.
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Table 4. Residual semi-variance analysis results.

Number of
Issues

Variable
Range (km)

Offset
Abutment
Value (C)

Nugget Value
(C0)

Abutment
Values (C0 + C) C0/Sill (%)

4 21.7 18.42 4.99 23.41 21.32
8 20.7 16.24 5.21 21.45 24.29
12 22.8 15.32 7.73 23.05 33.54
16 21.4 16.42 10.83 27.25 39.74
20 21.8 14.77 10.88 25.65 42.42
24 21.3 18.63 9.94 28.57 34.79
28 21.5 13.19 12.71 25.9 49.07

The least-squares method was used to estimate the parameters of Formula 3 above,
and the parameters and test values were obtained as shown in Table 5:

Table 5. STARMA model parameter estimation results.

Coefficient Std. t-Statistic Prob

ϕ10 0.54276 0.06895 4.5148 0.0132
ϕ20 0.15267 0.07429 6.8419 0.0051
ϕ11 −0.38156 0.06472 6.7513 0.0024
ϕ21 0.24158 0.05719 3.4856 0.0084

The prob in the table represents the significance levels of the t-statistic and are all less
than 0.05, indicating that the coefficients are correlated with the dependent variable.

After the STARMA modeling of the residuals is completed, the residuals need to
be tested. If the mean of the spatiotemporal autocorrelation coefficient values of the
residuals is close to 0 and the variance is close to [N(T − S)]−1 (N = 23 indicates the number
of spatial cells, T = 32 indicates the number of groundwater level monitoring periods,
and s = 2 indicates the time delay), this indicates that the spatiotemporal autocorrelation
function values are close to random errors. The values of the spatiotemporal autocorrelation
coefficients calculated for the residuals of the model are shown in the Table 6 below.

Table 6. Spatial and temporal autocorrelation coefficients of sample residuals.

Space Delay (h)
Time Delay (k) 0 1 Space Delay (h)

Time Delay (k) 0 1

1 0.038 −0.073 9 0.064 −0.042
2 −0.012 −0.028 10 0.013 0.026
3 0.048 −0.035 11 −0.016 −0.092
4 −0.04 −0.023 12 0.068 −0.0011
5 −0.03 0.017 13 −0.0093 0.0017
6 −0.027 −0.021 14 −0.037 0.061
7 −0.034 0.019 15 0.0061 −0.0347
8 0.017 −0.068 16 −0.015 0.0015

As can be seen from the table, the spatially delayed autocorrelation coefficients of
order 0 and order 1 are around 0, with mean values of 0.002 and −0.015, respectively, and
variance values of 0.00112 and 0.00138, respectively, which are less than 1/[2332 − 2] =
0.00145, indicating that the model residuals are not significantly auto-correlated in time and
space and the residual series are close to random errors, which explains how the STARMA
model can better explain the spatiotemporal data of groundwater dynamic monitoring
after removing the spatiotemporal trend values.

3.3. Comparison of Model Prediction Accuracy

According to Equation (5), the fitting result µ(t) of the trend value extracted based
on the BP neural network was added to the fitting value e(t) of the STARMA model to
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obtain the average fitting results of groundwater in the 10th, 20th, and 30th periods. The
non-stationary spatiotemporal series was transformed into stationary series by Difference
Methods (DMs), and the groundwater level was modeled by the STARMA model and BP
neural network model. By comparing the three fitting results with the actual monitoring
values, it can be seen that the BP-STARMA model can better fit the spatiotemporal evolution
of groundwater. In order to further test the BP-STARMA, STARMA, and BP neural network
models, the Root-Mean-Squared Error (RMSE) was used as an evaluation index to evaluate
the fitting of the three models in different periods, and the evaluation results are shown in
Table 7. The table shows that the standard deviation of fitting of BP-STARMA is smaller
than those of the STARMA model and BP neural network model. Compared with the
STARMA model and BP neural network model, the fitting accuracy of BP-STARMA is
improved by 3.1% and 25.8%, and 19.5% and 7.5%, respectively.

Table 7. RMSE values of three different models in different monitoring periods.

Periods

Fitted Values

Periods

Predicted Values

RMSE RMSE

BP-STARMA STARMA BP BP-STARMA STARMA BP

10 0.662993 0.684267 0.630171 34 1.104 1.25 1.34
20 0.397683 0.536424 0.493816 37 1.38 1.1642 1.91
30 0.369923 0.361022 0.399997 40 2.20 2.718 2.69

From the analysis of the BP-STARMA fitting effect, the model better fit the spatial and
temporal variation pattern of groundwater in confined aquifer III in the study area and the
fitting result is better than the BP model and the STARMA model. However, the prediction
results need to be verified to prove the good performance of the BP-STARMA model. Therefore,
the above three models were used to validate the dynamic groundwater level monitoring
data of the 33rd to 40th periods in the study area. Figure 7 shows the prediction results of the
BP-STARMA model, STARMA model, and BP neural network model for the 34th, 37th, and
40th periods. At the same time, RMSE was also used to evaluate the fitting values of the three
models at different periods, and the evaluation results are shown in the table.
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The 34th BP-STARMA model, the STARMA model, and the BP neural network can all
predict groundwater level values better, but as time increases, the STARMA model shows
deviations between the predicted and actual monitored values, and the BP neural network
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model is less well fitted in local areas. The BP-STARMA model is better than the STARMA
model and the BP network model in terms of prediction.

3.4. Evaluation and Comparison of Comprehensive Model Performance

In order to comprehensively compare the modeling effects of BP-STARMA, STARMA,
and BP neural network models, we used four evaluation indexes to evaluate and compare
the three models. They were the residual standard error (RSE), normalized mean squared
error (NMSE), root-mean-squared error (RMSE), and mean absolute error (MAE). The
values of the three models after evaluation are shown in Table 8.

Table 8. Comprehensive evaluation results of different models.

Indicators Models 51072002# 51072010# 51073003# 51073010# 51074004# 51074515#

RSE
BP-STARMA 0.150101 0.283151 0.016342 0.220120 0.053888 0.303071

STARMA 0.604417 0.904445 0.114733 0.049426 0.117395 0.53618
BP 0.828549 0.427072 0.022214 0.449457 0.399316 0.394206

NMSE
BP-STARMA 0.000254 0.000119 0.000381 0.000630 0.000205 0.000128

STARMA 0.001012 0.000278 0.001797 0.000105 0.000448 0.000226
BP 0.00199 0.000247 0.000525 0.001161 0.000851 0.000239

RMSE
BP-STARMA 0.385879 0.347153 0.425131 0.704296 0.393573 0.370956

STARMA 0.774334 0.620444 1.126466 0.333735 0.580906 0.493408
BP 1.0878 0.587649 0.500338 0.957361 0.798729 0.507498

MAE
BP-STARMA 0.315065 0.263823 0.339018 0.58108 0.27274 0.291155

STARMA 0.619108 0.493683 0.767228 0.244518 0.44759 0.408922
BP 0.6692 0.449455 0.388958 0.627958 0.56586 0.377935

It can be seen from Table 9 that the evaluation indexes of BP-STARMA of the above six
monitoring wells are lower than those of STARMA and BP, apart from the BP-STARMA
evaluation indexes of the 51073010# monitoring well, which are higher than those of the
STARMA model, which shows that the prediction effect of groundwater level based on
the BP-STARMA model is better than that of the STARMA model and BP neural network
model. That is, it has a good modeling effect for spatiotemporal data of continuous time
discrete in space.

Table 9. RMSE values of three different models in different monitoring periods.

Monitoring
Well Number

Fitted Values Predicted Values

RMSE RMSE

BP-
STARMA STARMA BP BP-

STARMA STARMA BP

51072002# 0.3955 0.6583 0.5089 0.3448 1.1245 2.2092
51072010# 0.3814 0.6187 0.4180 0.1440 0.3957 1.0137
51073003# 0.3177 0.4555 0.3779 0.7070 2.3483 0.8249
51073010# 0.5780 0.2346 0.4510 1.0695 0.5803 1.9414
51074004# 0.2968 0.4336 0.4152 0.6497 0.9670 1.5812
51074515# 0.3648 0.4221 0.3817 0.3745 0.7104 0.8396

In order to more intuitively display the difference between the actual monitored values
and the values of the three simulation models, we used a graph to describe the water level
change curves of the above six monitoring wells, as shown in Figure 8.
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ing wells.

In order to compare the fitting and prediction effects of the models separately, the
fitting accuracy and prediction accuracy of BP-STARMA, STARMA, and BP neural network
models were calculated separately using the RMSE evaluation index.Except for monitoring
well 51073010#, the fitted root-mean-square error of the BP-STARMA model is reduced
by 39.92%, 38.35%, 30.25%, 31.55%, and 13.57% compared to the STARMA model, and by
22.2%, 8.7%, 15.9%, 28.5%, and 4.42%, respectively, compared to the BP neural network
model, indicating that the BP neural network has a better fit than STARMA. As for the
prediction accuracy, the prediction accuracy of BP-STARMA is improved by 69.34%, 63.61%,
32.81%, and 47.28%, respectively, compared to the STARMA model, and 84.4%, 85.8%,
14.3%, 44.9%, 58.9%, and 55.4% compared to the BP neural network, which indicates that
the STARMA model has a better prediction accuracy than the BP neural network model. It
can be seen that the spatial and temporal fitting and prediction of groundwater level in the
study area based on the BP-STARMA model are better than those of the STARMA model
and the BP neural network model.

4. Conclusions

In this paper, three models, BP, STARMA, and BP-STARMA, were used to simulate and
predict groundwater level changes for the spatiotemporal variation process of groundwater
level. In the modeling using STARMA, the spatial variables tended to be isotropic in order
to construct the spatial weight matrix, and the areas where the aquifers are continuous were
selected; thus, the constructed models are suitable for areas with spatial continuity, but for
phenomena where sharp extinction exists, a suitable model is not yet known. Based on the
spatiotemporal variation characteristics of the groundwater level monitoring sequence, i.e.,
a global deterministic nonlinear variation trend value and a local stochastic spatial variation
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value, we constructed a BP neural network containing three input parameters to extract
the global deterministic spatiotemporal trend value; a STARMA model was constructed
for the residual values of the samples after removing the trend value, and finally, the BP
model and the STARMA model were fitted to obtain the results. This showed that the
BP-STARMA model was very effective in predicting the groundwater level in the study
area. The results show that the BP-STARMA model is more applicable to the spatiotemporal
series of continuous groundwater levels.
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