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Abstract: Forecasting water deficit is challenging because it is modulated by uncertain climate,
different environmental and anthropic factors, especially in arid and semi-arid northwestern China.
The monthly water deficit index D at 44 sites in northwestern China over 1961−2020 were calculated.
The key large-scale circulation indices related to D were screened using Pearson’s correlation (r).
Subsequently, we predicted monthly D with the multi-variable linear regression (MLR) and random
forest (RF) models at certain lagged times after being strictly calibrated and validated. The results
showed the following: (1) The r between the monthly D and the screened key circulation indices
varied from 0.71 to 0.85 and the lagged time ranged from 1 to 12 months. (2) The calibrated and
validated performance of the established MLR and RF models were all good at the 44 sites. Overall,
the RF model outperformed the MLR model with a higher coefficient of determination (R2 > 0.8 at
38 sites) and mean absolute percentage error (MAPE < 50% at 30 sites). (3) The Pacific Polar Vortex
Intensity (PPVI) had the greatest impact on D in northwestern China, followed by SSRP, WPWPA,
NANRP, and PPVA. (4) The forecasted monthly D values based on RF models indicated that the
water deficit in northwestern China would be most severe (−239.7 to −62.3 mm) in August 2022.
In conclusion, using multiple large-scale climate signals to drive a machine learning model is a
promising method for predicting water deficit conditions in northwestern China.

Keywords: monthly water deficit; circulation indices; random forest; multi-variable linear regression;
northwestern China

1. Introduction

The sixth comprehensive report of the Intergovernmental Panel on Climate Change
pointed out that the global climate would further warm up in the future. Global warming
triggers anomalous climate and circulation [1], and changes the relative values of precip-
itation and evapotranspiration, which denotes water deficit and surplus conditions [2].
Influenced by climate change, the anomalous water deficit at the land–atmosphere inter-
face is directly connected with lower precipitation and higher evapotranspiration than
normal [3], which often leads to extreme events such as drought, flooding, and rainstorm.
Water deficit has impacted the severity, frequency, and magnitude of the drought hazards
and imposed severe threats to ecosystems, human societies, and civilization [4]. The occur-
rence and formation of drought disasters not only involve complex dynamic processes with
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multiscale water-energy cycle mechanisms, but also meteorology, agriculture, hydrology,
ecology, socioeconomics, and other fields. Due to the great perniciousness, the research
related to prediction of water deficit (or drought hazards) is very important [5].

Water deficit is the result of the insufficient precipitation and subsequent soil water
and plant water loss, which are mainly reflected by soil evaporation and plant transpiration
(i.e., evapotranspiration) [6]. There are different types of evapotranspiration including
potential evapotranspiration, reference crop evapotranspiration (ET0), pan evaporation,
and actual evapotranspiration. The difference of precipitation and ET0 (denoted as D
here and after) characterizes water deficit very well and further was used for computing
drought indices, e.g., standardized precipitation and evapotranspiration index (SPEI) [7].
Water deficit is a natural feature of climate and occurs in almost all climate regions, and
it varies in frequency, severity, and duration. For example, Mihăilă et al. [8] investigated
the temporal and spatial trends of D between the Carpathian Mountains and the Dniester
River over 1961−2012. They pointed out that the climate of the region underwent an
evolution process to a more arid climate. Das et al. [9] analyzed the drought patterns in
India using D over 1901−2008. They found that in eastern India, the increase in drought
events was attributed to decrease in rainfall, while in the arid areas of the west, the decrease
in drought events was mainly due to increase in rainfall. In addition, some researchers
analyzed the spatiotemporal changes of drought on the basis of drought index calculated
by D. Somorowska et al. [10] analyzed the changes of drought situation in Poland over
1956−2015 using SPEI at 3, 6, and 12 months and found that the severity of droughts from
southwestern to central Poland increased. Additionally, drought events of different severity
occurred in winter and summer. These studies demonstrated that D can be well used to
monitor and evaluate the long-term dry and wet conditions.

Climate change and human activities are major drivers of water deficit. Human
activity drivers refer to irrigation, human water use, the modification of land use/land
cover, urbanization and industrialization, etc., which have significant impacts on water
resources [11]. Excessive human activities will lead to land degradation and severe eco-
logical and environmental problems, and drought on degraded land and regions will
show a positive feedback effect, making more severe drought conditions. For example,
Jiang et al. [12] investigated the impact of climate change and human activities on hy-
drological drought using the fixed runoff threshold level and standardized runoff index
in the Laohahe catchment in North China. They found that human activities were the
dominant factor affecting hydrological drought with an upward trend. Climate change
drivers refer to circulation, precipitation, temperature, water vapor transport, pressure
belts and wind belts, etc. Of these, circulations have played vital roles in affecting water
deficit conditions. The potential relationship of large-scale climate signals affecting remote
areas through circulation is called teleconnection. Teleconnection is an important part of
climate drive, and its essence is low-frequency, repetitive, continuous, large-scale pressure
and circulation abnormal patterns [13]. Circulation indices, along with drought indices,
were used for teleconnection analysis between water deficit (or drought) and circulations.
For example, Özger et al. [14] applied wavelet transform and kriging to investigate the spa-
tial structure of the teleconnection between El Niño Southern Oscillation (ENSO)/Pacific
Decade Oscillation (PDO) and the palmer drought severity index in the 20th century. It
was worth noting that arid regions were more closely related to climate anomalies than
tropical humid regions. Talaee et al. [15] linked ENSO with the standardized stream-
flow index in western Iran over 1969−2009, noting that extreme and severe hydrological
drought events in western Iran’s hydrological years were strongly correlated with ENSO.
Manzano et al. [16] assessed the teleconnection between SPEI and large-scale circulation
factors in the Iberian Peninsula. They concluded that Artic Oscillation (AO) and North
Atlantic Oscillation (NAO) patterns had significant impacts on droughts in winter over
large areas of the Iberian Peninsula. Previous research found that there were potential
connections between water deficit and circulation at regional or global scales.
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Many statistical models have been used to estimate hydro-meteorological variables
with different circulation indices. For example, Esha and Imteaz [17] evaluated the potential
of several circulation factors to predict long-term runoff using the MLR technique in New
South Wales. They found that the Pearson’s correlation coefficient (r) of established MLR
models at all 12 sites showed good results (r = 0.51–0.65). Acharya et al. [18] used the
MLR model to predict the standardized precipitation index (SPI) in India with nine general
circulation model products. They showed that the ability of the atmosphere-ocean coupled
models was better than the atmospheric models. The multi-variable linear regression (MLR)
model has been widely applied to link drought index with multiple circulation indices.
The MLR model is simple and straightforward in application and interpretation, but it
lacks the ability to quantify the nonlinear relationship between response and predictor
variables. By contrast, machine learning models cannot only consider the nonlinearity
between variables, but also learn information directly from the data without relying on
predetermined equations. Compared with traditional linear regression models, machine
learning has a better performance in predicting drought, crop yield, and soil carbon.
Recently, Feng et al. [13] used random forest (RF) to predict rainfall events with large-scale
circulation indicators in Australia. They found the different prediction rates of the RF
model for rainfall in spring (64.9%), summer (71.5%), autumn (65.8%), and winter (63.9%).
Zhu et al. [19] established a wheat drought loss system based on the RF and multi-variable
stepwise regression methods. They found that the RF model (R2 = 0.72) had higher accuracy
under than the regression model different irrigation thresholds. Li et al. [20] estimated
wheat yields using MLR and RF techniques in 129 major wheat-producing counties in the
North China Plain. They found higher accuracy with RF (RMSE = 1175 kg/ha) than with
RF (RMSE = 365 kg/ha).

China has vast territory and complex terrain, and its climates in different regions vary
greatly [21]. Large-scale climate circulation and ocean circulation have significant impacts
on temperature and precipitation in China. Previous studies investigated the climate drivers
of water deficit in China and obtained useful results. For example, Ummenhofer et al. [22]
applied the Monsoon Asia Drought Atlas to assess the spatial drought patterns during
ENSO and Indian Ocean Dipole (IOD) events over 1877−2005 in eastern China. They found
that the ENSO and the positive value of the IOD were related to the severe drought. The
teleconnection between circulation index and D was different due to different terrains and
geographic locations. Xiao et al. [23] incorporated ENSO, NAO, IOD, and PDO into the
Markov chain model to study the drought behavior in the Pearl River Basin of China. They
concluded that the average duration of extreme drought during the negative phase of IOD
tended to be longer.

However, most of the former research applied few circulation indices, which were
subjectively selected without any rigorous procedure. This may have caused some inac-
curate judgements of the key circulation drivers of water deficit prediction. In addition,
with more and more intense global warming, the water resources shortage is facing more
challenges in the arid and semi-arid northwestern China. There is still a lack of a good
prediction methods for the water deficit in northwestern China.

To bridge this gap, the key circulation indicators of water deficit in northwestern
China would be determined, and the real-time dynamic predicting models for water deficit
would be constructed for northwestern China in this research. The specific objectives
are (i) to analyze the spatiotemporal variations of the monthly D in northwestern China;
(ii) to stepwise and rigorously screen out the key circulation indices that played more
important roles for denoting site-specific D in northwestern China; (iii) to establish the
quantitative relationships between D and the key circulation indices site-specifically in
northwestern China using MLR and RF models; and (iv) to forecast the D variations in the
coming months with a better model. This research may provide practical methods for the
prediction of water deficit and supply valuable information to potential stakeholders and
decision makers for disaster prevention.
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2. Data and Methodology
2.1. Data Collection
2.1.1. Study Area and Weather Data

The northwestern China is located in inland of the Eurasian continent with an area
of approximately 1.91 × 106 km2. This is a transition zone where the west wind belt, the
plateau monsoon climate and the East Asian monsoon climate interact. It is an arid and
semi-arid region with a typical arid continental climate. The precipitation and temperature
in the whole year and winter had a rising trend [24]. Due to the arid climate, the daily and
annual temperature ranges are both very large.

The observed daily weather data from 52 national meteorological sites covering
1961−2020 were collected from the China Meteorological Data Service Centre (http://
data.cma.cn (accessed on 22 July 2021)). To ensure the consistency and completeness of
meteorological data, data with a missing ratio > 1% were deleted. Accordingly, a subset
containing 44 sites was used (Figure 1). Missing data were filled using the average data
from adjacent 10 sites of the same period [25]. The climate variables include daily minimum
and maximum air temperatures, relative humidity, sunshine duration, and wind speed.
The data quality and reliability were cross-examined using nonparametric tests including
the Kendall autocorrelation test and Mann–Whitney homogeneity tests [26].

Water 2023, 15, 1075 4 of 24 
 

 

prediction of water deficit and supply valuable information to potential stakeholders and 
decision makers for disaster prevention. 

2. Data and Methodology 
2.1. Data Collection 
2.1.1. Study Area and Weather Data 

The northwestern China is located in inland of the Eurasian continent with an area 
of approximately 1.91 × 106 km2. This is a transition zone where the west wind belt, the 
plateau monsoon climate and the East Asian monsoon climate interact. It is an arid and 
semi-arid region with a typical arid continental climate. The precipitation and tempera-
ture in the whole year and winter had a rising trend [24]. Due to the arid climate, the daily 
and annual temperature ranges are both very large. 

The observed daily weather data from 52 national meteorological sites covering 
1961−2020 were collected from the China Meteorological Data Service Centre 
(http://data.cma.cn (accessed on 22 July 2021)). To ensure the consistency and complete-
ness of meteorological data, data with a missing ratio > 1% were deleted. Accordingly, a 
subset containing 44 sites was used (Figure 1). Missing data were filled using the average 
data from adjacent 10 sites of the same period [25]. The climate variables include daily 
minimum and maximum air temperatures, relative humidity, sunshine duration, and 
wind speed. The data quality and reliability were cross-examined using nonparametric 
tests including the Kendall autocorrelation test and Mann–Whitney homogeneity tests 
[26].  

 
Figure 1. Spatial distribution of weather sites in northwestern China. We used a sample site (no. 
52118) located in the central of study area to show in detail the logical process of screening the key 
circulation indices. DEM is the digital elevation model. 

2.1.2. The Circulation Indices Data 
The 130 monthly circulation indices over 1961−2020 were collected from the National 

Climate Center of China Meteorological Administration (http://cmdp.ncc-
cma.net/cn/download.htm (accessed on 22 July 2021)). There are three types of circulation 
indices including atmosphere, sea-temperature, and other types. To ensure the data con-
tinuity and quality, the circulation index with a missing rate of one month was linearly 
interpolated using the average value of circulation index in the adjacent 2 months [21], 
and the circulation index that missed two consecutive months was interpolated using the 

Figure 1. Spatial distribution of weather sites in northwestern China. We used a sample site (no.
52118) located in the central of study area to show in detail the logical process of screening the key
circulation indices. DEM is the digital elevation model.

2.1.2. The Circulation Indices Data

The 130 monthly circulation indices over 1961−2020 were collected from the National
Climate Center of China Meteorological Administration (http://cmdp.ncc-cma.net/cn/
download.htm (accessed on 22 July 2021)). There are three types of circulation indices
including atmosphere, sea-temperature, and other types. To ensure the data continuity and
quality, the circulation index with a missing rate of one month was linearly interpolated
using the average value of circulation index in the adjacent 2 months [21], and the circulation
index that missed two consecutive months was interpolated using the average value of the
current month over the rest of the years of the study period. Regarding the instance where
the circulation index that missed three consecutive months or longer was seriously missing,
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and we excluded it. Finally, 100 circulation indices were retained. Detailed information
(namely, the full name, the simplified name, and the classification) of the 100 circulation
indices are presented in Table S1.

2.2. Methodology
2.2.1. Variation of Water Deficit

Water deficit was calculated on the basis of the difference between precipitation (Pr)
and reference crop evapotranspiration (ET0). The D was used to describe the characteristics
of water deficit, and the time series of monthly D over 1961−2020 were computed for
the selected 44 sites. For computing D, ET0 should be calculated first on the basis of the
principle of energy balance and aerodynamics. The Food and Agriculture Organization
(FAO) 56 Penman–Monteith equation was applied here for computing ET0 because this
equation was developed with theoretical basis and has been proved to have high accuracy
around the world [27]. The equation is written as follows:

ET0 =
0.408∆(Rn − G) + γ 900

T+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where Rn is the net radiation (MJ m−2 day−1); G is the downward ground heat flux
(MJ m−2 day−1); ∆ is the slope of saturated vapor pressure (kPa ◦C−1); γ is the psychromet-
ric constant (kPa ◦C−1); T is the mean air temperature at 2 m (◦C); u2 is the winds at 2 m
(m s−1); es and ea are saturated and actual vapor pressures, respectively (kPa). Monthly G
is estimated by

G = 0.14(Tk − Tk−1) (2)

where Tk and Tk−1 are the average are temperature in the kth and k−1th months, respectively.
Rn is calculated by

Rn = Rns − Rnl (3)

Rns = 0.77Rs (4)

Rs =
[
0.25 + 0.75

n
N

]
Ra (5)

Rnl = 4.903× 10−9

(
T4

max − T4
min

4

)
(0.34− 0.14

√
ea)

(
1.35

Rs

Rso

)
(6)

where Rns, Rnl, Rs, Ra, and Rso are net shortwave, net longwave, solar, extraterrestrial, and
clear sky radiations (MJ m−2 month−1), respectively; n and N are actual and maximum pos-
sible sunshine durations, respectively (h); and Tmax and Tmin are maximum and minimum
temperatures, respectively.

The parameters es and ea are calculated by

es =
e0(Tmax) + e0(Tmin)

n
(7)

e0(T) = 0.6108 exp
(

17.27T
T + 237.3

)
(8)

ea = e0(Tmin)×
RHmax

100
(9)

where RHmax is maximum relative humidity (%).
Then, the difference between Pr and ET0 at the ith month, namely, D is obtained by

Di = Pri − ET0,i (10)

where Di represents water deficit at the ith month.
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The temporal variation in data is determined using OriginPro 2023 software, and
the maps of the study area and the distribution of sites were mapped using ArcGIS
10.2 software.

2.2.2. Selection of the Key Circulation Indices
Preliminary Selection of the Independent Circulation Indices

Before conducting the quantitative statistical analysis between circulation indices
and D series, it was necessary to conduct multi-collinearity analysis [28] to remove some
mutually dependent indices during the regression process. To detect whether there is
any collinearity among the 100 circulation indices, the variance inflation factor (VIF) was
computed:

VIFj =
1

1− R2
j

(11)

where VIFj is variance inflation factor of the jth circulation index, and Rj
2 is the coefficient

of determination between the jth circulation index and the others.
The threshold of VIFj ≥ 10 was used to infer statistical evidence of significant collinear-

ity [29]. If the jth variable was accounted by at least 90% variance (R2 ≥ 0.9, namely,
VIFj ≥ 10) with the other circulation indices, this index has statistically significant collinear-
ity with other variables, and hence it should not be necessarily included in the regression
analysis [30]. The test procedure was repeatedly run for several times until VIFj < 10. On
the basis of the multi-collinearity analysis, relatively independent monthly circulation
indices over 1961–2020 were preliminary retained.

Selection of the Key Circulation Indices

Pearson’s correlation analysis was widely used to show the correlation degree between
two time series [31]. Pearson’s correlation coefficient r was performed between monthly D
and circulation indices with lag time from 0 to 48 months. The index r ranges from −1 to 1.
r > 0 (<0) indicates a positive (negative) correlation; r = 0 indicates no linear relationship.
When |r| is close to 1, a higher correlation is implied.

Student’s t test was used to examine whether the monthly D is significantly correlated
with the selected circulation indices at the significance level of p < 0.01. However, using
enormous circulation indices to predict D would result in a large data set, which is prone
to the “curse of dimensionality” and may overfit the model [32,33]. Thus, a strong relation
between circulation indices and monthly D with r value of 0.7 was considered to screen the
circulation indices for the third time at each climate site [34].

2.2.3. The Quantitative Relationship between D and the Key Circulation Indices
Multi-Variable Linear Regression Model

The multi-variable linear regression (MLR) model was used to establish the quantita-
tive relationship between monthly D (response variable) and the selected key circulation
indices (predictor variable) [35]. The largest r value between monthly D and the key circu-
lation indices had certain lagged times (months), at which the key circulation indices were
set as the predictor variables sequence. The MLR model is written as

D = a1x1,l + a2x2,l + ajxj,l + · · ·+ amxm,l + b (12)

where xj is the jth circulation index (j = 1, 2, . . . , m, m varies with different sites), and aj and
b are the fitted coefficients. l represents the lagged months.

For the MLR model, considering the r value between the key circulation index and
monthly D had different lagged months, the key circulation indices at the corresponding
lagged months (with the maximum r value) were set as the predictor variables sequence.
The MLR model was implemented on the basis of the “lm” function in R version 4.1.1.
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Random Forest Model

Random forest (RF) is a widely used machine learning decision tree model [36]. Unlike
other machine learning methods, RF only needs to adjust two parameters in model training:
(i) the number of decision trees growing in the forest (ntree), ntree is 500 by default; (ii) the
number of randomly selected features on each node (mtry), mtry is set to one-third of the
number of all predictor variables for regression model [13].

Moreover, RF can provide the importance score of each variable during model training
process. The importance of the variable is based on the out-of-bag (OOB) regression predic-
tion error. For a training set, RF performs a bootstrap sample and randomly selects g sam-
ples for training, then the probability of each sample not being selected is pro = (1 − 1/g)ˆg.
When g becomes larger, pro tends to 1/3, that is, 1/3 of the data are not used in the process
of forest formation. Then, this 1/3 of the data are used to evaluate the performance of the
RF model [36]. The importance of the variable was computed as a function of the change
prediction error by arranging each input variable expressed by the average rate of decrease
in accuracy (mean square error). The mean square error (MSEOOB) is calculated by

MSEOOB =
1
n

n

∑
k=1

(Ok − DOOB,k)
2 (13)

where n is the number of observations, and DOOB,k is the average of all OOB predictions
across all trees.

The RF model was implemented using the “randomForest” package of R version
4.1.1. The relative importance of variables is estimated using the “importance” function in
the “randomForest” package. All input variables were the same in order to compare the
performance of the RF and MLR models for predicting D. The total dataset was divided
into the calibration period of 1961–2010 and validation period of 2011−2020 for both MLR
and RF models.

For each site in northwestern China, the RF model was to output an importance
ranking of predictor variables. Considering the number of total predictor variables and
their importance rank change with specific sites, an overall rank in the northwestern
China index was proposed to indicate the importance of the selected circulation indices,
written as

Rankid,NW =

44
∑

ii=1
(SIii + 1− Rankid,ii)

2 × Impid,ii

44× SImax
(14)

where Rankid,NW is the rank of the idth circulation index in northwestern China; SIii denotes
total number of the selected key circulation indices at the iith sites; SImax is the maximal
number of the selected circulation indices in northwestern China; Rankid,ii is the rank of the
idth circulation index among total SIii circulation indices; Impid,ii is the importance value of
the idth circulation index at the iith site (%). Rankid,NW potentially counts the occurrence
times (frequency) of the idth circulation index in the studied area and measures its overall
importance. The larger the Rankid,NW value, the more important the idth circulation index.

Model Performance Assessment

The performance of the MLR and RF models was assessed using the following four
statistical indicators: (i) the coefficient of determination (R2), which reflected the pro-
portion of the response variable explained by the predictor variable through the model;
(ii) Lin’s Concordance Correlation Coefficient (LCCC), which assessed the level of agree-
ment between predicted and observed values following the 45◦ line; (iii) the mean absolute
percentage error (MAPE), which measured the percentage error of deviation relative to the
observed value; and (iv) the root mean square error (RMSE), which reflected the overall
accuracy of the forecast. The equations for computing R2, LCCC, RMSE, and MAPE are
referred to in the work of Feng et al. [37].
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2.2.4. Prediction of Water Deficit Conditions

The established water deficit models were compared, and the better one was used to
predict the water deficit at the 44 sites in northwestern China.

The overall research frame of this research is illustrated in Figure 2.
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3. Results
3.1. Spatiotemporal Variations of Month D

The spatiotemporal variations of monthly D over 1961−2020 in northwestern China
are shown in Figure 3. First, monthly D in northwestern China over 1961−2020 fluctuated
periodically and ranged from −3.7 to −179.9 mm (Figure 3a), and the displayed general
water shortage status indicated a severe drought situation in northwestern China. The
relatively dry months were June and July, and the relatively wet months were January and
December. Second, the spatial distribution of long-term mean monthly D in northwestern
China had regional characteristics (Figure 3b). The mean monthly D of the 44 sites in
northwestern China ranged from −17.8 to −143.0 mm. We observed higher D values in the
southwest, indicating drier conditions in the western south part. Overall, northwestern
China was in a state of water deficit.
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3.2. Relationship between Monthly D and Circulation Indices

To show the detailed screening process of 100 circulation indices, we chose a sample
site (no. 52118, namely, Yiwu site) as an example to select the circulation index that was
finally used for modeling.

3.2.1. Preliminary Selected Circulation Indices Considering Multi-Collinearity

On the basis of the rigorous multi-collinearity analysis between monthly D and 100 circulation
indices, 57 out of 100 circulation indices with VIF < 10 were finally selected, which was
consistent for all of the 44 selected sites (Table 1). The other 43 indices were removed since
they had high multi-collinearity.

Table 1. The initially selected 57 circulation indices from the 100 indices with VIF < 10 through
multi-collinearity analysis (consistent at the 44 sites).

Initially Selected Circulation Indices

NAHAI WPSH EPSH NANRP EPRP SSRP
WHWRP APVA PPVA NAPVA AEPVA PPVI

AEPVI NVCL NVCLI EMC AZC AMC
EATP IBTI AO AAO NAO PNA

EA WP EAWR POL SCA 50ZW
MPZW WPTW CPTW EPTA ACCP NINO1 + 2

NINOW NINOA NINOB TSA WHWP IOWPA
WPWPA AMO OC WWDC EM NE

TIOD SIOD WNPTN NLTC TSN SOI
AMM QBO NAT
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3.2.2. Screen of the Key Circulation Indices

Pearson’s correlation analysis combining Student’s t-test (p < 0.01) were used to screen
the key circulation indices that were highly correlated to D series. During this process, the
correlations varied with lagged months were necessarily considered.

The r values between monthly D vs. the 57 initially selected circulation indices that
lagged from 0 to 48 months were obtained site-specifically. Variations had common features
for different sites, and the results for the site no. 52118 was taken as an example (Figure 4).
We found the following to be the case: (1) The fluctuations of the r values had a period of
12 months, and monthly D were correlated with circulation indices with the lagged time
of 1 to 12 months. The lagged time varied for different circulation indices. (2) Figure 4a,b
illustrate the curves of |r| > 0.11 and <0.11, respectively. The water deficit at site no.
52118 were affected by different circulations. The r values were different when the lag
time differed (Figure 4a). When the lag time was 6 months and 12 months, the r value
between monthly D and PPVI reached −0.84 and 0.83, respectively. (3) There were insignif-
icant correlations between D and 18 circulation indices with −0.11 < r < 0.11 (Figure 4b),
and therefore those circulations were screened out from the 57 indices. The remaining
39 circulation indices were meaningful and were maintained for further quantitative analy-
sis of monthly D.
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Generally, results for other sites were similar to site no. 52118 in variation patterns of r
values. However, different ranks of circulation indices were found for specific sites, which
would not be described in detail here.

We considered the period (the largest lag time of water deficit behind circulations)
of the r curves was 12 months, at the 0.01 significance level, and then we screened the
39 circulation indices with significance at site no. 52118. The r values between monthly D
and the specific circulation index (from the screened 39 ones) varied with changing lag time
is demonstrated in Figure 5. The results showed the following: (1) The correlation between
monthly D and circulation indices of PPVI, SSRP, EPRP, and NANRP were generally high.
At certain lagged time, the circulation index that had the strongest correlations with D
changed. For example, when the lag time was 12 months, the r reached the largest (0.83
for D vs. PPVI) and smallest (−0.67 for D vs. NAHAI) levels. Conversely, r reached
the largest (0.72 for D vs. NAHAI) and the smallest (−0.84 for D vs. PPVI) levels at
the lag time of 6 months. At the 4-month lag time, the r was the largest (0.81 for D vs.
SSRP) and the smallest (−0.64 for D vs. MPZW). We suspect that there was a complicated
teleconnection relationship between D and specific circulation indices. The reason may
be that northwestern China is a transitional zone with an interaction of the westerlies,
a plateau monsoon climate, and an east Asian monsoon climate. Moreover, this region
has complex terrain, geography, and geomorphology and is very sensitive to climate
change and circulations [38] (2) The correlations between D and the nine circulation indices
(QBO, WWDC, WHWP, NINOA, CPTW, POL, PNA, WP, NVCL) were relatively poor,
with a maximum |r| < 0.14. (3) The number of atmospheric-type circulation indices that
were significantly correlated to D was larger than that of sea-temperature-type and other-
type circulation indices. For example, when the lagged times were 5, 6, and 12 months,
28, 26, and 26 atmospheric-type circulation indices were significantly correlated with
D series, respectively.

Most likely, geographic locations of the study area created the more important impacts
of atmospheric-type circulation and less roles of sea-type circulations on monthly D. North-
western China is located in the highest terrace of the country and far from the sea. In its
northwestern part (Xinjiang), there was typical topography of two basins between three
mountains. The sea-temperature-type circulations played less important roles in affecting
water deficit or climate in northwestern China.

We chose |r| > 0.7 to indicate a strong correlation between the D and circulation
indices. The 11 key circulation indices (namely, PPVI, IOWPA, PPVA, AEPVI, SSRP, MPZW,
WNPTN, NAHAI, NANRP, WPWPA, and EPRP) were finally selected in site no. 52118.

The finally selected key circulation indices were specific for different sites, and the
results are not shown in detail here.

3.3. Quantitative Relationship between Monthly D and the Key Circulation Indices
3.3.1. Model Performance Assessment

The performance of MLR- and RF-based models for site-specific D using four statistical
indicators (R2, LCCC, RMSE, and MAPE) during the calibration and validation processes
are shown in Figure 6. We found the following: (1) In general, both MLR- and RF-based
models performed well, with high R2 and LCCC and low RMSE and MAPE values. The
ranges of R2, LCCC, RMSE, and MAPE values were 0.488–0.953, 0.677–0.976, 13.5–36.4 mm,
and 8.3–158.1%, respectively (MAPE < 50% at 30 sites). According to the R2 values, in
the MLR- and RF-based models, the final selected circulation indices explained more than
80% of water deficit conditions at 36 and 38 sites, respectively (Tables S2 and S3). (2) The
RF-based model performed better than the MLR-based model, with higher R2 and LCCC
and lower RMSE and MAPE values both during the calibration and validation processes.
This may be because the RF model considered the nonlinearity between the predictor and
response variables. (3) The ranges of R2 and LCCC during the calibration process were
higher but lower for RMSE and MAPE than the validation process, which were both found
for the MLR and RF models. This was reasonable because data for calibration were greater.
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The established MLR equations of monthly D at the nine representative sites are
presented in Table 2. Overall, both MLR and RF have satisfactory predictive performance.
RF had better predictive effect than MLR because the RF model considered the nonlinear
relationship between variables. The model verified the applicability of the MLR and RF
models between monthly D and large-scale circulation factors.

Table 2. The fitted MLR equations between monthly D and the selected key circulation indices of
9 representative sites in northwestern China (the subscript represents the lagged month).

No. of
Site Fitted MLR Equation R2 LCCC MAPE

(%)
RMSE
(mm)

51053
0.0088PPVI12 + 0.21NAHAI6 − 1.68SSRP10 − 1.13NANRP11 − 3.32PPVA6 −
0.76MPZW5 + 3.10WPWPA4
− 1.10EPRP11 + 0.0046AEPVI12 − 2.06WNPTN10 − 36.57

0.863 0.927 44.3 22.4

51238
+0.0071PPVI12−1.41SSRP11 + 3.43WPWPA4 + 4.13
PPVA12 − 0.84NANRP11 + 0.0045AEPVI12 − 0.60MPZW5
− 0.77NAHAI12 − 2.07WNPTN10 − 0.17EPRP11 − 186.38

0.872 0.931 28.8 19.0

51334
− 0.50NAHAI12 − 1.08NANRP11 − 0.78EPRP11 − 1.34SSRP10
+ 4.55NAPVA12 + 0.0082PPVI12 + 0.0056AEPVI12 − 0.67
MPZW5 + 3.96WPWPA4 − 2.14WNPTN10 − 211.16

0.919 0.958 11.2 17.1
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Table 2. Cont.

No. of
Site Fitted MLR Equation R2 LCCC MAPE

(%)
RMSE
(mm)

51811

− 0.0073PPVI6 + 4.78PPVA11 − 0.19SSRP10 − 1.55EPRP11
+ 0.50IOWPA9 + 0.75NAHAI5 + 1.92WPWPA4 − 1.28
NANRP10 + 0.007AEPVI12 − 2.29WNPTN10 − 0.02MPZW5
− 147.04

0.900 0.948 28.7 17.5

51573

− 2.29SSRP10 + 0.012PPVI12 + 5.70PPVA11 − 0.95WPWPA10
− 1.55NANRP11 + 0.79NAHAI11 − 0.62MPZW5 − 0.92
EPRP11 − 0.09IOWPA3 + 0.0113AEPVI12 − 4.59WNPTN10
− 150.71

0.903 0.949 27.6 21.9

51477

− 0.0078PPVI6 − 2.30SSRP10 + 2.62NANRP5 − 0.0068
AEPVI6 − 3.98PPVA6 − 0.37IOWPA9 − 1.12EPRP10 + 0.03
NAHAI6 + 1.63WPWPA4 − 2.05WNPTN10 − 0.54MPZW5
+ 10.87

0.891 0.942 21.3 21.0

52203
− 0.0087PPVI6 + 0.52IOWPA9 − 1.76SSRP10 − 0.0086
AEPVI6 + 0.15NAHAI5 + 2.85WPWPA4 − 2.09APVA6 − 2.51
WNPTN10 − 0.46MPZW5 − 4.56PPVA5 − 1.03NANRP10 − 0.69EPRP10 +88.96

0.905 0.950 36.7 19.8

52112

− 0.01PPVI6 − 5.51WNPTN10 − 3.32SSRP10 + 0.0169
AEPVI12 − 0.28IOWPA9 + 3.26WPWPA4 − 6.71PPVA6 − 1.61NANRP10 −
0.31APVA6 + 1.13NAHAI5 − 0.59MPZW5
− 0.72EPRP10 + 53.11

0.930 0.964 19.2 26.8

51567

− 1.96NAPVA5 − 0.0053PPVI6 + 1.75SSRP4 + 0.0092
AEPVI12 + 0.31IOWPA9 − 0.61MPZW5 + 1.48WPWPA4 − 1.21NANRP10 +
0.12NAHAI5 − 1.66APVA6 + 2.66
WNPTN4 − 0.74EPRP10 − 48.82

0.895 0.945 21.1 17.4
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Figure 6. Results of R2, LCCC, RMSE, and MAPE to show performance of MLR- and RF-based
models for site-specific D in northwestern China during the calibration and validation processes. The
horizontal line inside the box indicates the median. The box boundary indicates the 25th and 75th
percentiles, and the whiskers below and above the box indicate the 10th and 90th percentiles.
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We wanted to further demonstrate the performance of MLR and RF models. Therefore,
we compared the temporal variations of the MLR- and RF-predicted monthly D with that
of the observed values during validation period at the nine representative sites that were
distributed in different locations of northwestern China (Figure 7). Both MLR and RF
captured the main variation patterns, and their monthly D variations did not deviate from
the observed monthly D greatly and showed high consistency at the nine sites. In addition,
both essentially captured the peak values very well, but the prediction of the MLR-based
model deviated more from the observed D than RF-based model. We think that this result
further showed that the performance of RF was better than MLR.
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3.3.2. Importance Rank of Predictors

The Impid,ii values (in Equation (6)) of the selected circulation indices (predictors)
using RF are provided for the 44 sites in northwestern China in Table 3. The importance
rank of the predictor variables at the nine representative sites are illustrated in Figure S1.
From the results, the SI changed with specific sites. The SImax was 12 in northwestern
China. The Impid,ii differed for all the 44 sites. Taking the Pacific Polar Vortex Strength
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Index (PPVI) as an example, the index occurred as the largest number at the 23 sites and the
second at 10 sites out of 44 sites. PPVI was an important circulation index in denoting water
deficit conditions of northwestern China. In addition, the South China Sea Subtropical
High Ridge Position Index (SSRP) was an important predictor of the RF prediction models
established by the 44 sites in northwestern China.

Table 3. The RF-based rank of the importance for the selected circulation indices at 44 sites in
northwestern China.

No. of Site Predictor Variables Importance Ranking (%)

51053 PPVI12 (37.1), NAHAI6 (30), SSRP10 (29.3), NANRP11 (29.1), PPVA6 (28.4), MPZW5 (25), WPWPA4 (24.2),
EPRP11 (22.1), AEPVI12 (21.7), WNPTN10 (17.5)

51060 IOWPA9 (32.5), PPVI12 (32.5), SSRP10 (31.7), NANRP6 (27.4), NAHAI11 (26.9), PPVA6 (26.8), WPWPA4 (24.1),
EPRP12 (23.7), AEPVI11 (23), MPZW5 (22.8), WNPTN10 (14.3)

51068 PPVI12 (35.5), WPWPA10 (35.2), SSRP4 (33.9), EPRP12 (28.8), NANRP11 (26), PPVA11 (25.6), MPZW5 (23.5),
WNPTN12 (22.7), AEPVI10 (21), NAHAI11 (19.9)

51076 NAHAI6 (33.5), SSRP10 (32.8), NANRP12 (31.5), AEPVI11 (31.1), PPVI6 (30.9), MPZW5 (29.4), WPWPA4 (26.4),
PPVA6 (23.8), EPRP11 (21), WNPTN10 (13.2)

51087 PPVA11 (34.2), PPVI12 (33.8), NANRP12 (32.7), SSRP10 (32), MPZW5 (25), EPRP11 (24.8), WPWPA10 (22.4),
AEPVI10 (15.9), NAHAI12 (14.1), WNPTN11 (13)

51133 PPVI6 (36.5), AEPVI12 (36.4), SSRP11 (33.9), PPVA10 (25.8), WPWPA11 (25.5), NANRP12 (24.6), NAHAI11 (18.8),
EPRP12 (18.4), WNPTN10 (12.9)

51156 PPVI12 (36.5), SSRP10 (34.4), MPZW5 (32.6), WPWPA10 (30.5), PPVA12 (23.9), NANRP12 (22.8), AEPVI11 (22.4),
WNPTN10 (17.7), EPRP11 (15.3)

51232 PPVI12 (41.2), WPWPA4 (36.3), NAHAI6 (33.1), SSRP12 (31.7), AEPVI11 (29.2), NANRP11 (27.9), PPVA6 (27.6),
MPZW5 (26.2), EPRP11 (21.2), WNPTN10 (16.3)

51238 PPVI12 (40.6), SSRP11 (32.2), WPWPA4 (31.6), PPVA12 (27.6), NANRP11 (27.3), AEPVI5 (25.8), MPZW12 (23.9),
NAHAI12 (21.2), WNPTN11 (17.2), EPRP10 (16.6)

51241 AEPVI6 (43), PPVI12 (36.8), SSRP11 (30.9), NANRP11 (20), EPRP11 (18.9), PPVA12 (18.6), WNPTN10 (11.8)

51243 PPVI6 (42.5), IOWPA11 (31.2), NAHAI9 (30.1), NANRP6 (29.8), SSRP10 (25.3), EPRP11 (22.2), PPVA6 (21),
AEPVI5 (15.8), WPWPA6 (15.7), MPZW4 (15), WNPTN10 (6.1)

51334 PPVI12 (37.8), SSRP10 (36.9), WPWPA4 (34.3), PPVA11 (30.6), NANRP5 (28.3), NAHAI12 (27.8), AEPVI12 (26.9),
MPZW12 (26.6), EPRP11 (21.4), WNPTN10 (12.6)

51367 WPWPA4 (40.3), SSRP11 (39.4), PPVI12 (36.7), AEPVI12 (31.4), MPZW5 (30.3), NANRP11 (26.3), PPVA12 (24),
NAHAI12 (22.1), IOWPA3 (20.2), EPRP11 (15.9), WNPTN10 (14.9)

51477 PPVI6 (37.4), SSRP10 (29.1), NANRP6 (28.8), AEPVI5 (25.3), PPVA9 (25.1), IOWPA6 (24.2), EPRP6 (17.6),
NAHAI10 (17.4), WPWPA4 (15), WNPTN10 (13.1), MPZW5 (11.1)

51526 PPVI4 (34.9), SSRP6 (34.7), PPVA12 (28.7), NANRP9 (28.4), IOWPA5 (25), WPWPA10 (23.2), AEPVI6 (23),
NAHAI5 (19.9), EPRP10 (18.8), MPZW6 (17.3), APVA5 (16.7), WNPTN4 (11.6)

51567 PPVI6 (37.1), SSRP4 (32), AEPVI12 (31.1), IOWPA9 (29.8), MPZW5 (25), WPWPA4 (24.1), NANRP5 (22.3),
NAHAI5 (21.5), APVA10 (20.4), PPVA6 (19.7), WNPTN4 (17.9), EPRP10 (16)

51573 SSRP10 (39.5), PPVI12 (36.7), PPVA10 (31.8), WPWPA11 (31.3), NANRP11 (29.5), NAHAI11 (28.2), MPZW3 (26),
EPRP11 (24.8), IOWPA5 (24.3), AEPVI10 (24.1), WNPTN12 (21.7)

51628 WNPTN4 (37.9), PPVI12 (37.7), SSRP10 (31.5), PPVA11 (30.4), WPWPA10 (27.6), NANRP11 (24.9), MPZW10 (24),
EPRP10 (21.9), NAHAI11 (20.7), AEPVI12 (19.3), APVA12 (15)

51656 WPWPA4 (36.8), SSRP4 (34.6), PPVI6 (33.6), IOWPA9 (33.1), MPZW5 (28.9), PPVA5 (26), NANRP4 (24.6),
WNPTN4 (24.4), NAHAI5 (21.8), APVA6 (21), AEPVI6 (17.7), EPRP4 (17.5)

51704 PPVI6 (39.9), NANRP11 (32.2), IOWPA10 (28.9), SSRP9 (28), AEPVI10 (23.8), NAHAI4 (23.4), WNPTN6 (21.6),
WPWPA5 (19.6), EPRP11 (18.1), MPZW6 (16.9), PPVA6 (16.5)

51705 EPRP11 (37), PPVI10 (35.4), SSRP12 (34.1), WNPTN10 (31.5), AEPVI12 (26.1), NANRP11 (22.2)

51709 PPVI12 (37.5), WPWPA11 (36.9), SSRP10 (33.8), PPVA5 (33.6), MPZW10 (30.2), EPRP10 (29.1), WNPTN11 (28.9),
NANRP11 (25.2), AEPVI3 (21.9), IOWPA12 (21), NAHAI11 (19.4)

51720 PPVI6 (36.3), WPWPA4 (36), NANRP4 (26.4), SSRP9 (26), AEPVI5 (23.9), IOWPA6 (23.7), PPVA6 (23.1),
NAHAI10 (21.2), WNPTN5 (20.3), EPRP5 (14.7)

51730 PPVI6 (38.2), IOWPA10 (35.8), SSRP9 (28.6), WNPTN10 (27.4), AEPVI4 (23.3), WPWPA6 (23), NAHAI5 (21.7),
NANRP10 (20.7), PPVA6 (18.1), MPZW5 (17.8), APVA10 (17.3), EPRP5 (15.5)

51765 PPVI6 (38.2), IOWPA9 (32), SSRP4 (31), NANRP4 (29.3), WPWPA10 (28.7), WNPTN4 (24.8), PPVA5 (24.3),
MPZW6 (23.6), AEPVI6 (23.1), APVA5 (20.2), NAHAI5 (18.6), EPRP10 (16.8)

51810 PPVI6 (43.8), IOWPA4 (38.8), WPWPA11 (31.8), PPVA9 (30.3), SSRP10 (25.9), WNPTN10 (25.7), AEPVI12 (20.6),
MPZW5 (18.1), NANRP10 (18), NAHAI11 (17.5), EPRP10 (11.5)
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Table 3. Cont.

No. of Site Predictor Variables Importance Ranking (%)

51811 PPVI6 (46.9), PPVA9 (28.8), SSRP11 (27.5), EPRP5 (26.8), IOWPA10 (25.8), NAHAI11 (25), WPWPA4 (22.2),
NANRP10 (20.1), AEPVI12 (19.5), WNPTN10 (18.9), MPZW5 (14.3)

51818 NANRP6 (36.7), PPVI5 (34.1), SSRP4 (31.9), AEPVI12 (27.9), PPVA11 (27.3), NAHAI11 (25.8), MPZW10 (21.2),
WPWPA5 (21.1), EPRP10 (16.8), WNPTN4 (13.7)

51828 AEPVI5 (33.6), SSRP6 (32.9), PPVI12 (32.6), NANRP4 (32.5), NAHAI11 (27.2), MPZW5 (22.9), PPVA11 (21.9),
WPWPA10 (21.1), IOWPA9 (17.2), EPRP12 (15.5), APVA10 (13.7), WNPTN4 (13)

51839 AEPVI12 (36.5), PPVI6 (34.3), PPVA11 (33.6), SSRP4 (33.4), NANRP5 (31.6), WPWPA10 (28.2), IOWPA5 (23.1),
APVA6 (22), NAHAI10 (20.8), EPRP9 (18.3), WNPTN4 (16), MPZW5 (12.5)

51855 WPWPA4 (35.7), SSRP4 (34.1), PPVI6 (31.1), IOWPA9 (29), NANRP5 (26.6), AEPVI6 (25.9), PPVA5 (24.3), EPRP5
(23.8), APVA6 (21.8), NAHAI5 (18.8), MPZW5 (16.8), WNPTN4 (9.8)

51931 PPVI5 (35.7), SSRP6 (33.7), NANRP4 (31.6), APVA4 (25.1), AEPVI6 (24.7), WPWPA9 (23.9), IOWPA6 (23.3),
PPVA5 (23.3), MPZW10 (22.7), EPRP5 (21.3), NAHAI5 (19.8), WNPTN4 (11.4)

52101 WNPTN4 (38.8), PPVI12 (36.6), WPWPA10 (25.3), EPRP10 (23.8), SSRP10 (23.3), PPVA6 (22.5), MPZW10 (17),
NANRP5 (16.5), AEPVI12 (14.2)

52112 PPVI6 (43.2), WNPTN9 (33.4), SSRP10 (29.5), AEPVI12 (28.8), IOWPA10 (28.5), WPWPA4 (26.7), PPVA6 (26.1),
NANRP10 (20.8), APVA5 (20.4), NAHAI6 (15.5), MPZW10 (14.7), EPRP5 (13.7)

52118 PPVI6 (45), IOWPA9 (31.6), PPVA10 (28.3), AEPVI6 (25.8), SSRP12 (25.4), MPZW5 (22.9), WNPTN5 (20.9),
NAHAI10 (19), NANRP10 (17.1), WPWPA10 (14.7), EPRP4 (13.8)

52203 PPVI6 (41.1), IOWPA9 (33.5), SSRP10 (27.8), AEPVI5 (24.9), NAHAI4 (24.2), WPWPA6 (23.7), APVA5 (23.2),
WNPTN10 (22.3), MPZW10 (20.2), PPVA6 (20.2), NANRP5 (16.5), EPRP10 (12)

52313 EPRP11 (39.2), PPVI6 (38.6), SSRP4 (34.5), NANRP5 (28.1), MPZW10 (21.4), WPWPA6 (21.1), WNPTN10 (20.5),
AEPVI6 (20.4), NAHAI6 (19.4), PPVA5 (17.5), APVA6 (14.4)

52323 WNPTN4 (48), SSRP10 (33.7), PPVI12 (32.7), MPZW5 (32.7), EPRP11 (28.6), WPWPA10 (26.8), AEPVI11 (24.6),
NANRP12 (24.2), NAHAI12 (22.5), APVA12 (20.5), PPVA12 (18.3)

52546 PPVI6 (40.5), IOWPA9 (28), NAHAI5 (26.9), WNPTN12 (24.4), AEPVI11 (23.4), SSRP4 (23.3), PPVA10 (22.8),
NANRP10 (20.5), MPZW5 (17.3), WPWPA10 (16.8), EPRP4 (16.3)

52652 WNPTN4 (48.1), PPVA11 (31.9), SSRP10 (29.2), PPVI12 (28.6), AEPVI10 (27), MPZW5 (25.4), EPRP12 (24.8),
WPWPA10 (23.1), NANRP10 (22.7), NAHAI11 (10.7)

52674 EPRP10 (55.5), NANRP10 (49.2)
52679 EPRP10 (31.7), PPVA11 (31.2), SSRP10 (28.6), NANRP10 (25.9), NAHAI11 (19.9), AEPVI12 (15.7), PPVI11 (14.9)

52681 PPVA11 (33.6), WPWPA12 (31.3), APVA10 (29.1), PPVI10 (28.6), NANRP12 (28), SSRP10 (26.4), EPRP10 (25.2),
WNPTN10 (22.5), NAHAI5 (18.6), MPZW11 (16.3), AEPVI12 (15.7)

52797 SSRP10 (42.2), EPRP10 (35.4), NANRP10 (31.9), PPVI11 (27.2)

On the basis of the results shown in Table 3 and Equation 6, we obtained the overall
rank of each circulation index in the northwestern China (Table 4), namely, PPVI > SSRP >
WPWPA > NANRP > PPVA > IOWPA > AEPVI > WNPTN > NAHAI > MPZW > EPRP
> APVA. In particular, PPVI and SSRP had the greatest contributions to the changes in
water deficit in northwestern China. The overall ranking created more certainty and was
more representative for measuring the importance of the predictors for the studied region
with multi-sites.

Table 4. The overall importance rank of 12 circulation indexes in northwestern China.

Circulation
Index PPVI SSRP WPWPA NANRP PPVA IOWPA AEPVI WNPTN NAHAI MPZW EPRP APVA

Rankid,NW 2.959 1.928 1.135 0.962 0.941 0.900 0.856 0.631 0.507 0.406 0.401 0.141

3.4. Forecasted Water Deficit Conditions in Northwestern China

Using the established RF models, we forecasted the monthly D from June 2022 to
August 2022 at 44 sites in northwestern China (Figure 8). We found the following: (1) The
forecasted D values ranged between −239.7 and −62.3 mm from June 2022 to August 2022.
(2) Comparatively, the water deficit conditions in central northwestern China were relatively
severe, while the water deficit conditions in western and southeastern northwestern China
were less severe. (3) The degree of water deficit was different in northwestern China from
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June 2022 to August 2022. Overall, the water deficit in northwestern China was the most
severe in August 2022, followed by July 2022, and finally June 2022 (Figure 8d).
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4. Discussions
4.1. The Necessity of Selecting Key Circulation Indices from over 100 Indices

There were over 100 global large-scale circulation indices available. Selecting main
drivers that affect water deficit conditions in northwestern China needs rigorous pro-
cedures. Previous research investigated climate drivers determining water deficit con-
ditions. However, the adoption or selection of the predictors was very subjective and
without a strict screen procedure. For example, Guo et al. [39] analyzed the correlation
between the Multivariate Standardized Reliability and Resilience Index and climate fac-
tors (ENSO, AO, and Sunspots) in the upper Yellow River Basin. They found that ENSO
and AO had the greatest impact on the evolution of short-term socioeconomic drought
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in the upper Yellow River Basin, and the impact of ENSO was stronger than that of AO.
Irannezhad et al. [40] empirically selected seven circulation indices, namely, AO, NAO,
EA, EA/WR, POL, SCA, and WP, to investigate the circulation driving mechanism of the
drought in northern Finland over 1962–2011. They found that the development of drought
across Finland was most correlated with the EA/WR pattern. Wu et al. [41] calculated r
values between Pr/ET0/SPEI and four atmospheric circulation indices (AO, Niño 3.4, PDO,
and SST) at the 763 weather sites in China. They found that Pr and ET0 were positively
correlated with AO and Niño 3.4 at most sites, while the correlations between Pr/ET0/SPEI
and PDO/SST were either positive or negative. Compared with their work, our method
considered the impacts of multiple climate drivers including atmosphere, sea temperature,
and other types rather than the atmospheric circulation pattern alone.

Former studies were subjective in selecting circulation indices/patterns, which may
have overlooked some key circulations and caused uncertainty in forecasting. With the ad-
vances of climatology and various climate models, more circulation indices were developed.
For example, the circulation indices associated with the Western Pacific Subtropical High
system include the Western Pacific Subtropical High Area Index (WPSHA), the Western
Pacific Subtropical High Intensity Index (WPSH), the Western Pacific Subtropical High
Ridge Position Index (WWRP), the Western Pacific Subtropical High Northern Boundary
Position Index (WHNBP), and the Western Pacific Subtropical High West extension ridge
point index (WHWRP), among others. Therefore, it was very necessary to screen and deter-
mine representative circulation indices for modelling. In our research, we screened the key
circulation indices from over 100 indices step by step using several strict procedures and
used them to further establish monthly D models with MLR or RF, which both performed
well in predicting monthly D.

4.2. Relative Importance of Climate Drivers to Water Deficit

We found that the driven factors of water deficit in northwestern China are mainly
related to the circulation events indicated by PPVI, SSRP, WPWPA, NANRP, and PPVA.
The importance rank of the circulation indices varied with study sites. We found that PPVI
was most important circulation index in determining monthly D in northwestern China.
The reason can be summarized as follows: (1) The enhancement of PPVI can bring a great
amount of cold air from high latitudes. If water vapor is sufficient, it will lead to more
precipitation [42]. (2) PPVI may induce and intensify the activity of the East Asian summer
monsoon and affect the precipitation in northern China [43]. (3) The changes of the PPVI
are closely related to the interannual fluctuations of precipitation in eastern and western
northwestern China, and the PPVI has a significant impact on the climate of northwestern
China by affecting AO [44].

Besides PPVI, we found SSRP also plays an important role in affecting water deficit
conditions. This result is consistent with previous studies. For example, Chen et al. [45]
showed that with the westward movement of the subtropical high in recent decades, a high-
pressure center was formed in the eastern part of the Tibetan Plateau. Water vapor from the
Indo-Pacific can be transported along the northeastern edge of the Qinghai–Tibet Plateau to
northwestern China. Wu et al. [46] pointed out that the rainy season in northwestern China
mainly occurring in summer and the change in precipitation are directly related to the
weakening of the East Asian summer monsoon accompanied by the westward extension of
the subtropical high. These results indicate that SSRP has a potential impact on the water
deficit in northwestern China. Notably, heavy rain in Aksu, Xinjiang, on 30 July 2018 caused
serious loss of life and property. Due to the compression of the typhoon, the subtropical
high moves westward and northward. This circulation pattern has contributed to the
infiltration of low-level water vapor in eastern China to Aksu. The westward extension of
the subtropical high undoubtedly plays a crucial role in this torrential rain.

Additionally, the WPWPA was ranked as the third most important predictor in our
study region. Cai et al. [47] reconstructed hydroclimate of the Inner Mongolia region on
the basis of spatial correlation patterns with global sea surface temperature and statistical
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analysis, and their results showed that the hydroclimate change in Inner Mongolia is closely
related to the sea surface temperature of the Indo-Pacific, especially the western Pacific. In
addition, our results also showed that the contributions of WNPTN and PPVA to the water
deficit in northwestern China were also important, although there were certain spatial
differences. This was consistent with previous research that demonstrated that water deficit
conditions in various parts of northwestern China were usually the result of multiple
climatic driving factors [43,46].

4.3. Prediction of Water Deficit Conditions

Future water deficit conditions can be forecasted in the upcoming months with large-
scale climate drivers. Generally, dynamical and statistical methods are used for predicting
water deficit (or drought hazards) [48]. The dynamical methods are based on the phys-
ical processes of the atmosphere, ocean, and land surface, while statistical methods use
different influencing factors as predictors on the basis of empirical relationships from the
historical records. Some researchers have projected future droughts at a long-term scale
with dynamical methods [49]. However, no single method can adequately describe the
overall process of climate system, and there is a large uncertainty in drought prediction
using dynamical models in a seasonal scale [48].

By contrast, the statistical methods including traditional regression models and a
newly emerged machine learning model have the advantages of low cost and easy applica-
tion, having been widely used to estimate and forecast water deficit [15,50–52] forecasted
drought using atmospheric circulation indices with support vector machine (SVM), artificial
neural network (ANN), and long short-term memory network in China, and the highest R2

(0.8) was found using their algorithm model. Gao et al. [53] combined circulation (NAO,
EA, SCA, POL, etc.) and climate data with ANN to estimate drought in China. Their results
showed that the ANN model produced skillful models for most sub-regions (R2

max = 0.91).
Comparing their results with our work, we had a higher accuracy (R2

max = 0.95) of drought
forecasting. This may have been because our method considered the impacts of multiple
climate drivers. Overall, our study was able to achieve similar or even better performance
in forecasting drought than most previous studies.

4.4. Limitations and Future Framework

In this research, we developed a real-time dynamic water deficit forecasting system in
northwestern China. We advocate that the forecasting system based on statistical methods
should continue to be improved. There are some limitations in our study. Firstly, our work
was based on a linear approach to screen key circulation indices, which may affect the
accuracy of drought forecasts with selected indicators. In future work, it is likely to adopt
some nonlinear methods such as genetic algorithm or BNN to screen key circulation indices
and compare their performance with the linear model. Secondly, we derived important
circulation patterns (Tables 2 and 3) that affect the water deficit in northwestern China on
the basis of the RF model, but our results lack in-depth exploration of the physical processes
in the atmosphere. Future work could consider the development of a hybrid approach
using physics-based dynamic models and machine learning techniques to further improve
the accuracy of D forecasts. Thirdly, other machine learning techniques such as SVR, BNN,
and deep learning can also be used to forecast water deficits in northwestern China. In
a recent study, Bibi et al. [54] developed an ensemble-based technique for modeling time
series data. The time series data were divided into deterministic and stochastic components
and modeled using different techniques, and the final forecasts were obtained by combining
the estimates of deterministic and stochastic components. Their research offered a new
perspective for the forecasts of D in this paper. Future research should be conducted using
more advanced fusion models in order to construct more reliable results in forecasts.
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5. Conclusions

We developed a real-time dynamic water deficit forecasting system in northwestern
China with a machine learning method using multiple circulation indices and data from
44 observation sites. Our study showed that using machine learning driven by large-scale
circulation indices can provide satisfactory water deficit forecasts in northwestern China.
We found that RF had a better performance than MLR at all study sites. This may have been
due to the fact that the RF model takes into account the nonlinearity between circulation
indices and D. We expect that the established RF models can provide a short-term forecast
of the dry and wet conditions in northwestern China in the future and provide useful
information for monitoring drought/flooding disasters and addressing some disaster
prevention caution measures ahead. In addition, we also identified the main predictors of
monthly D in northwestern China. PPVI and SSRP were regarded as important predictors
in influencing monthly D, which was comparable with results from previous studies. The
modelling framework we proposed here will be helpful for the water resource or disaster
management department to publicly release some important information to avoid human
and economic losses and reduce the risks of nature hazards in northwestern China. The
model developed in this study can be easily extended to other sites, regions, and countries
around the world.
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Abbreviations

AO Artic oscillation
D difference of precipitation and ET0
ET0 reference crop evapotranspiration
ENSO El Niño Southern Oscillation
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FAO Food and Agriculture Organization
IOD Indian Ocean Dipole
IPCC Intergovernmental Panel on Climate Change
LCCC Lin’s Concordance Correlation Coefficient
MAPE mean absolute percentage error
MLR multi-variable linear regression model
NAO North Atlantic Oscillation
PDO Pacific Decade Oscillation
Pr precipitation
R2 coefficient of determination
RMSE root mean square error
R Pearson correlation coefficient
SPI standardized precipitation index
SPEI standardized precipitation and evapotranspiration index
VIF variance inflation factor
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