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Abstract: Reservoirs are a crucial part of the human water supply system. The effectiveness and
service life of a reservoir is decided mainly by its storage capacity, and as such, preventing reservoir
capacity loss is of high interest worldwide. Due to climate change in recent years, precipitation
types have changed, and heavy rainfall events have become more severe and frequent. Rainfall
causes soil erosion in slope lands and transports large amounts of sediment downstream, forming
deposition. This causes reservoir storage capacity to fall rapidly and decreases reservoir service
life. The Sediment–Sluice Tunnel can reduce rapid deposition in reservoirs and is, thus, widely em-
ployed. By simulating sediment transportation in reservoirs, deposition reduction after building the
Sediment–Sluice Tunnel can be evaluated. This study used the Physiographic Soil Erosion–Deposition
(PSED) model to simulate the flow discharge and suspended sediment discharge flowing into the
Zengwen reservoir then used the depth-averaged two-dimensional bed evolution model to simulate
the sediment transportation and deposition in a hydrological process. Simulation results showed that
the Sediment–Sluice Tunnel effectively reduced deposition and transported sediment closer to the
spillway and Sediment–Sluice Tunnel gate. The deposition distribution with the Sediment–Sluice
Tunnel built is more beneficial to the deployment of other dredging works.

Keywords: hydraulic flushing; Sediment–Sluice Tunnel; deposition mitigation

1. Introduction

Taiwan’s water resources come mainly from rivers, groundwater, and reservoirs.
According to the 2019 statistics from the Taiwan Water Resources Agency, water taken
from rivers, groundwater, and reservoirs amounts to 24.5%, 43.4%, and 32.0% of total
usage, respectively. Generally, uses for reservoirs can include water supply, flood control,
irrigation, recreation, and power generation [1–3]. Changes to the capacity of a reservoir
affect whether the reservoir’s designed uses can be fulfilled [4,5].

In recent years, the severity and frequency of both extreme rainfall events and dry
events have increased due to climate change [6,7]. This has caused river supply in general
to become increasingly unstable and unreliable. Groundwater overuse, on the other
hand, causes problems, such as falling groundwater levels, land subsidence, and soil
salinization [8,9]. As such, reservoirs have become even more important in terms of
adjusting water supply and usage. However, reservoir capacity gradually decreases due to
accumulated sediment deposition [10]. According to statistics, global reservoir capacity
decreases by approximately 1% annually. This shows that reservoir sedimentation has
become a serious problem worldwide [11].

Reservoir sedimentation is a natural phenomenon resulting from upstream sediment
entering the reservoir [12,13]. Surface runoff forms when precipitation amounts exceed
infiltration capacity and causes flow with high concentrations of sediment from the river
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to enter the reservoir. Once inside the reservoir, the increased water depth and surface
width slow flow velocity, causing the suspended load and bed load from the river to create
deposition on the reservoir bed. This deposition is the main factor in decreased reservoir
capacity and can also cause safety concerns, making dredging a necessary component to
maintaining reservoir capacity.

Dredging methods often employed in reservoirs include mechanical excavation, de-
ployment of dredging boats, and hydraulic flushing [14–16]. Dredging by mechanical
excavation mainly involves excavators entering the reservoir area and mechanically dig-
ging out deposited sediment. For mechanical excavation to be implemented, the water
level in the reservoir must be low. Dredging via dredging boats involves siphoning wa-
ter containing high concentrations of suspended sediment from near the reservoir bed
and requires water elevation to remain above a specific range while dredging. Hydraulic
flushing, on the other hand, uses flood water from rainfall events to drain water with
high concentrations of suspended sediment from the reservoir, reducing deposition in
the reservoir and maintaining the water and sand balance of the river downstream [17].
As such, hydraulic flushing is the most widely accepted method of reducing reservoir
deposition [18].

Not all types of hydraulic flushing are suitable in Taiwan, however. Ways of executing
hydraulic flushing include empty flushing, drawdown flushing, and turbidity current
flushing [4,10,19]. Empty flushing is performed by using surface runoff or floodwater to
scour the reservoir bed and, thus, requires the reservoir to be emptied beforehand. Due to
this condition, the reservoir cannot fulfill its original purposes, namely water supply and
flood control, during empty flushing. Drawdown flushing is performed by discharging
water from the reservoir. Scour forces produced while lowering the reservoir’s water
level flush out sediment near the outlet. Turbidity current flushing uses mud water’s
characteristic of being heavier than freshwater to discharge only the suspended sediment-
filled water under the freshwater in the reservoir from the outlet. Both empty flushing
and drawdown flushing require the lowering of water levels during the flood season and
increase the risk of water shortage and drought during the dry season. With drought risk
during the dry season increasing in recent years [20,21], methods that can retain more
water storage are generally preferred. The turbidity current flushing method has both the
advantages of reducing reservoir sedimentation and reusing more freshwater reserves and
is, thus, considered a better choice for reservoirs in Taiwan. Numerical models are required
to simulate sediment evacuation processes to research the effects of turbidity current
flushing. Numerous numerical models have been applied to the simulation of reservoir
sediment transportation in the past. For example, Wang et al. used the SRH-2D model
to simulate drawdown flushing in the Agongdian Reservoir in Taiwan during Typhoon
Talim [10]. Dutta and Sen used the TELEMAC-2D model to simulate relations between
sedimentation, storage capacity, and operational life of the Hirakud Reservoir in India [22].
Moussa used the CCHE-2D model to simulate sediment transportation and estimate the
effective life span of the Aswan High Dam Reservoir in Egypt [23]. This study chose the
Zengwen reservoir, the largest reservoir in Taiwan, as the study area for the simulation of
turbidity current flushing. The PSED model and the depth-averaged two-dimensional bed
evolution model were used to simulate the sediment yield of the reservoir watershed and
sediment erosion and deposition in the reservoir. Simulation results were used to analyze
the effects of the Sediment–Sluice Tunnel and to possibly provide a future reference for the
reservoir management agency in the field of dredging.

2. Materials and Methods
2.1. Study Area

This study selected the Zengwen Reservoir in Southwestern Taiwan as the study area.
The Zengwen Reservoir is located in the upstream area of the Zengwen River and has a
watershed area of 481 square kilometers. The elevation of the watershed area is between
180 and 2600 m, with an average of approximately 1000 m. The distribution of elevation
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in the Zengwen reservoir is shown in Figure 1. According to sediment sampling data,
the sediment median diameter (D50) of the Zengwen reservoir bed is 21.45 µm [24]. Size
graduation of sediment in the Zengwen reservoir is shown in Table 1.
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Table 1. Particle size distribution of sediment in the Zengwen Reservoir.

D10 D25 D50 D75 D90

2.92 7.69 21.45 43.51 70.99
Units: µm.

The Zengwen Reservoir, also called Tsengwen Reservoir, was built in 1973, with a
design total capacity of 748.4 million cubic meters, and is currently the reservoir with the
largest capacity in Taiwan [5]. With the number of extreme rainfall events increasing due to
climate change, sediment deposition amounts in the reservoir have increased. According to
the reservoir sedimentation measurement of the Zengwen Reservoir, the average sediment
deposition amount per year from 1973 to 2000 is 3.94 million cubic meters. This increased to
an average of 10.06 million cubic meters per year during the 2001 to 2008 period. Typhoon
Morakot, the worst natural disaster in recent Taiwan, occurred in 2009. It caused a disas-
trous amount of 91.08 million cubic meters of sediment to be deposited into the Zengwen
Reservoir [25]. After Typhoon Morakot, large areas of the Zengwen Reservoir watershed
collapsed and caused the average yearly sediment deposition amount from 2010 to 2017 to
be greater than that of 1973 to 2000, at an average of 4.59 million cubic meters yearly. The
period 2018 to 2020 saw a decrease in sediment deposition amounts, however, due to less
precipitation during the period. The Southern Region Water Resources Office, the agency
in charge of reservoir management, also actively performed dredging in the area during
the period mentioned above [26].

The Ministry of Economic Affairs of Taiwan modified reservoir operation directions
in 2018, changing the water storage elevation from the elevation of 227 m to 230 m and
increasing reservoir capacity by 55 million cubic meters as a result [27]. Yearly sediment
deposition and changes in Zengwen Reservoir’s capacity are shown in Figure 2. According
to surveying in 2020, reservoir capacity has decreased by 36.4% of its original size since 1973.
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2.2. Hydraulic Structures

The Zengwen reservoir has been in operation for more than half a century. The original
design of the reservoir included a spillway and Permanent River Outlet (PRO). Outlet gates
of the spillway have a maximum flow rate of 11,345 cm total, and the PRO has a maximum
flow rate of 180 cm. According to the Operation Directions for Gates of Tsengwen Reservoir,
both types of outlets are normally closed unless flood control or maintenance is required.

With the increase of sediment deposition in the reservoir, the reservoir’s water storage
ability and service life were affected. This was worsened by the 2009 Morakot Typhoon, as
the typhoon resulted in sediment deposition reaching elevations of 176 m, exceeding that
of PRO inlets by 20 m and drastically affecting PRO operation. The Southern Region Water
Resources Office built a 1.2 km long Sediment–Sluice Tunnel from 2014 to 2017 to maintain
functionality and extend the expected service life of the reservoir [28]. The maximum flow
rate of the Sediment–Sluice Tunnel is 1070 cm and was expected to remove 1.04 million cubic
meters of sediment from the reservoir annually. The positioning of Zengwen reservoir’s
facilities is shown in Figure 3.
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2.3. Numerical Model

This study used the PSED model to simulate the flow discharge and suspended
sediment discharge of the Zengwen Reservoir watershed. The results were used as the
upstream boundary condition for the depth-averaged two-dimensional bed evolution
model while simulating sediment concentration transportation and the reservoir bed
deposition process. Finally, the simulated sediment concentration transportation and the
reservoir bed deposition process were used to discuss the effects of the Sediment–Sluice
Tunnel on sediment transportation in the reservoir.
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2.3.1. Physiographic Soil Erosion–Deposition Model

The PSED model can be divided into two parts, rainfall-runoff simulation and soil
erosion–deposition simulation [4]. The government equation for the rainfall-runoff simula-
tion is as follows [29]:

Ai
dhi
dt

= Pei + ∑
k

Qi,k(hi, hk) (1)

where Ai is the area of cell i; hi and hk express the water level of cell i and neighboring cell
k, respectively, at time t; Qi,k denotes the discharge from cell k to its neighboring cell i; and
Pei represents the effective rainfall volume per unit time t in cell i, which is equal to the
effective rainfall per unit time t in cell i multiplied by its area Ai.

Using the explicit finite difference method, Equation (1) can be expressed as follows:

hm+1
i = hm

i +

(
∑
k

Qm
i,k + Pm

ei

)
Ai

· ∆t (2)

Di = hi − zi (3)

where the superscript m denotes the known physical quantity at time tm; m + 1 denotes the
unknown physical quantity at time tm+1; ∆t is the time interval of calculation; Di denotes
the water depth of cell i; and zi is the bed elevation of cell i.

The government equation for soil erosion–deposition can be expressed as follows [4,13,30,31]:

∂Vsi
∂t

= ∑
k

QSCi,k + Qsei −Qsdi + RDTi (4)

(1− λ)
∂Vdi
∂t

= ∑
k

QSBi,k −Qsei + Qsdi − RDTi (5)

where Vsi represents the volume of suspended sediment load in the water body of cell i
and is equal to the area Ai multiplied by the water depth Di multiplied by the suspended
sediment concentration Ci; Vdi denotes the volume of alluvium in cell i; λ expresses
the porosity of bed material; QSCi,k and QSBi,k are the discharge of suspended load and
discharge of bed load from cell k to cell i, respectively; Qsei denotes the entrainment rate of
the riverbed or land surface of cell i; Qsdi represents the deposition rate of cell i; and RDTi
indicates the rainfall detachment rate of cell i.

Using the explicit finite difference method, Equations (4) and (5) can be expressed
as follows:

Cm+1
i =

(
∑
k

Qm
SCi,k

+ Qm
sei −Qm

sdi + Rm
DTi

)
AiDm+1

i

· ∆t (6)

∆Vdi
Ai

= ∆zi =

(
∑
k

Qm
SBi,k
−Qm

sei + Qm
sdi − Rm

DTi

)
Ai(1− λ)

· ∆t (7)

zm+1
i = zm

i + ∆zi (8)

This study built a total of 4407 computational cells on the basis of the hydrological
and physiographic data of the study area, with cell area ranging from 0.41 to 58.04 hectares,
as shown in Figure 4.
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2.3.2. The Depth-Averaged Two-Dimensional Bed Evolution Model

The depth-averaged two-dimensional bed evolution model is used mainly to simulate
discharge and sediment transportation over time in the reservoir. The depth-average
continuity and momentum equations of flow can be expressed as follows [32]:

∂h
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

= 0 (9)

∂(uh)
∂t

+
∂(u uh)

∂x
+

∂(u vh)
∂y

=
∂

∂x

(
2εxxh

∂u
∂x

)
+

∂

∂y

[
εxyh

(
∂u
∂y

+
∂v
∂x

)]
− τbx

ρ
− gh

∂H
∂x

(10)

∂(vh)
∂t

+
∂(v uh)

∂x
+

∂(v vh)
∂y

=
∂

∂x

[
εxyh

(
∂u
∂y

+
∂v
∂x

)]
+

∂

∂y

(
2εyyh

∂v
∂y

)
−

τby

ρ
− gh

∂H
∂y

(11)

where h is the water depth; H denotes the water surface elevation; u and v represents
the depth-average flow velocity components in x and y directions, respectively; εxx, εxy,
and εyy are the depth-average kinematic eddy viscosities of flow; ρ is density of flow; g is
gravitational constant; and τbx and τby indicate bed shear stresses τb in x and y directions,
respectively.

Using the explicit finite difference method, Equation (9) can be expressed as follows:

hm+1
i,j = hm

i,j + Ωh(hm, um, vm) (12)

where Ωh is the known function composed of h, u, and v at time tm.
The depth-average convective-diffusive equation of suspended sediment can be ex-

pressed as follows [14,15]:

∂
(
Ch
)

∂t
+

∂
(
uCh

)
∂x

+
∂
(
vCh

)
∂y

=
∂

∂x

(
Ex

∂C
∂x

)
+

∂

∂y

(
Ey

∂C
∂y

)
+ qse − qsd (13)

∂Z
∂t

+
1

1− λ

[
∂qbx
∂x

+
∂qby

∂y
+ (qse − qsd)

]
= 0 (14)

where C is the depth-averaged volumetric concentration of suspended load; Ex and Ey are
the sediment mass diffusivity; Z denotes the bed elevation; and qbx and qby represent the
bed load transport rate per unit width qb in the direction of x and y, respectively.
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Water discharge scouring the bed causes bed load. The bed load transportation rate
per unit width qb can be calculated by the Meyer-Peter and Müller equation shown as
follows [32]: (

kn

k′

) 3
2
γhS f = 0.047(γs − γ)dm + 0.25

(
γ

g

) 1
3
(

γs − γ

γ

) 2
3
qb

2
3 (15)

kn =
1
n

(16)

k′ =
26

d901/6 (17)

where γ is the specific weight of water; γs denotes the specific weight of sediment; S f is the
friction slope; n is the manning coefficient; dm is average particle size; and d90 expresses the
size diameter coarser than 90% of the grains in the sample.

Using the explicit finite difference method, Equations (13) and (14) can be expressed
as follows:

Cm+1
i,j =

Cm
i,j hm

i,j

hm+1
i,j

+ Ωc

(
hm, um, vm, Cm

)
(18)

Zn
i,j = Zn

i,j + Ωz

(
hm, um, vm, Cm

)
(19)

where Ωc and Ωz are the known functions composed of h, u, v, and C at time tm.
The depth-averaged two-dimensional bed evolution model used the result of deposi-

tion measurement of the reservoir from 2017 and used 10 m × 10 m regular grids to divide
the reservoir into 131,432 cells.

3. Results and Discussion
3.1. Analysis of Sediment Yield

As of the end of 2021, the Sediment–Sluice Tunnel of Zengwen Reservoir had experi-
enced eight typhoon rainfall events since its completion in November 2017. The 0823 rainfall
event of 2018 was chosen from the eight events mentioned above because it had the largest
estimated amount of sediment flowing into the reservoir. During the event, the amount of
sediment deposition that flowed into the reservoir from the mainstream alone amounted to
2.22 million cubic meters [33]. This study simulated sediment concentration distribution
from 04:00, 23 August to 00:00, 26 August, with the results shown in Figure 5. The first
peak flow discharge of the hydrological process occurred 14 h into the simulation (18:00, 23
August), had a discharge rate of 2186 cm, and was also the largest peak flow discharge of the
hydrological process. The first peak suspended sediment discharge occurred 16 h into the
simulation, with a discharge rate of 32.56 cm, while the largest peak suspended sediment
discharge occurred 23 h into the simulation, with a discharge rate of 34.59 cm. According
to simulation results, the mainstream and tributary resulted in a total of 3.25 million cubic
meters of sediment deposition subsiding in the reservoir. The mainstream in the simulation
deposited 2.42 million cubic meters of sediment into the reservoir, a 9% increase from what
was actually observed by the Southern Region Water Resources Office. This shows that the
PSED model can effectively estimate water flow and sediment deposition into reservoirs.

3.2. Analysis of Sediment Transportation in the Reservoir

To understand sediment transportation in the reservoir, the flow discharge and sus-
pended sediment discharge was simulated by the PSED model, and the results were used
as the boundary condition of the depth-averaged two-dimensional bed evolution model.
The simulated concentration of suspended sediment over time is shown in Figure 6. As
seen in the figure, suspended sediment started to enter the upper zone of the reservoir 12 h
into the simulation, with concentrations ranging from 1000 to 3000 ppm. At 24 h into the
simulation, with sediment from upstream entering the reservoir area, sediment concentra-
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tions gradually rose, reaching a maximum of 20,000 ppm while being transported toward
the lower zone. There was also a high turbidity current entering from the west during that
time, with sediment concentrations in the high turbidity current reaching 50,000 ppm. The
high turbidity flow originated from the bare lands adjacent to the reservoir’s west tributary,
an area prone to high turbidity flows due to also being in a landslide geologically sensitive
area. At 36 h into the simulation, suspended sediment had reached the reservoir’s lower
zone and had started exiting the reservoir via the spillway, PRO, and Sediment–Sluice Tun-
nel. At 48 h into the simulation, concentrations of suspended sediment in the high turbidity
current from the tributary remained high, but concentrations of suspended sediment in
the lower zone had begun to decrease. At 60 h into the simulation, the flow discharge and
suspended sediment discharge of the mainstream had decreased, and concentrations in
the reservoir dropped below 5000 ppm in almost all areas of the reservoir. Another high
turbidity current entered the reservoir toward the end of the simulation, however, and
caused regional suspended sediment concentrations to rise.
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3.3. Analysis of Erosion and Deposition in the Reservoir

The distribution of sediment concentration is highly correlated with the distribution
of sediment deposition already in the reservoir. The simulation of the 0823 rainfall event
flushed a total of 0.36 million cubic meters of sediment from the reservoir, an increase of
0.02 million cubic meters from the actual amount observed by the reservoir management
agency [33]. This showed that the PSED model could effectively estimate the amount of
flushed sediment. The simulated changes to sediment distribution are shown in Figure 7.
At 12 h into the simulation, with the sediment just arriving at the reservoir, bed elevation in
the reservoir had not changed by evident margins. At 24 h into the simulation, the upper
zone and the regions adjacent to the west tributary saw sparse deposition of approximately
0.2 m in height. With flow velocity in the reservoir decreasing along with the decrease
in discharge into the reservoir, large deposition areas occurred 36 h into the simulation.
The distribution of sediment deposition was similar to that of sediment concentrations,
with deposition height ranging from 0.2 to 0.4 m. Sediment deposition then increased in
size and height as time passed. At 60 h into the simulation, deposit areas had reached the
spillway of the reservoir. At the end of the simulation, the upper zone of the reservoir had
deposition height ranging from 0.4 to 0.6 m. On the other hand, the middle zone of the
reservoir was the most severely affected zone due to the high turbidity current that entered
the reservoir, with deposition height mostly within the 0.8 to 1.2 m range. However, parts
of the middle zone had 1.8 to 2.0 m high deposition.
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3.4. Discussion on the Effects of the Sediment–Sluice Tunnel on Reservoir Sedimentation

To discuss the impact building the Sediment–Sluice Tunnel has on sediment deposi-
tion in reservoirs, this study re-simulated the 0823 rainfall event with the Sediment–Sluice
Tunnel closed to simulate the scenario had the 0823 rainfall event occurred in the Zengwen
reservoir without the Sediment–Sluice Tunnel. The changes to sediment deposition dis-
tribution are shown in Figure 8. Simulations showed that sediment deposition occurred
mainly in the upstream and middle regions of the reservoir, and increases in deposition
amount were observed. The comparison of sediment deposition height distribution with
and without the Sediment–Sluice Tunnel is shown in Figure 9, with red areas in the figure
showing the regions with increased sediment deposition height after the Sediment–Sluice
Tunnel was built, and blue areas showing the regions with decreased sediment deposition
height. It can be seen from the simulation results that the Sediment–Sluice Tunnel had less
impact on the northern regions of the reservoir. The middle regions of the reservoir had
decreases of 0.2 to 0.6 m in sediment deposition height, and regions close to the spillway
had increases ranging from 0 to 0.2 m, when compared with the situation without the
Sediment–Sluice Tunnel.
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4. Conclusions

This study aims mainly to investigate the effects of the Zengwen Sediment–Sluice
Tunnel on the sediment transportation phenomenon by simulating flow discharge and
suspended sediment discharge with the PSED model and the distribution of sediment
concentration and deposition with the depth-averaged two-dimensional bed evolution
model. This study chose the 0823 rainfall event as the simulation case and simulated the
differences in sediment deposition height and distribution.

In the simulation with the Sediment–Sluice Tunnel, the reservoir’s middle zone had
the most severe sediment deposition, with most areas in the zone having 0.8 to 1.2 m high
deposition, and a few areas having 1.8 to 2.0 m high deposition. The upper and lower zones
of the reservoir had less sediment deposition, with heights ranging from 0.2 to 0.6 m and
0 to 0.2 m, respectively. When compared with the simulation without the Sediment–Sluice
Tunnel, it can be seen that deposition area and height decreased noticeably in the upper
and middle zones, while increasing in the lower zone after the Sediment–Sluice Tunnel was
built. Sediment deposition reduction was especially profound in the middle zone, with
deposition height decreasing by 0.4 to 0.6 m after the Sediment–Sluice Tunnel was built.
Large amounts of sediment were transported toward the lower zone, causing regional
deposition height to increase by 0 to 0.2 m.

The Sediment–Sluice Tunnel can effectively decrease sedimentation in the Zengwen
Reservoir and can transport sediment inside the reservoir closer to the lower zone of
the reservoir. However, due to the absence of rainfall events in the Zengwen Reservoir
watershed scouring large amounts of sediment into the Zengwen Reservoir after the
0823 event, the Sediment–Sluice Tunnel could not reach its full potential in recent years. In
similar situations, dredging boats or other dredging methods are recommended to extend
reservoirs’ service life expectancy.
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