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Abstract: In recent years, remote sensing technology has enabled researchers to fill the existing
statistics and research gaps on evapotranspiration in different land use classes. Thus, a remotely
sensed-based approach was employed to investigate how evapotranspiration rates changed in differ-
ent land use/cover classes across the Lake Urmia Basin from 2016 to 2020. This was accomplished by
applying the Surface Energy Balance System (SEBS) and the maximum likelihood algorithm. Results
showed that from 2016 to 2020, grassland, savanna, and wetland decreased by 1%, 0.58%, and 1%,
respectively, whereas an increase of 0.4%, 0.4%, 2.5%, and 1.2% occurred in cropland, urban, shrub-
land, and water bodies, respectively. Based on the model’s results, over 98, 63, 90, 93, and 91% of the
studied area, respectively, experienced a value of evapotranspiration between 0–6, 3–8, 0–4, 0–4, and
0–6 mm from 2016 to 2020. It was also found that these values are more closely related to water bodies
and wetlands, followed by cropland, urban areas, savanna, non-vegetated, grassland, and shrubland.
A strong correlation with R2 > 70% was observed between the SEBS and the ground-measured values,
while this value is lower than 50% for the MODIS Global Evapotranspiration Project (MOD16A2).
The findings suggest that evapotranspiration and land use/cover can be extracted on a large-scale
using SEBS and satellite images; thus, their maps can be presented in an accurate manner.

Keywords: actual evapotranspiration; Surface Energy Balance System; land use; Lake Urmia Basin

1. Introduction

Considering the rate of evaporation and transpiration as one of the main compo-
nents of the water balance is necessary for proper planning to improve the efficiency of
water use in agriculture and water resources management [1]. In general, the process
of evapotranspiration (ET) is defined as a combination of evaporation from the soil and
plant surface and transpiration through the plant canopy [2,3]. ET is a flux that links the
water and energy cycles of the biosphere, atmosphere, and hydrosphere. This interaction
is critical in meteorology (simulation of atmospheric processes), hydrology (runoff pre-
diction and groundwater level estimation), and agriculture (irrigation and tillage) [4,5].
Generally, it is divided into two main types: potential evapotranspiration (PET) and actual
evapotranspiration (AET).

Assessing ET variations enables us to better understand the balance of energy flow and
water [6]. This rate varies greatly in both space and time due to extensive spatial variation,
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rainfall, soil hydrological behavior, vegetation types, and density [7–12]. ET is among the
most difficult hydrological variables to quantify, and it is a challenging function to have an
accurate assessment of its spatial average [13]. Generally, four approaches can be identified
to calculate ET: (1) direct measurement such as using lysimeters, (2) hydrological methods
such as running a water balance model, (3) meteorological methods such as using an energy
balance model, and (4) empirical or combination methods [14]. These methods mostly
provide a point estimation of ET based on energy or climatic factors, which certainly are
not suitable for large-scale evaluation. Complexity in the hydrologic process and natural
heterogeneity of the earth’s surface as well as requirement of atmospheric factors to run
them, limit these measurement techniques to be applicable on a wide scale [15]. Nowadays,
by increasing applied remote sensing techniques in environmental modeling, it can provide
the possibility of predicting ET using actual meteorological data and satellite imagery
regional scale areas [16,17].

Earth observation (EO) technology has recently enabled the collection of regional data
and the development of numerical climate models to study the actual evapotranspiration
of the Earth’s surface [4,18]. Covering a large area, frequent updates, and consistent quality
are the main advantages of using them [19,20]. Accordingly, multiple algorithms based on
meteorological input data and EO data have been developed to estimate evapotranspira-
tion. Established methods include single-source models such as Surface Energy Balance
Index (SEBI) [21], Surface Energy Balance Algorithm for Land (SEBAL) [21], Simplified
Surface Energy Balance Index (S-SEBI) [22], Surface Energy Balance System (SEBS) [23],
and Mapping Evapotranspiration at High Resolution and Internalized Calibration (MET-
RIC) [24]; and two-source models such as Series Two-Source Energy Balance (S-TSEB) [25],
and Parallel Two-Source Energy Balance (T-TSEB) [26,27].

Each of these models has varying degrees of accuracy depending on the input data
type and quality, as well as their assumptions at various stages of development. The
Surface Energy Balance System (SEBS) is one of the regional ET estimation models based
on remote sensing techniques. It is a physical model with an appropriate scale that includes
the physical state of the surface as well as aerodynamic resistances to estimate daily
evaporation [28]. So, applying SEBS with the time series of the satellite imagery product is
a successful procedure and was confirmed by several researchers [3,29–32].

Furthermore, as a hydrological component, the AET variable is closely related to
changes in land use/cover (LULC) [33].

For energy balances and a proper understanding of regional hydrological cycles, the
distinct effects of land-use change on ET must be quantified [30]. This ensures superior
performance and conservation of ecosystem services and efficient water resource manage-
ment [34]. Hence, a wide range of studies were dedicated to calculating EO-based data
for ET and LULC classification worldwide [1,18,21,30,35–38]. For instance, Li et al. [30],
used MODIS data products to evaluate the impact of LULC and climate changes on ET
in China from 2001–2013. Outcomes revealed that from 2001 to 2013 the annually ET
decreased by 0.6 mm. The SEBAL model was used by Chemura et al. [1] in order to es-
timate interception, transpiration, and ET contributions in the Buzi basin in Zimbabwe.
Results showed that the highest amounts of ET where the land cover type named tea
had the highest water interception rate. Among the climatic factors, sunshine duration,
and wind speed, as well as LULC, the reduction in forest area had the greatest impact
on ET. However, climate change impacted ET more than LULC changes overall. Gibson
et al. [39] conducted a review of energy balance methods in South Africa, concluding that
the SEBAL model is the most widely used, but they also highlighted the potential of the
SEBS model. It was recommended by them that any future research on the SEBS model in
South Africa should be limited to agricultural areas with accurate vegetation parameters,
high-resolution imagery with low sensor zenith angles, and complete canopy coverage.
There have also been a number of studies demonstrating biases in the use of MODIS data
to estimate evapotranspiration. For example, Srivastava et al. [40] and Autovino et al. [41]
used MODIS data to estimate evapotranspiration. Based on the results, the MODIS-ET
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values are highly underestimated with periodic shifts. The shadows cast by leaves and
cloud cover were considered responsible for this underestimation. It is noteworthy that
the use of different models to measure ET is associated with uncertainties that can affect
the management of water resources [42]. According to Jung et al. [43], land surface models
and diagnostic ET datasets were compared and uncertainty was calculated as the standard
deviation of the differences between grid cells within the image, and the sensitivity of the
inputs such as meteorological forcings and land cover types were also studied. Overall,
the literature review confirms that the use of MODIS data in tandem with actual measured
data is capable of providing more accurate estimates of evapotranspiration.

Shortage or unavailability of water in arid and semi-arid regions such as Iran is
becoming a serious issue, and because of this, estimation of AET is a key function to
water resources management. The Lake Urmia Basin (LUB) as a semi-arid area located
in the northwest of Iran, is currently facing major problems such as population growth,
industrial development, high use of river water, high evaporation rate, and continuous salt
deposition, which has resulted in Lake Urmia’s high salinity [44]. Changes in LULC classes
in this region, such as dam construction, water diversion, and rangeland degradation,
can exacerbate these issues. If the process of exploiting water resources and making
inappropriate land use decisions is not controlled, the lake gradually shrinks.

Although a range of studies have classified land classes and derived ET based on
EO data in the LUB [44–46], most of these studies focused on the search of the potential
ET and some specific land types such as agricultural lands in this basin. There are only a
few studies that analyzed the variation in actual ET regarding LULC classes in this basin.
Therefore, in this research, a remote sensing model (SEBS) is used to retrieve the AET
in the LUB from 2016 to 2020, with the results being validated with a MODIS product
named MOD16A2. Then, LULC classes are detected and categorized using the maximum
likelihood algorithm. This study also seeks to answer the following questions: (1) Which
LULC classes have the greatest impact on AET value in the LUB? (2) How do different land
use/cover classes affect the SEBS and MODIS production models? In general, it can be
acknowledged that the general purpose of the present study is to investigate the changes
in the amount of evapotranspiration in different LULC classes by using satellite images.
It is important to note that two main reasons motivated the selection of the LUB as the
case study. The first issue is that there have been few studies on the hydrology system and
climatic conditions within the basin until now. Secondly, there are very limited hydrological
and meteorological data for this basin, as well as poor quality and gaps in the data.

The remainder of this paper is structured as follows. Section 2 describes the SEBS
model, MOD16A2, and LULC extraction, as well as how they are implemented. Section 3
describes the SEBS model execution results and extracted LULC maps and compares the
outputs of SEBS and MOD16A2 in distinct LULC classes. The fourth section looks at the
relationship between LULC changes and retrieved AET values from the SEBS, MOD16A2,
and measurement gauges. Section 5 concludes the paper with the study’s findings.

2. Materials and Methods
2.1. Study Area Description

The LUB is located northwest of Iran at an altitude of 1274 m. Lake Urmia is the second
largest saltwater lake in the world [47] and also the largest inland lake in Iran with an area
of 51,800 km2. According to the latest divisions of the country, this lake is divided between
the two provinces of East Azerbaijan and West Azerbaijan and is located between the
longitude of 44 to 48 degrees east and the latitude of 35 to 38.5 degrees north (Figure 1). The
length of the lake is 130 km to 146 km2. The width is 15 to 58 km2. This basin, with plains
such as Tabriz, Urmia, Maragheh, Mahabad, Miandoab, Naqadeh, Salmas, Piranshahr,
Azarshahr, and Oshnoyeh, is an important area for agricultural and livestock activities in
Iran. This is one of Iran’s six major basins, and its altitude ranges from 1280 to 3600 m
AMSL [48]. This lake has 102 small and large islands and an average depth of about 6 m [37].
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2.2. Research Methods

Classifying LULC types and observing their impacts on the rate of AET includes the
following steps: (1) data collection (collect ET data from four gauge stations) and image
pre-processing (Operational Land Imager (OLI) Landsat 8 and MOD16A2 product with a
30 and 500 m spatial resolution, respectively), (2) extract LULC classes using the maximum
likelihood algorithm based on satellite imagery and then estimate AET values based on the
SEBS model, and finally (3) assess the relationship between different estimation sources of
AET (ground-measured values, the SEBS model, and the MOD16A2 product). All these
steps are illustrated in Figure 2, and all used data are listed in Table 1.
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Table 1. Data description used in this study.

Data Type Dataset Date Source
Reference Band Number Calculation

Method

Satellite images

Landsat

Landsat 8 OLI
(path/row: 168/33,

169/33, 168/34, 169/34,
and 168/35, 169/35

14 June 2016 WGS84 2,3,4,5

-
14 June 2017 - -
14 June 2018 - -
14 June 2019 - -
14 June 2020 - -

MODIS
MOD021KM,

MOD16A2, MOD03

14 June 2016 WGS84 1,2,3,4,5,7,
17,18,19,31,32

-14 June 2017 - -
14 June 2018 - -
14 June 2019 - -
14 June 2020 - -

Evaporation Ground gauge
From 8th June
to 14th June of

each year
Point data - Accumulative

Precipitation Ground gauge
From 8th June
to 14th June of

each year
- - Accumulative

Temperature Ground gauge
From 8th June
to 14th June of

each year
- - Average

2.2.1. Image Preprocessing

Because of the area size of the basin, six landsat images with different paths and rows
for each year (from 2016 to 2020) including 168/33, 169/33, 168/34, 169/34, 168/35, and
169/35 and MODIS images were acquired through the United States Geological Survey
(NASA Earth data search n.d.). To reduce the effect of seasonal and phenological changes,
the images were selected on 14 June for all years studied with less than 5% cloud cover [49]).
The Fast Line-of-sight Atmospheric Analysis of Hypercubes (FLAASH) pattern and Iter-
atively Reweighted Multivariate Alteration Detection (IR-MAD) were respectively used
for atmospheric and radiometric corrections. As seen in Table 1, UTM was used as the
coordinate system in all images data in this study. All processes were performed with ENVI
software version 5.4.

2.2.2. Land Use/Cover Classification

Following image correction, LULC types were classified into eight major groups:
(1) croplands, (2) grasslands, (3) non-vegetated, (4) savannas, (5) shrublands, (6) urban
areas, (7) water bodies, and (8) wetlands (presented in Table 2). Then, using ENVI software
version 5.4, training points were chosen for each of those classes based on land cover
information. To extract and classify LULC maps, the maximum likelihood algorithm was
used. The main classification technique for land remote sensing imagery in this algorithm is
calculating the probability of a pixel belonging to each land cover class and then dividing it
into the most probable category. The ability to interpret parameters, simple implementation,
and easy fusing with prior knowledge are the main advantages of this method [44,50–52].



Water 2023, 15, 1068 6 of 20

Table 2. Visual characteristics of the areas to assess accuracy in the LUB source area.

LULC Interpretation Criterion Image Photograph

water bodies At least 60% of area is covered
by permanent water bodies
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Table 2. Cont.

LULC Interpretation Criterion Image Photograph

Urban

At least 30% impervious
surface area including

building materials, asphalt
and vehicles
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2.2.3. The SEBS Model Description

Su [23] developed the SEBS algorithm for estimating heat flux by combining satellite
data and meteorological field data. This algorithm, as demonstrated by van der Kwast and
de Jong [53], can accurately estimate atmospheric turbulence flux and surface evaporation
from a single point to the continental scale. The SEBS includes a set of tools for measur-
ing spectral reflectance and radiation to determine the physical parameters of the land
surface, such as temperature, albedo, emissivity, brightness temperature, and vegetation
coverage [23]. It estimates the actual daily ET by calculating the energy required to change
the water phase from liquid to gas using remote sensing and meteorological data [39].

Earth’s energy budget (EEB) is usually referred to as a balance between the energy
coming into the Earth system from the Sun at the top-of-atmosphere (TOA)—denoted as
incoming shortwave radio reflux F0—against energy lost to space that consists of reflected
shortwave (Fs) and emitted long-wave (Fl) radiative fluxes. EEB at the TOA, often called
energy imbalance, can be characterized by net radiation between incoming (F0) and out-
going radiative fluxes (Fs and Fl) accounting for the remainder of the Earth system—land
surfaces, oceans, and atmosphere:

Fn = F0 − FS−F1 = F0(1 − aTOA)−F1 (1)

where a TOA is the planetary albedo, or Bond albedo, defining the fraction of incident
global mean shortwave radiative flux reflected to space [54].

According to Su [23], the surface energy balance can be expressed as Equation (2). All
required data in the equation were extracted from the landsat metadata file of each year:

Rn = G0 + H + λE (2)

Here, Rn is the net radiation, G0 is the soil or water heat flux, H is the sensible heat
flux, and λE is the latent heat flux (λ is the latent heat of vaporization and E is the actual
evapotranspiration). The net radiation is calculated using Equation (3):

Rn = (1 − α)·Rswd + ε·Rlwd − ε·σ·T4
0 (3)

Here α is the albedo, Rswd is the downward solar radiation, Rlwd is the downward
longwave radiation, ε is the surface emissivity, σ is the Stefan-Boltzmann constant, and T0
is the surface temperature in Kelvin.
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The soil or water heat flux is calculated using Equation (4):

G0 = Rn·[Γc + (1 − fc)·(Γs − Γc)] (4)

In this equation, Γc the ratio of soil heat flux to net radiation for dense vegetation is
considered to be 0.05. Γs The ratio of soil heat flux to net radiation for bare soil is considered
to be 0.315. fc is a partial canopy coverage that can be calculated using remote sensing data.

Energy balance at limiting cases is used to calculate the evaporation fraction. The
evaporation fraction in SEBS is obtained using the sensible heat flux. Under dry conditions
the latent heat flux is minimal and can be ignored, in which case the energy balance
equation can be summed as Equation (5):

λEdry = Rn − G0 − Hdry = 0, or (5)

Hdry = Rn − G0

In wet conditions, the actual evapotranspiration reaches the potential evapotranspira-
tion, in this case we obtain (Equation (6)):

λEwet = Rn − G0 − Hwet, or (6)

Hwet = Rn − G0 − λEwet

Then the energy balance mode on dryness and wetness is used to estimate the relative
evaporation fraction (Λr), as in Equation (7):

Λr = 1 − H − Hwet

Hdry − Hwet
(7)

The evaporation fraction is estimated from Equation (8):

Λ =
λE

Rn − G0
=

Λr·λEwet

Rn − G0
(8)

The daily evaporation can be expressed as Equation (9):

Edaily = λE/λρw (9)

Here, Edaily is the daily evaporation (mm.day−1); PW is the water density (kg·m−3);
λE latent heat (W·m).

In this study, the SEBS model has been run with inputs derived from a MODIS image
and meteorological field data.

2.2.4. MOD16A2 AET Product

The NASA MOD16A2 product provides 500-m 8-day global ET estimates extending.
The product was collected from the NASA Earth data search website (NASA Earth data
search n.d.), as the dataset: “MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500 m
SIN Grid V006”. The function of this product is based on the Penman–Monteith equation
(NASA Earth data search n.d.). Since the primary estimated values of this product range
between −32,767 to 32,700 for a region, those values certainly required to be corrected
regarding the defined scale factor (this scale is 0.1 for ET). Thus, to gain the real value of
ET, the value of each pixel was multiplied by 0.1 (as the scale factor). Missing values of
this range were filled using the local mean of a 3 by 3-pixel window. These processes were
executed in ENVI 5.4.
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3. Results
3.1. Land Use/Cover Assessment

Figure 3 shows the spatial pattern of LULC types. It can be stated that for every
5 years studied, the area of the water bodies class has increased with a certain trend. So,
its area was estimated as 4.7 percent (2515.4 km2) of the total basin area in 2016, while it
reached 5.9 percent (3166 km2) in 2020. Wetlands have had a downward trend in the same
period, so in 2016 it was approximately 2.97 percent (1592.3 km2) of the total LUB area,
then it reached around 1.93 percent (1033.5 km2) in 2020. Grasslands covered about 43%
(23,304 km2) and 42% (22,723.6 km2) of the whole basin in 2016 and 2020, respectively.
Shrublands coverage has decreased in the years 2017 and 2019, whereas its area has in-
creased in the years 2018 and 2020. In 2016, this coverage was estimated as 7%
(3750.4 km2), and in 2020, 9.5% (5126 km2) of the whole basin area. The savanna area
in the years 2017, 2018, and 2019, respectively, 0.70% (369.3 km2), 0.40% (208 km2), and
0.72% (387.6 km2), compared to 2016 (8.58 %, 4596.6 km2) has increased, while in the year
2020, its area decreased by 0.5% (270 km2) and reached 4226 km2 (8% of the total basin
area). Urban areas have had an upward trend over the same period, so in 2016, the area
was estimated at 7.8%, while in 2020 it was estimated at 8.2%. The study of non-vegetated
lands showed a decrease in the area by 2.5%, which was equal to 1350.5 km2, between 2016
and 2020. Croplands with an area of 8908.7 km2 (16.6%) in the year 2016 have reached an
area of 9120.1 km2 (17%) in the year 2020, which indicates an increase in the area of this
land cover class, and this change is equal to 0.4% of the area. As a result, based on the
above statistics, the most extensive types of LULC are grassland, cropland, savannas, and
non-vegetated, respectively.
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The confusion matrix was used to estimate the accuracy of the maximum likelihood
classification method. For this purpose, several samples for each land class were selected
from Google Earth, and then the overall accuracy (OA) was applied between these samples
and their corresponding points on the extracted LULC maps. About sixty-five samples
were randomly selected for each of the eight categories as a validation sample. Finally, the
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overall classification accuracy based on the OA in 2016, 2017, 2018, 2019, and 2020 was
estimated at 86, 89.6, 92.7, 90, and 83.2 percent, respectively (Table 3).

Table 3. Classification accuracy verification values.

Year LULC Class Water
Body

Shrub
Land Savanah Grassland Wetland Cropland Urban Non-

Vegetated
Overall

Accuracy

2016 Produce’s
Accuracy (%) 96.6 67.4 75 79.3 93.4 68.8 67.2 80.5 86

2017 Produce’s
Accuracy (%) 98.3 76.3 72.8 72.1 95.7 68.5 70.3 83.6 89.6

2018 Produce’s
Accuracy (%) 98.7 72.5 77.9 74.6 94.6 68.8 73.4 79.6 92.7

2019 Produce’s
Accuracy (%) 99.1 76.7 74.1 72.3 95.8 66.2 72.4 82.7 90

2020 Produce’s
Accuracy (%) 96.5 73.6 69.3 74.4 96.2 66.4 65.8 78.6 83.2

3.2. Retrieval AET from the SEBS

Actual evapotranspiration estimated based on the SEBS algorithm for the years 2016,
2017, 2018, 2019, and 2020 is presented in Figure 4. The developed maps showed temporal
and spatial variations in the AET rate inside the basin. Spatial variations are primarily
due to changes in LULC types, plant types in arable lands, and plant cultivation dates.
In contrast, temporal changes can result from changes in air temperature and vegetation
density in different years. As shown in Figure 4A,B, the AET with higher values were
in 2016 and 2017 as we moved northward in the basin. In Figure 4A, 51% of the area
experienced AET values in the range of 0 to 4 mm, 48% had 3 to 6 mm, and only 1% had
6 to 8 mm. In 2017 (Figure 4B), 51% of the region had AET values between 3 to 6 mm,
and 12% had 6 to 8 mm. In 2018 (Figure 4C) and 2019 (Figure 4D), the amount of AET
decreased so that more than 90% of the region experienced values between 0 to 4 mm. In
2020 (Figure 4E), we observed an increase in this amount, so 59%, 32%, and 9% of the region
had values between 0 to 4 mm, 3 to 6 mm, and 6 to 8 mm, respectively. These substantial
spatial changes in AET values from distinct years but at the same date would be justified
only by considering climate variables such as temperature and precipitation, as shown in
Figure 5. In the years 2018 and 2019, the rate of temperature has relatively raised by 2 ◦C
compared to the other years. Likewise, the average amount of precipitation in these years
has fallen and was recorded close to zero for the whole area. Thus, regardless of each land
class’s effect, any changes in climate variables would affect the AET value. Additionally,
Figure 6 shows the changes in monthly precipitation and temperature versus ET variation.Water 2023, 15, x FOR PEER REVIEW 11 of 21 
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Figure 4. Spatial pattern of AET values estimated using SEBS model across the LUB for the years
2016 (A), 2017 (B), 2018 (C), 2019 (D), and 2020 (E).
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14/June for years 2016, 2017, 2018, 2019, and 2020.
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Figure 6. Changes in monthly average of precipitation and temperature versus ET variations Figure 7
shows the area changes in AET values in different years. Graphs for 2016 and 2017 revealed that
all LULC classes experienced a high amount of AET. Due to seasonal rains, some moisture in soil
layers has evaporated. However, in 2018 and 2019, hot and dry conditions prevailed, and there was
no water for evaporation. The graph for the year 2020 shows the minimal amount of AET. In all years,
the corresponding graph shows an increased value of AET in the range of 5 mm to 7 mm, which is
related to water bodies and wetlands.
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Figure 7. Area changes in AET from SEBS model during 2016 to 2020 in the LUB.

3.3. AET and LULC Relationship

Figure 8 illustrates the variation in actual evapotranspiration throughout distinct
LULC types. The horizontal axis shows different land classes, and the left vertical axis
shows the percentage of evapotranspiration volume based on the area of each class and the
percentages of the LULC classes’ areas. On the opposite side, the vertical axis presents the
ratio of the percentage of AET to the percentage of each LULC area specified. As shown in
the Figure, the type of LULC with water bodies and wetlands has the lowest percentage of
the area (0.06% and 0.03%). Their total volume of evapotranspiration is also low (0.12 and
0.03). However, the ratio of evapotranspiration to the percentage of area in these types of
LULC compared to other LULC types has the highest amount because of the presence of
water (1.99 and 1.65). Savannas, solitary trees, and shrubs have more water in their plant
fibers than grassland and annual plants. Therefore, the ratio of evapotranspiration to the
percentage of area in this type of LULC is also high (1.13). In cropland, the high ratio of
evapotranspiration to the percentage of area is due to irrigation (1.27). Urban areas have
hand-planted trees and urban water drainage canals, so increasing the evapotranspiration
ratio to the area percentage is close to the average (1.16). Another class, which is called
non-vegetated, cannot establish any plant due to its vicinity to the lake and high salinity.
However, because of the high level of groundwater, the evapotranspiration rate is high
compared to the percentage of this land class (0.92). Most of the areas are covered by
grassland, so the percentage of area under the denominator is a large number. On the other
hand, it seems that at the date the image was taken, grassland had little or dried vegetation,
so the ratio of evapotranspiration to the percentage of area decreased. Given the results,
the rate of AET is more related to water bodies and wetland types, followed by cropland,
urban areas, savanna, non-vegetated, grassland, and shrubland.
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Figure 8. AET volume (%), the percent area of each LULC type, and the relationship between them in
the LUB.

Figure 9 provides the amount of AET differences between selected LULC classes from
northwest to southeast of the Lake Urmia Basin. As shown in Figure 9, water bodies and
wetlands are marked with blue and green dots at their highest level on the graph, while the
areas around these classes indicate lower AET values. The red dots indicate croplands. As
stated in the Figure 8 description, due to farming practices and irrigation, the amount of
AET in these parts is higher than that in urban and non-vegetated areas. The figure clearly
reveals a high rate of AET in the areas where water bodies, wetlands, and agricultural
land are prevalent. Likewise, it shows a low rate of AET in regions covered by grassland
and savanna.
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3.4. Comparison of AET Values Obtained in Different LULC Types

The output of both SEBS and MOD16A2 models was compared with the ground
measured values of AET, and their correlations were evaluated using two methods of
ordinary least square (OLS) and geographically weighted regression (GWR) [55] (see
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Table 4). Based on the table, R2 obtained from both GWR and OLS methods is more than
70% for the SEBS model, while less than 50% for MOD16A2. Likewise, R2 estimated in
GWR is more significant than its value in the OLS method for both models.

Table 4. Comparison of SEBS output model, MOD16A2 data, and ground measured data (mm) in
the LUB.

Station Name 2016 2017 2018 2019 2020 R2 (GWR) R2 (OLS)

gauge #A 5.6 5.3 1.8 4.3 1.1 - -

SEBS model 4.7 4.4 2 5.4 2.2 0.779 0.741

MOD16a2 7.9 9.9 8.6 7.4 4.2 0.404 0.434

gauge #B 4.9 3.9 4.3 2.1 3.8 - -

SEBS model 4.2 4.3 3.8 2.5 4.3 0.732 0.712

MOD16A2 9.3 6.9 5.3 3.9 9.4 0.470 0.435

gauge #C 2.1 4.8 1.6 0.3 4.2 - -

SEBS model 1.8 4.5 0.9 0.8 4.7 0.968 0.846

MOD16A2 6.3 8.9 5.7 6.2 6.4 0.509 0.476

gauge #D 4.8 5.1 4.9 4.4 6.3 - -

SEBS model 5.2 5.5 4.2 3.7 6.4 0.767 0.713

MOD16A2 6.7 7.4 4.3 7.3 9.2 0.365 0.370

The descriptive correlations derived from the SEBS and MOD16A2 model estimates
computed using different land cover classes in the LUB are given in Figure 10. From the
figure, the SEBS vs. MOD16A2 performed well for the wetlands (r = 0.89), croplands
(r = 0.74), shrub lands (r = 0.67), and water bodies (r = 0.66). Likewise, results showed a
weak performance in this comparison for the grassland class (r = 28). It is notable that
the MODIS product calculates relatively higher AET values compared to the SEBS model,
especially for some LULC classes such as savanna and grassland, which suggests the weak
performance of MOD16A2 in an arid region as opposed to the SEBS model.
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Figure 10. Comparison of estimated AET of the SEBS and MOD16A2 models across different land
use/cover types from 2016 to 2020.
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Lastly, we focused on the differences that appeared between the SEBS model, MOD16A2,
and observed AET values; the simulated values from each of them were visualized for
2017 (Figure 11). Figure 11B reveals that many small and large areas (black colors) cannot
be simulated with MOD16A2. These areas mostly include water bodies, lakes, and snow-
capped mountains due to the lack of vegetation cover. Another slip that can be obtained
from the figure is an overestimation of MOD16A2 (Figure 11B). This overestimation is well
observed in vegetated areas, and it had been simulated as 10 times greater than the SEBS
simulated values in some places.
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Figure 11. Visualization of estimated and observed AET in the LUB for the SEBS (A), MOD16A2 (B),
and gauge stations (C) for 14 June 2017.

4. Discussion

This study used the SEBS algorithm to determine the actual evapotranspiration rate for
each land use/cover class in the Lake Urmia Basin using MODIS and Landsat images. Most
areas had an AET value between 0 and 4 mm in 2016, 2018, 2019, and 2020, while a large
percentage of the basin had an AET value between 3 and 6 mm in 2017. Because the study
area is in an arid and semi-arid region, the rate of AET varies from year to year and does
not follow a consistent pattern. This rate can be affected by rainfall and cropland irrigation,
as W Senkondo, Tumbo, and Lyon [2] predicted that cropland evapotranspiration would
increase due to rain-fed irrigation.

Distinct land cover types were classified using the maximum likelihood algorithm
from 2016 to 2020, and their accuracy was assessed by applying a confusion matrix. The
highest and lowest OA of this classification are calculated in 2018 and 2020 with 92.7%
and 83.2%, respectively. Based on the findings, OA values for water bodies and wetlands
are higher than the values in the other classes, particularly in croplands and urban ar-
eas. Overall, according to the results obtained from all land classes (OA > 83%), it can
be concluded that the accuracy level for extracting and classifying LULC maps in this
study area is acceptable. Based on the extracted maps (Figure 2), grassland is the domi-
nant land cover in the basin, with an average area of 23,685 km2 (44% of the total basin
area). Cropland is the second most common type of LULC, accounting for approximately
9000 km2 (16% of the total basin area) and mostly located around the lake. According
to the findings, grassland and cropland areas decreased and increased by approximately
580 km2 and 210 km2, respectively, from 2016 to 2020, with cropland increasing being
the primary reason for grassland reduction. These findings are consistent with those of
Farokhnia, Moradi, and Delvar [56] as well as Kamali and Yunes zadeh [57]. From 2016 to
2020, the area of water bodies and urban areas increased slightly, while the size of wetlands
decreased slightly.

We found a significant relationship between LULC types and AET values which is in
agreement with past studies [30,33,37,55]. As shown in Figure 7, the ratio of AET to area in
grassland is lower than in other LULC classes, particularly in water bodies and wetlands.
This is due to the date of the images used in the study and the evaporating water in the
land at the time. This figure also reveals an increase in AET for areas with irrigation crops
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or bodies of water. The majority of the energy available in these areas is spent on the AET
process, resulting in a decrease in temperature in these areas (the results are not presented).
In addition to other environmental factors, the effect of LULC on actual evapotranspiration
can be evaluated by analyzing changes in surface temperature. Pourmohammadi et al. [58]
also demonstrated that differences in evapotranspiration caused by different land classes
resulted in significant changes in surface temperature. Although the percentage of area
in water bodies and wetlands is the lowest, the ratio of AET to the percentage of area in
these classes is the highest compared to other classes due to the presence of water. Thus,
given the question “which LULC classes have the major impact on AET value in LUB?”,
our findings indicated that the highest AET values were observed for wetlands and water
bodies, and the lowest levels were observed for grassland and shrub land areas, respectively.
Eventually, the findings of this section confirm earlier studies that reported different AET
rates between land classes [33,36,38].

AET estimates are driven by a temporal distribution that is characterized by sea-
sonal changes in potential evaporation and water resource availability. As a result, AET
estimates for a specific land cover type may deviate from the natural distribution over
time. Other factors, such as the topography of a land class, may influence the distribution
of values within the same land cover class. Therefore, SEBS and MOD16A2 production
models were compared to determine how the SEBS and MODIS production models react
to different LULC classes. On the same time scale, the results indicated that the SEBS
model had a higher capacity than the MOD16A2, so that both ordinary least square (OLS)
and geographically weighted regression (GWR) estimated r2 > 70 and r2 < 50 for these
models, respectively; these results are in line with Jahangir and Arast [59]. The SEBS
model, for example, performed well in estimating AET in some LULC classes, such as
water bodies, wetlands, cropland, and shrublands, whereas MOD16A2 overestimated AET
in these classes. Furthermore, MOD16A2 levels in savanna and grassland classes were
substantially higher than those measured on the ground. This model also has a low spatial
resolution, so in some cases, the low resolution of input data can play a significant role in
evaluating results [55].

The study’s findings revealed that the type of LULC and the rate of change for
each land class are the main non-climatic factors influencing AET value at different
scales. Although some earlier studies have investigated ET variations versus LULC in
this basin [49,51,52], they mostly evaluated potential ET and specifically interpreted a few
general land types. However, determining different values of actual ET regarding different
LULC types with a precise categorization is the advantage of this research. Meanwhile,
both anthropogenic and natural resources should be considered to observe changes in
evapotranspiration, and such models should probably be coupled with climate or atmo-
spheric models to obtain more accurate feedback. In other words, accurate information
about land layers is necessary to achieve a better estimate of the AET rate, and coupling a
LULC change model with such models is essential for a reasonable prediction of the future
that takes into account climatic factors such as precipitation and temperature. This study
provides an entry point for LULC changes and how to affect the AET rate. As a result, the
findings of this study should be interpreted as a means of discussing and raising awareness
of the effects of LULC changes for policy makers and planners in Lake Urmia Basin, the
basin which is susceptible to any anthropogenic activity.

5. Conclusions

This study aimed to investigate remotely sensing-derived evapotranspiration and its
spatial and temporal correlation with land use and land cover. As such, land classes were
divided into eight main categories. OA for this classification was estimated more than
83.2%, for all the studied years. Therefore, given the achieved results, we conclude that the
accuracy of extracting and classifying LULC maps is acceptable. It was observed that from
2016 to 2020, the spatial variations in the LULC types were found to be as follows; grassland
changed from 43% to 41%, cropland was 17% to 15%, savanna and non-vegetated was 8%
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to 7%, urban and shrub land was 7% to 9%, water bodies 4% to 5%, and wetland was 2% to
1.5%. Results also revealed that the most extensive LULC types are grassland, cropland,
and shrubland, respectively. Most area changes were taking place in shrubland, with a
~1375 km2 area, followed by non-vegetated water bodies and grassland. Our findings
suggest that about 98% of the studied area experienced values between 0–6 mm in the
year 2016. Likewise, over 63%, 90%, 93%, and 91% of the region have experienced values
between 3–8, 0–4, 0–4, and 0–6 mm in years 2017, 2018, 2019, and 2020, respectively.
Comparing AET values to LULC types, the changes revealed that the rate of AET is
mostly associated with water bodies and wetland types, followed by cropland, urban areas,
savanna, non-vegetated, grassland, and shrub land. R2 of the SEBS model for both the
ordinary least square and geographically weighted regression methods was over 70%, while
it was less than 50% for MOD16A2. Hence, the results indicate a more accurate correlation
between the SEBS output and the measured ground values as opposed to the MOD16A2.
Our results also revealed that the AET in some land cover classes, such as savanna and
grassland areas, is more than the real values, which indicates a weak performance of
MOD16A2 vs. the SEBS model in a semi-arid area.

Assessment of spatial changes in AET between different LULC types is a reliable
way to understand how to manage each pixel of land in order to mitigate this rate of
evapotranspiration. Additionally, the methods employed here for point-based (stationary)
AET calculation enable each user to compute AET, and the spatial distribution and zoning
of AET in a region map would certainly allow for spatial water management. This will be a
step forward in terms of water conservation and allocation to each basin area.

As a result of comparing the present study with previous similar studies, it is evident
that, unlike previous studies that examined the changes in ET primarily in a few land
use classes, the present study examined the changes in ET in all land use classes while
extracting land use classes with high accuracy. Another important point is that the present
study did not limit itself to satellite data and compared the results obtained from the SEBS
model and the MOD16A2 product with observational five-year data by preparing ground
data. It should also be noted that the SEBS model is also a relatively new model that was
developed with the development of remote sensing technology and has only received
special attention in studies of recent years. All these things can be stated as innovations of
the present study.

To summarize, although land cover types and land-use practices impose a signifi-
cant impact on the change in actual evapotranspiration, meteorological dynamics such
as precipitation and temperature play a more decisive role in determining the rate of
evapotranspiration in the LUB. Additionally, we strongly recommend considering other
climatic parameters for the modeling and predicting of ET in the study area for future
studies. In addition, the present study was limited by the lack of available data for a longer
period of time. Consequently, in future research, in selecting the study area, care should
be taken to ensure that sufficient meteorological stations and actual data are available
for extended periods. The availability of observed data for a longer period will also pro-
vide the possibility of conducting research similar to the current research but with more
reliable outcomes.
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