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Abstract: Because of differences in the underlying surface, short flood confluence times, extreme
precipitation, and other dynamic parameters, it is difficult to forecast an inflow flood to a basin
reservoir, and traditional hydrological models do not achieve the forecast accuracy required for flood
control operations. This study of the Fengshuba Reservoir in China evaluated the capacity of the
Liuxihe model, which is based on a physically distributed hydrological model, to predict inflow floods
in the Fengshuba Reservoir. The results show that the Liuxihe model has good applicability for flood
forecasting in the basin. The use of different river classifications influenced the simulation results.
The Liuxihe model can take into account the temporal and spatial inhomogeneity of precipitation
and model parameters can be optimized using particle swarm optimization; this greatly improves
the accuracy. The results show that the Liuxihe model can be used for real-time flood forecasting in
the Fengshuba Reservoir watershed.

Keywords: Liuxihe model; flood forecast; river classification; forecast accuracy

1. Introduction

The basin flood forecasting models commonly used in China (and in other countries)
can be divided into two types: lumped [1,2] and distributed models [3,4]. Representative
lumped models include the Stanford [5], ARNO [6], and Xinanjiang models [7]; lumped
models have the advantages of having fewer parameters, a faster computational speed,
and their structures are easy to adapt to specific watershed characteristics. However, their
reservoir inflow flood forecasting accuracy is not high [8,9]. The main reasons for this
are as follows. First, these integrated models consider the watershed as a whole, i.e., the
spatial characteristics within the watershed are not considered, and the models do not
reflect the real watershed topography, soil cover, land type, or rainfall conditions [10].
Second, the flooding process is highly sensitive to rainfall, and integrated models cannot
capture the spatial distribution of precipitation in the watershed [9]. In addition, integrated
models require more historical flood data, and it is necessary to calibrate the parameters
for each individual flood. For forecasting, the parameters closest to the historical flood
data are selected but the error is relatively large. With the development of geographic
information systems and remote sensing technologies, distributed hydrological models
have been introduced, such as the SHE [11], VIC [12], Vflo [13], TOPMODEL [14–16],
and Liuxihe models [17–21]. The TOPMODEL is a distributed hydrological model based
on the topographic index and has been successfully applied for flood reservoir inflow
forecasting in many headwater Asian catchments [22]. Distributed hydrological models
consider changes in the underlying surface of the watershed, temporal and spatial changes
in precipitation, and the impact of conservation projects on floods. Distributed hydro-
logical models divide the watershed into grid units and treat the underlying surface as
a collection of independent units that do not affect each other. Thus, the soil cover type,
land use, and rainfall distribution differ among units, which is more representative of the
actual situation. These models can represent flow generation and confluence in the entire
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watershed, which greatly improves the accuracy of flood forecasting [23], but distributed
hydrological models also face many problems such as too many input parameters and
difficulty in optimization [24].

The Fengshuba Reservoir is located in Heyuan City, Guangdong Province (24◦28′4.97′′ N,
115◦23′18.59′′ E), and controls a drainage area of 5150 km2. It is in a subtropical monsoon
climate zone with a mild climate and abundant rainfall and sunshine. The annual average
temperature is 19◦C, and the average rainfall in the basin is 1560.9 mm. The Fengshuba
Reservoir was designed according to a 1000-year flood, and the flood level for a 5000-year
flood has been checked. The “checked flood level” is 172.7 m, the design flood level is
171.8 m, the normal storage level is 166 m, the total storage capacity is 1.932 billion m3, and
the effective storage capacity is 1.25 billion m3. The reservoir was designed to meet the
demand for flood control, water supply, irrigation, and power generation, and to facilitate
shipping. It is an incomplete “annual regulation reservoir” that plays an important role in
the regulation of water resources and flood control in nearby towns. Flood forecasting is
key for flood control and dam safety, so it is necessary to establish a high-precision flood
forecasting model [25].

The Fengshuba Reservoir controls a large watershed area, and the temporal and
spatial distributions of rainfall within the area are uneven. It is difficult for lumped models
to consider the impact of temporal and spatial changes in rainfall on flood formation,
and forecasting accuracy cannot be guaranteed [10]. Moreover, reservoir construction
is an intensely human activity that can influence the formation of inflow floods, such
as by changing the local runoff mechanism (by increasing surface water storage and
the confluence rate). The underlying surfaces in the Fengshuba Reservoir Basin show
great spatial variation, as does the elevation; only distributed models can account for
these effects [26–28]. Therefore, it is necessary to use a distributed hydrological model to
accurately forecast inflow floods in the Fengshuba Reservoir.

The Liuxihe model, which is divided into fine grids, can fully consider the hetero-
geneity of the underlying surface and uneven spatial distribution of rainfall [29]. Because
of the large number of parameters in the distributed hydrological model, the calculation
requirements are very high. Thus, the Liuxihe model uses the particle swarm optimization
(PSO) algorithm to optimize the parameters automatically [30]; there are 12 parameters that
can be optimized in the Liuxihe model. For the practical application of the model, only one
representative flood is needed for parameter optimization; the other flood data are used
for verification. The Liuxihe model has successfully forecasted basin floods and provided
mountain torrent disaster warnings [31,32], so it could theoretically be used for Fengshuba
water inflow flood forecasting.

The purpose of this study is to evaluate the feasibility of the Liuxihe model for
forecasting inflow floods of the Fengshuba Reservoir in Guangdong Province, China. The
study adopts the Liuxihe model based on 90-m SRTM DEM data and the PSO algorithm
is used to optimize the model parameters. The applicability of the Liuxihe model for
flood forecasting of the Fengshuba Reservoir is evaluated and the effects of different river
classifications on flood inflow simulation results are discussed. This study may be useful
for scientists and practitioners who are involved in dam safety and flood risk reduction
with the usage of flood inflow forecasting.

2. Data and Methods
2.1. Watershed Physical Characteristics

The physical characteristics data for the watershed required to build the model in-
cluded digital elevation model (DEM), land use, and soil type data. The DEM data affect
parameters such as the watershed area and slope and are thus needed for model construc-
tion. The data source used in this study was the Shuttle Radar Topography Mission (SRTM).
SRTM data are available from a public database (“http://srtm.csi.cgiar.org/ (accessed on
23 September 2022)”) at a spatial resolution of 90 m. The land use data, with a resolution
of 1000 m, were from the United States Geological Survey (USGS) land-use type database
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(“http://landcover.usgs.gov/ (accessed on 20 September 2022)”). The soil-type data, which
also had a resolution of 1000 m, were obtained from the Food and Agriculture Organization
(FAO) soil-type database (“http://www.isric.org/ (accessed on 20 September 2022)”). The
grid unit size used in the Liuxihe model was 90 m, and the land use and soil type data
were resampled to 90 m. The results are shown in Figure 1. According to the land use
and soil type data, there are eight types of land use in the Fengshuba Reservoir water-
shed, namely, evergreen coniferous forest, evergreen broad-leaved forest, shrub, rare forest,
coastal wetland, slope grassland, lake, and cultivated land, which account for 39.75%,
12.63%, 36.32%, 2.42%, 0.09%, 3.08%, 0.56%, and 5.16% of the total land, respectively. Ad-
ditionally, there are 20 soil types in the Fengshuba Reservoir Basin including iron-based
low-activity strong-acid soil, simplified low-activity strong-acid soil, humus low-activity
strong-acid soil, iron-aluminum prototype soil, simplified high-activity strong-acid soil,
piled man-made soil, calcareous loose rock soil, humus rudimentary soil, and others. The
DEM, land use, and soil type data of the Fengshuba watershed revealed obvious elevation
changes within the watershed, spatial variability in land use, and heterogeneous physical
characteristics between regions.
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Figure 1. Globally available data of the Fengshuba Reservoir watershed. (a) DEM; (b) Land-use
types; and (c) soil types.

2.2. Hydrological Data

There are 13 rainfall stations in the basin of the Fengshuba Reservoir, including the
Sanheng and Longtang stations. The spatial positions of the rainfall stations and exit points
of the Fengshuba Reservoir are shown in Figure 2. This study collected 18 datasets of
flood processes from 2010 to 2020 in the Fengshuba Reservoir watershed, including rainfall-
station rainfall data and inflow data with a time resolution of 1 h. Because the research
area is the watershed of a reservoir, the inflow measurement is difficult to obtain due to the
reservoir storage, and there is no flow station at the boundary of the reservoir return flow.
Therefore, the flow data in this study were derived from a water level-capacity-discharge
calculation, and relevant information about these flood events is shown in Table 1. The
Liuxihe model is a distributed hydrological model with physical significance. One of
its advantages over other models is that the model parameters are derived from terrain
characteristics, and only one flood needs to be selected for parameter optimization [30].
The remaining floods (17 in this study) are used for simulation verification. The Thiessen
polygon is used to interpolate the rainfall within the watershed. Thiessen polygon interpo-
lation divides the watershed into different polygons according to the spatial position of
each rainfall station, and the rainfall intensity within each polygon is determined by the
rainfall intensities of the rain gauge stations within that polygon.

http://landcover.usgs.gov/
http://www.isric.org/
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Figure 2. Rainfall distributions of randomly selected floods with flood numbers: (a) 2011051315;
(b) 2014051901; (c) 2016042408; and (d) 2019060702.

Table 1. Information on the studied flood events.

Flood Event No. Start Time End Time Duration
(h)

Total Rainfall
(mm)

Peak Flow
(m3/s)

2010052211 22 May 2010 25 May 2010 62 775 1460
2011051315 13 May 2011 19 May 2011 153 2033 2170
2013051811 18 May 2013 24 May 2013 145 1503 1570
2014051901 19 May 2014 25 May 2014 167 1661 2850
2015052419 24 May 2015 28 May 2015 91 1037 1420
2016012613 26 Jan. 2016 4 Feb. 2016 204 2093.6 3030
2016031715 17 Mar. 2016 27 Mar. 2016 227 3094 3010
2016041006 10 April 2016 24 April 2016 337 2469 2990
2016042408 24 April 2016 8 May 2016 331 2322 3620
2016052003 20 May 2016 25 May 2016 118 1201 1490
2016101923 19 Oct. 2016 25 Oct. 2016 139 1334 1820
2016112501 25 Nov. 2016 30 Nov. 2016 126 782 1310
2017061201 12 June 2017 25 June 2017 326 2886 1480
2019041710 17 Apr. 2019 21 Apr. 2019 90 1052 1270
2019050417 4 May 2019 10 May 2019 135 1232 1060
2019060702 7 June 2019 19 June 2019 307 3149 4460
2019062012 20 June 2019 28 June 2019 183 1491.5 1830
2020060703 7 June 2020 12 June 2020 135 1326 1490
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2.3. Temporal and Spatial Distribution of Rainfall

Precipitation is the main factor driving the formation of floods. The intensity of precip-
itation and temporal and spatial distribution of precipitation directly affect the magnitude
and duration of a flood [33,34]. Temporal and spatial unevenness of precipitation is a
common phenomenon, including in the basin; therefore, the spatial and temporal distri-
bution of precipitation plays a decisive role in the predictive accuracy of models. The
elevation, land use, and soil type are heterogeneous among different areas in the Fengshuba
Reservoir Basin, and the precipitation in the watershed varies in time and space. In this
study, the 18 field datasets for 2010–2020 collected during flooding were characterized by
spatiotemporal inhomogeneity of precipitation. As shown in Figure 2, four floods were
randomly selected, and analyzed in terms of the distribution of precipitation; the results
revealed an uneven distribution of precipitation in the watershed.

3. Model Construction
3.1. Liuxihe Model Setup

The Liuxihe model divides the watershed into grid units for calculation purposes, so
the size of the grid unit determines the calculation time of the model [35–37]. Generally, a
smaller grid unit results in a more accurate representation of the surface type of the actual
watershed and a longer model calculation time. Conversely, a larger grid unit results in
a shorter model calculation time but lower accuracy. Therefore, it is necessary to find a
compromise in terms of the resolution. The grid unit size used in the Liuxihe model for our
study was 90 m. The Liuxihe model divides the watershed into grid units with independent
physical characteristics and rainfall; each unit is divided into reservoir, channel, and slope
units [38–40]. The river and reservoir units were divided according to the cumulative flow
threshold and the threshold of the normal storage level; the remaining units in the basin
were slope units.

The Liuxihe model has no clear preference for the classification of river units. It is
generally recommended that small watersheds be divided into three levels of rivers and that
large watersheds be divided into four levels. The watershed area of this study was medium-
sized, so we evaluated the impact of third- and fourth-level rivers on the flood simulation
of reservoir inflow and compared the flood process and simulation indicators of the two
types of rivers. During the extraction of the river unit, rivers were classified according to
the Strahler method [41]. According to different cumulative discharge thresholds, rivers
were divided into grades 3 and 4. Finally, the number of third-level channel units was
determined to be 5461, and the number of fourth-level channel units was 9457. According
to the Google Maps remote sensing image, 25 channel nodes were set for the third-level
channel, and the channel was divided into 41 virtual channel sections. Additionally, there
were 88 nodes for the fourth-level channel, which divided the channel into 162 virtual
channel sections. The channel section width, side slope, and bottom slope were estimated.
The results of the third- and fourth-level segmentation node point construction are shown
in Figure 3.
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3.2. Derivation of Initial Parameters

The Liuxihe model divides the initial parameters into four categories: land use, soil,
meteorological, and topographic parameters [17,42]. These initial parameters are deter-
mined by the corresponding physical characteristics of the grid cells.

1. Topographic parameters include the flow direction and slope and are obtained from
the DEM data;

2. The main meteorological parameter is evaporation capacity. Based on experience, the
evaporation capacity of all units was set at 5 mm/d [17];

3. The land use parameters include the slope roughness and evaporation coefficient,
among which the evaporation coefficient is an insensitive parameter [17]. According
to the parameterization experience of the Liuxihe model, the evaporation coefficient
was uniformly set at 0.7 [17]. The slope roughness is a sensitive parameter, and
the value in the recommended relevant literature was adopted [43,44], as shown in
Table 2;

Table 2. Land use parameters.

Land Use Type Evaporation Coefficient Slope Roughness Coefficient

Evergreen needle-leaf forest 0.7 0.4
Evergreen broadleaf forest 0.7 0.6

Bush 0.7 0.4
Sparse woods 0.7 0.3

Coastal wetland 0.7 0.2
Slope grassland 0.7 0.1

Lake 0.7 0.2
Farmland 0.7 0.15

4. Soil parameters include the saturated water content, saturated hydraulic conductivity,
field water holding rate, wilting water content, soil thickness, and soil properties.
The value of soil properties was set uniformly to 2.5 [17], and the other parameters
were calculated using the soil hydraulic characteristic calculator proposed by Arya
et al. [45]. The results are shown in Table 3.
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Table 3. Soil-type parameters.

Soil Type Thickness of
Soil Layer (mm)

Saturated
Water Content

Field Moisture
Retention

Saturated Hydraulic
Conductivity

(mm·h−1)

Soil
Characteristic

Coefficient

Wilting
Moisture
Content

CN-9 0.0001 0.0001 0.0001 0.0001 2.5 0.0001
CN10005 1000 0.502 0.355 9.82 2.5 0.136
CN10033 1000 0.451 0.3 8.64 2.5 0.176
CN10039 600 0.515 0.422 1.95 2.5 0.296
CN10047 1000 0.455 0.319 6.34 2.5 0.192
CN10065 1000 0.491 0.433 0.47 2.5 0.315
CN10093 1000 0.454 0.144 74.49 2.5 0.063
CN10115 700 0.500 0.377 4.89 2.5 0.221
CN10149 1000 0.481 0.390 1.86 2.5 0.262
CN10169 1000 0.458 0.252 23.82 2.5 0.110
CN10647 1000 0.454 0.337 3.99 2.5 0.214
CN10793 1110 0.436 0.249 15.76 2.5 0.149
CN10921 1000 0.495 0.391 2.78 2.5 0.255
CN30047 1500 0.461 0.265 20.78 2.5 0.115
CN30135 1000 0.435 0.207 28.33 2.5 0.121
CN30319 800 0.453 0.239 26.07 2.5 0.109
CN30423 670 0.446 0.240 21.87 2.5 0.126
CN30673 1000 0.443 0.201 29.31 2.5 0.121
CN60041 870 0.438 0.260 13.86 2.5 0.154
CN60485 250 0.470 0.323 8.38 2.5 0.175

The Liuxihe model focuses on studying time periods with large changes in river flow;
the impact of base flow on floods is relatively small during flood periods, but the Liuxihe
model takes base flow into account and calculates it through groundwater [17]. In addition,
initial conditions for the catchment area will be set before simulation, including initial
soil moisture content. These initial conditions are determined based on the recommended
values [17].

3.3. Parameter Optimization Method

In this study, the PSO algorithm [30] was used to optimize the initial parameters of the
model. The PSO algorithm is a global optimization algorithm that simulates the foraging
behavior of birds to find the optimal destination through collective information sharing;
the algorithm has the advantages of a fast convergence speed and high efficiency.

Every individual particle represents a possible solution to the model parameters, and
selecting the optimal number of particles is a critical PSO parameter that can significantly
affect the performance of the PSO algorithm [17]. These particles advance simultaneously
across the search space in accordance with specific rules, which can be defined using the
equations provided below.

Vi, k = w×Vi,k−1 + C1× rand×
(
Xi, pBest − Xi,k−1

)
+ C2× rand×

(
XgBest − Xi,k−1

)
(1)

Xi,k = Xi,k−1 + Xi,k (2)

where Vi, k is the moving speed of the ith particle at the kth step, Xi,k is the position of the ith
particle at the kth step, Xi, pBest is the best position of the ith particle at the kth step (current),
XgBest is the best position of all particles at the kth step, w is the inertia acceleration speed,
C1 and C2 are learning factors, and rand is a random number between 0 and 1.

w, C1, and C2 are important PSO parameters that will impact the PSO’s performance.
The global search capability is influenced by the inertia weight w, which is dynamically
determined using a linearly decreasing inertia weight (LDIW) approach based on the
following equation:

w = wmax −
i (wmax − wmin)

MaxN
(3)
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where i is the current evolution number, MaxN is the maximum evolution number, wmax
takes the value of 0.9, and ωmin takes the value of 0.1.

The arccosine function strategy is employed to determine the values of C1 and C2; the
equations are listed below.

C1 = C1min + (C1max − C1min)

1−
arccos

(
−2×i
MaxN + 1

)
π

 (4)

C2 = C2min + (C2max − C2min)

1−
arccos

(
−2×i
MaxN + 1

)
π

 (5)

where C1max and C1min are the maximum and minimum values of C1, and the values of
2.75 and 1.25 are recommended. C2max and C2min are the maximum and minimum values
of C2, and the values of 2.5 and 0.5 are recommended. i is the current evolution number
and MaxN is the maximum evolution number.

3.4. Model Valiadtion

The performance of the model simulation is evaluated with six indexes, including the
Nash–Sutcliffe coefficient NSE, correlation coefficient R, peak flow relative error E, peak
discharge delay ∆H, process relative error PRE, and water balance coefficient WBC, which
are calculated below.

The correlation coefficient is employed to assess the extent of scattering between the
simulated and observed flow.

R =
N ∑N

i=1 Qi
obsQi

sim −∑N
i=1 Qi

obs ∑N
i=1 Qi

sim√[
N ∑

(
Qi

obs
)2 −

(
∑N

i=1 Qi
obs

)2
][

N ∑
(
Qi

obs
)2 −

(
∑N

i=1 Qi
sim

)2
] (6)

where Qi
sim and Qi

obs are the simulated and observed flow at the time i, respectively, and N
is the total time steps for a simulated flood event.

The Nash–Sutcliffe coefficient is used to evaluate the accuracy of the model simulation
results and reflect the overall fit of the model.

NSE = 1− MSE2

F2
0

(7)

MSE =

√
1
N ∑N

i=1

(
Qi

sim −Qi
obs
)2 (8)

F0 =

√
1
N ∑N

i=1

(
Qi

obs −Qi
obs

)2
(9)

Process relative error is used to evaluate the degree to which the simulated value
deviates from the actual observed value.

PRE =
1
N ∑N

i=1

∣∣Qi
obs −Qi

sim

∣∣
Qi

obs
(10)

The water balance coefficient is used to evaluate the ratio of the total water error
simulated by the model to the total runoff.

WBC =
∑N

i=1 Qi
sim

∑N
i=1 Qi

obs

(11)



Water 2023, 15, 1048 9 of 17

Peak flow relative error is used to evaluate the coincidence between the observed and
simulated flood peak discharge.

E =
QPsim −QPobs

QPobs
(12)

where QPsim is the simulated peak flow and QPobs is the observed peak flow.
Peak discharge delay is used to evaluate the time interval between the occurrence of

the actual flood peak and the occurrence of the simulated flood peak.

∆H = HPsim − HPobs (13)

where HPsim is the time (hour) that the simulated peak flow occurred, and HPobs is the time
(hour) that the peak flow is observed.

4. Results
4.1. Parameter Optimization of the Liuxihe Model

Based on the PSO algorithm, the Liuxihe model only needs to optimize parameters
for one flood. The remaining floods are used for simulation verification. In this study,
flood event number 2016042408 was used to optimize the parameters of the Liuxihe model,
and the remaining 17 floods were used for simulation verification. In the algorithm, the
number of particles was set to 20, the number of iterations was 50, and the total number
of calculations was 1000. Finally, the optimization run time of the PSO algorithm was
20 h. Figure 4 shows the evolution of the objective function and parameter values during
the optimization process of the four-level channel model parameters, and the simulated
hydrological diagram before and after parameter optimization. The results showed that the
model objective function value tended to be stable and that the model parameters converged
to the optimal state after 50 parameter iterations. They also showed that the parameters
of the Liuxihe model had a good convergence speed and that the simulation results were
very close to the measured ones. The flooding process after parameter optimization fit
the measured flood process well. The Nash–Sutcliffe coefficient was 0.715, the correlation
coefficient was 0.876, the flood peak error was 0.013, and the flood peak time error was −1.

4.2. Model Performance Evaluation

One of the advantages of the Liuxihe model is that only one flood is used for parameter
optimization, and the remaining flood data are used for simulation verification. The average
indicators of the flood verification simulations are shown in Table 4.

Table 4. Statistical indicators of the flood simulation results after parameter optimization.

Parameter
Average

Nash–Sutcliffe
Coefficient

Average
Correlation
Coefficient

Average
Process

Relative Error

Average Peak
Error

Average Water
Balance

Coefficient

Average Peak
Time Error

Optimized 0.58 0.85 0.65 0.03 0.98 2.8

In the 17 simulations, the flood peak error was <0.2, the average flood peak error
was 0.03, and the average flood peak time error was 2.8. According to the regulation of
hydrological forecasting, the allowable error of a rainfall-runoff forecast is 20% of the actual
measured flood peak discharge. That is, the flood peak error is within 0.2, and the time of
flood peak occurrence is within 3 h of the actual occurrence. According to the standards,
the Liuxihe model forecasting scheme constructed in this study is suitable for the real-time
forecasting of inflow floods in the Fengshuba Reservoir Basin.
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This study ranks 18 selected floods according to their peak discharge, considering the
top 40% as large flood events, and takes into account the characteristics of the flood event
(e.g., double peaks), because large flood events are more catastrophic and double peaks are
more complex than a single peak, so that 6 representative flood simulation results were
selected and are shown in Figure 5.

The time distribution of precipitation directly affects the size and duration of floods.
Additionally, the Fengshuba Reservoir Basin has the characteristic of uneven rainfall in
both space and time. In the 18 flood datasets collected in this research, the events were
mainly caused by concentrated or extreme precipitation. One of the advantages of the
Liuxihe model is that the PSO algorithm is used to select a flood event for parameter
optimization, and the remaining flood events are simulated and verified. As shown in
Figure 5, flood numbers 2016041006 and 2019060702 have uneven precipitation, but the
model exhibited good simulation performance. The error and time error of the flood peak
are both small, which shows that the Liuxihe model can simulate the effect of the actual
flood in the case of uneven precipitation. As a distributed hydrological model, the Liuxihe
model divides the watershed into independent unit grids. Each grid unit has independent
physical characteristics and rainfall distribution. The Liuxihe model can consider the
heterogeneity between grid units and thus has better precision.
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In addition, it can be observed from Figure 5 that the initial simulated value is zero,
this is because the model sets the time before the flood as a pre-heating buffer to improve
the performance of the model.

4.3. Influence of Parameter Optimization

To analyze the performance of the model after parameter optimization by the PSO
algorithm, 17 floods were simulated using the initial and optimized model parameters. The
average indicators of the flood simulation results are shown in Table 5, and six representa-
tive flood cases before and after parameter optimization are presented in Figure 5.
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Table 5. Statistical indicators of the flood simulation results before and after parameter optimization.

Parameter
Average

Nash–Sutcliffe
Coefficient

Average
Correlation
Coefficient

Average
Process

Relative Error

Average Peak
Error

Average Water
Balance

Coefficient

Average Peak
Time Error

Optimized 0.58 0.85 0.65 0.03 0.98 2.8
Initial 0.27 0.76 0.64 0.49 0.69 −3.33

The results showed that the simulation accuracy of the Liuxihe model was significantly
improved after parameter optimization. The Liuxihe model is a distributed hydrological
model, and its parameters are determined by the physical characteristics of the surface
in the watershed. Therefore, the model includes uncertainties. However, there is a set
of parameter values that in theory results in the highest model simulation accuracy; this
value set represents the optimal parameters. When there is no parameter optimization, the
Liuxihe model has uncertainties in flood simulation and forecasting. However, when the
parameters of the Liuxihe model were optimized through the PSO algorithm, the flood
simulation results using the optimized model showed that the average Nash–Sutcliffe
coefficient increased by 31%, the average peak flow error decreased by 46%, the average
correlation coefficient increased by 9%, and the average peak flow occurrence time error
decreased. After parameter optimization, the flood simulation effect of the Liuxihe model
was significantly improved in comparison with the simulation effect of the initial param-
eters, which further demonstrates that the distributed hydrological model can improve
model performance through parameter optimization.

After optimizing the parameters with the PSO algorithm, the Liuxihe model was used
to simulate 17 floods. The results showed that the rate of a flood peak error < 20% was
100% and the rate of a peak flow occurrence time error < 3 h was 76.5%.

4.4. Influence of River Classification on Simulation Results

River units affect the process of surface runoff confluence. Flood number 2016042408
was selected as a case study for optimizing the parameters of the third- and fourth-level
rivers, and the remaining 17 floods were used for simulation verification. The input param-
eters were the same, except for the channel classification. The optimized parameters with
the large change from the three-level channel to the four-level channel model are shown
in Table 6. The remaining parameters have little difference, including soil saturation, hy-
draulic conductivity, soil layer thickness, soil characteristic coefficient, field capacity, wilting
percentage, side slope grade, potential evaporation rate, and subsurface runoff coefficient.

Table 6. Parameter results of the three- and four-level channel optimizations.

Parameters Saturated Water
Content (Csat)

Slope
Roughness (n)

Manning
Coefficient

Evaporation
Coefficient (v)

River Bottom
Slope (Bs)

River Bottom
Width (Bw)

2016042408
(4-level) 0.629 0.67 0.738 1.255 1.397 1.381

2016042408
(3-level) 1.343 1.232 1.496 0.542 0.5 0.771

To compare the effects of the two river classes on the simulation of reservoir inflow,
the optimized parameters of the third- and fourth-class rivers were used to simulate and
verify the remaining 17 flood cases. The average statistical indicators of the simulation
results are shown in Table 7.
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Table 7. Comparison of statistical indicators for the flood simulation in different river classes.

Flood Event Number NSE R PRE E WBC ∆H (h)

2010052211
0.593 0.837 0.399 0.016 0.922 0
0.572 0.814 0.393 0.061 0.864 −1

2011051315
0.705 0.864 0.569 0.008 0.91 −1
0.62 0.808 0.655 0.021 0.886 −4

2013051811
0.482 0.776 0.338 0.061 0.892 20
0.497 0.778 0.327 0.072 0.898 12

2014051901
0.784 0.908 0.432 0.016 0.803 −3
0.84 0.924 0.432 0.003 0.932 −3

2015052419
0.334 0.816 0.487 0.012 0.691 −2
0.484 0.805 0.425 0.002 0.809 2

2016012613
0.298 0.765 1.542 0.022 1.391 −1
0.484 0.762 0.968 0.065 1.248 −3

2016031715
0.768 0.889 0.968 0.002 1.043 −2
0.683 0.837 1.204 0.132 1.081 −6

2016041006
0.569 0.847 0.644 0.025 0.697 −6
0.522 0.776 0.777 0.056 0.845 −9

2016042408
0.715 0.876 0.667 0.013 0.844 −1
0.572 0.82 0.742 0.016 0.759 −2

2016052003
0.593 0.88 0.476 0.024 0.876 2
0.406 0.771 0.524 0.023 0.849 −3

2016101923
0.465 0.789 0.634 0.068 1.154 −2
0.423 0.751 0.731 0.057 1.225 −4

2016112501
0.11 0.714 0.906 0.019 1.25 3

0 0.699 1.037 0.014 1.377 3

2017061201
0.5 0.74 2.002 0.091 0.961 44

0.259 0.574 2.411 0.077 0.943 42

2019041710
0.763 0.92 0.464 0.047 1.026 5
0.632 0.812 0.573 0.01 0.991 2

2019050417
0.487 0.859 0.312 0.06 1.305 3
0.467 0.799 0.38 0.003 1.116 0

2019060702
0.913 0.964 0.254 0.01 0.887 −4
0.83 0.92 0.343 0.03 1.05 −1

2019062012
0.679 0.918 0.32 0.02 0.944 0
0.629 0.869 0.317 0.022 0.783 −3

2020060703
0.659 0.87 0.333 0.023 0.987 −3
0.335 0.689 0.37 0.03 0.798 −4

Average indicator 0.579 0.846 0.652 0.029 0.976 2.8
0.514 0.789 0.7 0.039 0.97 1

The results show that the average values of the statistical indicators of the fourth-
grade rivers are better than those of the third-grade rivers. The average values of the
Nash–Sutcliffe coefficient of the fourth-grade rivers and third-grade rivers are 0.579 and
0.514, respectively, reflecting an improvement of 6.5%. The average correlation coefficients
are 0.846 and 0.789, respectively (an increase of 5.7%). Additionally, the process relative
error decreased by 4.8%, and the average peak error decreased by 1%. The PSO algorithm
improves the simulation accuracy of the Liuxihe model as well as the convenience of the
Liuxihe model in practical applications where only a single typical flood is needed for
parameter optimization. Four flood simulation hydrological maps are shown in Figure 6.
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The results show that the simulation effect of the fourth-order river is better than the
effect of the third-order river and that the peak error of the fourth-order river is lower than
the peak error of the third-order river.

According to the statistical indicators of the simulation results and flood process
line diagram, in comparison with the third-level channel, the peak value of the fourth-
level channel simulation result is closer to the peak value of the measured flood, the
corresponding statistical indicators are optimized, and the flood simulation accuracy
is improved; therefore, it is more appropriate to use four-level channel modeling for
Fengshuba Reservoir inflow flood forecasting. The average accuracy of this model is higher
than that of the third-level channel, and most of the flood simulation curves are more
consistent with the measured results.

5. Discussion

In this study, we utilized the Liuxihe model to simulate 18 flood events occurring
in the Fengshuba Reservoir watershed. Our findings suggest that the Liuxihe model
performs well in predicting the inflow of the reservoir. However, certain issues still require
improvement, including:

1. Rainfall is a key factor in the formation of floods, and the quality of rainfall interpola-
tion methods can affect the amount of precipitation on the surface of the basin. The
Liuxihe model uses the most widely used and common rainfall data interpolation
technique (Thiessen polygons). Therefore, in order to approach the true precipita-
tion situation on the surface of the basin, improvements are needed in the rainfall
interpolation method.
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2. We performed a simulation analysis without considering the operation of the upstream
watershed of the Fengshuba Reservoir. The reservoir flow simulation modeled the
natural runoff and confluence within the basin, which eventually reaches Fengshuba
Reservoir without factoring in the reservoir’s impact, but the reality is that it will be
affected by the operation of the reservoir.

6. Conclusions

This study of the Fengshuba Reservoir watershed used the Liuxihe model to simulate
a reservoir inflow flood and evaluated the utility of the Liuxihe model to predict reservoir
inflow floods in terms of model simulation accuracy, parameter selection, and river classifi-
cation. We also considered the impact of the temporal and spatial heterogeneity of rainfall
on the model. The study produced several interesting results:

1. The Liuxihe model showed good simulation accuracy for reservoir inflow floods. The
average error of the flood peak was <0.02, and the average error of the flood peak
time was <3 h. The Liuxihe model was found to be suitable for flood forecasting
in the Fengshuba Reservoir Basin. The statistical index values of some simulations
were low because the measured flood flow was highly irregular; fluctuations and
outliers existed.

2. The initial parameters of the model were uncertain, but the simulation performance
of the Liuxihe model was improved significantly through parameter optimization.
After parameter optimization, the average Nash–Sutcliffe coefficient was 31% higher,
the average peak flow error was 46% lower, the average correlation coefficient was
9% higher, and the average peak flow time error was reduced.

3. The influence of different river classifications on the model was examined. Compared
with that of a third-class river, the simulation performance of the Liuxihe model
constructed using a fourth-class river was better: there was an increase in the average
value of the Nash–Sutcliffe coefficient by 6.5% and the average value of the correlation
coefficient by 5.7% as well as a decrease in the process relative error by 4.8% and the
average peak error by 1%.

4. The distribution of precipitation in the watershed is uneven in time and space. How-
ever, the Liuxihe model can still simulate the uneven distribution of precipitation with
high accuracy.
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