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Abstract: This manuscript presents the advances of a pilot testing, located in Spain, using ultrafiltra-
tion (UF) membranes to supply drinking water. These results could be extended to the islands of the
Macaronesia area, for instance, Azores, Madeira, Canaries, and Cape Verde. The UF project targeted
by the pilot activity is a refurbishment of an existing installation. The existing installation is located
at a higher altitude, thus drinking water could be supplied to most of the island without further
pumping, reducing the carbon footprint, ecological footprint, and energy consumption. The raw
water is soft surface water (mainly of rainwater origin) coming from a dam. On the islands of Mac-
aronesia, water is a scarce resource in high demand. Therefore, this is a technically and economically
viable business opportunity with a promising future for isolated water treatment systems to produce
drinking water on islands. The Macaronesia area is formed by volcanic islands with a small surface
in the Atlantic Ocean, so usually there is not enough space for conventional technology and only a
compact UF can be used. The raw water quality is not satisfactory and the municipality receives many
complaints from end users, thus a potable water plant with UF membranes is in high demand to
supply drinking water of good quality. Membrane processes can be categorized into various, related
methods, three of which include the following: pore size, molecular weight cut-off, and operating
pressure. Regarding the obtained results, the UF system successfully produced excellent filtrate
quality with turbidity readings on average less than 0.03 NTU; furthermore, membrane instantaneous
flux of 90 Lmh at 14 °C is achievable with long-term stability under various feed water conditions,
peak operations are available at 105 Lmh without a large impact on the filtration performance of the
modules, and CIP is only to be performed if the TMP increase reaches the terminal point.
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1. Introduction

This paper shows the results of a new project concerning a pilot testing, located in
Spain, using ultrafiltration (UF) membranes to supply potable water. It could be extended
to the islands of the Macaronesia area (Azores, Madeira, Canaries, and Cape Verde). The
UF project targeted by the pilot activity is a refurbishment of an existing installation. The
existing installation is located at a higher altitude, thus drinking water could be supplied
to most of the island without further pumping, reducing the carbon footprint, ecological
footprint, and energy consumption [1-4].

The raw water is soft surface water (mainly of rainwater origin) coming from a dam,
located 8 km away from the drinking water facility. The raw water reaches the facility via
an 8 km long gravitational tunnel across a mountain [5-9]. After the raw water intake,
carbonate slurry is dosed to increase the alkalinity and hardness. Based on the explanation
of local operators, coagulation is very difficult with the raw water. Because of the chemical
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characteristics of the water, it has a low tendency for the formation of flocs [10-14]. The
next treatment step is a lamella clarifier. Originally, the facility was designed and operated
with two lamella clarifiers. However, owing to the high slope of the site location, one of
the clarifiers collapsed because of the unstable foundation. Currently, the system runs
with only clarifier, which doubles the filtration velocity and appears to be the major root
of all operational troubles. As the facility is surrounded by houses, there is no space for
conventional technology, and only a compact UF can be used [15-18].

The water quality is not satisfactory and the municipality receives many complaints
from end users. After the clarifier, the water is further treated in sand filters. The plan is to
place the UF technology on the current location of the existing sand filters. This document
summarizes the findings of this pilot study program [19-21]. Regarding the filtration
spectrum, filtration is defined as the separation of two or more components from a fluid
stream. In conventional usage, it usually refers to the separation of solid, insoluble particles
from liquid or gaseous streams. Membrane filtration extends this application further to
include the separation of dissolved solids in liquid streams, hence membrane processes
in water treatment are commonly used to remove various materials, ranging from salts to
microorganisms. The most commonly employed membrane processes and the filtration
ranges in which they operate are presented in Figure 1 below [22-25].

Pesticide, Organic Material
Trihalomethanes

Target of
Separation

Virus Coliform

Cryptosporidium
Na+, Cl- lons

Ca2+, Mg2+, SO42- lons

¢ ——

Figure 1. Membrane processes and filtration ranges.

Membrane processes can be categorized into various, related methods, three of which
include the following: pore size, molecular weight cut-off, and operating pressure. As the
pore size becomes smaller or the molecular weight cut-off decreases, the pressure applied
to the membrane for the separation of water from other material generally increases. The
water treatment objectives will determine the basis on which a process is selected [26-29].

The pilot activity was performed with different raw water scenarios, which were
artificially created by the local operator team. The dates of the different scenarios are
presented in Table 1.

Bentonite is used as a non-adsorbent source of turbidity. The performance of bentonite
was tested in raw water/bentonite and it acts as a coagulation aid for water treatment.

The objectives of this pilot study were as follows:

o  To determine the effectiveness of the ultrafiltration system to treat raw feed water at
the drinking water treatment plant.

e To demonstrate that the ultrafiltration system produces a high-quality filtrate, which
has a turbidity <0.1 NTU.

e  To define operational flux and in situ cleaning protocols.

e  To define operating parameters for a full-scale ultrafiltration system, including chemi-
cal dosing, membrane flux, and recovery.
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Table 1. Different scenarios of the operations and periods.

Scenario Date
untreated raw water From 6 March 2018
re-mineralized water with chlorine and adding 0.5 mg/L of Fe From 20 March 2018
re-mineralized water with chlorine and adding 1 mg/L of Fe From 26 March 2018
re-mineralized water pre-chlorination and 10 mg/L PAX From 3 April 2018
re-mineralized water pre-chlorination and PAX 30 mg/L From 9 April 2018
re-mineralized water pre-chlorination and PAX 50 mg/L From 17 April 2018
re-mineralized water pre—chlorinati.on and PAX 10 mg/L and 0.5 mg/L From 27 April 2018
of iron
re-mineralized water pre-chl;?rs?lojn and adding bentonite until From 3 May 2018
re-mineralized water pre-chlorination and adding bentonite until 7 NTU From 8 May 2018

re-mineralized water pre-chlorination and adding bentonite until 10 NTU ~ From 10 May 2018

re-mineralized water pre-chlorination and adding bentonite 14 May 2018 to 21
10 NTU + 10 mg/L de PAX + 0.5 mg/L Fe May 2018
normal operational regime with re-mineralized raw water After 1 May 2018

2. Materials and Methods

Feed water is pumped to the membrane modules at a feed pressure in the range
between 2 bars and a maximum feed pressure of 3 bar. Particulate matter, including Virus,
Giardia cysts, and Cryptosporidium oocysts, remain on the outside of the membrane fibre,
while permeate enters through to the inside (lumen) of the hollow fibres and exits the top
port of the membrane module. The filtration cycle continues for 30 min (in this application),
after which the particulate/suspended solids are removed from the module during the
backwash cycle. In the backwash cycle, the feed to the module stops and permeate from the
backwash tank is directed into the hollow fibres for 45 s. After the concentrated solution is
sent to drain, feed water fills the module, air bubbles scour the membranes for 30 s, and
then the module is drained again. The overall backwash cycle requires approximately
2.8 min [30-39].

In this application, NO sodium hypochlorite was added to the backwash water (filtrate).

Total maintenance cleans (TMCs) were not performed during this pilot study. Because
the raw water organics are low, it was decided to implement only chemical cleaning (CIP)
instead of regular and frequent TMC [40-45].

CIP cleaning is normally performed when the trans-membrane pressure (TMP) ap-
proaches the maximum of 2 bars. CIP cleaning is similar to TMC, except the soak period is
longer and the chlorine concentration is higher. The typical duration for CIP cleaning is
4-6 h.

For this pilot study, CIP cleaning was not required because of a TMP issue, but it was
performed once to keep the membrane in clean condition between the different phases.

The membrane characteristics are as follows.

Type: HFU2020-AN (cross-flow filtration).
Membrane Material: PVDF (polyvinylidene fluoride)
Nominal Pore Size: um 0.01

Outer Membrane Surface Area: m? (ft?) 72 (775)
Operating Temperature Range: °C (°F) 0—40 (32-104)
pH Range During Filtration: 1-10

pH Range During Cleaning: 0-12

The pump characteristics and operation parameters are as follows.
Maximum Feed Water /Filtrate Flow: m3/h (gpm) 12 (53)
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Maximum Backwash Flow: m3/h (gpm) 13.5 (59)
Maximum Air Flow: Nm?3/h (scfm) 9.0 (5.3)
Maximum Inlet Pressure: bar 3

Maximum Backwash Pressure: bar 3

Normal Operating Transmembrane Pressure: bar 0-2
Diameter: mm (in) 216 (8.5)

Length: mm (ft) 2160 (7.087)

Weight:

Full of Water: kg (Ibs) 92 (203)

After Draining: kg (Ibs) 49 (108)

Casing: uPVC

Cap: uPVC

Potting: epoxy resin

O-ring: EPDM

This module is used in vertical position, mainly for saving space in the installation.
The performance of the module is the same when used in a horizontal or vertical position,
but, for a huge installation, it is more suitable to use it in a vertical position.

Throughout the course of this pilot study, data logger data were gathered along
with field data. The data logger data consisted of date, time, raw water temperature, feed
flowrate, feed pressure, filtrate pressure, and calculated trans-membrane pressure, as well as
permeate turbidity. The data were collected every minute and, from the data, instantaneous
flux and the temperature-corrected permeability were calculated and graphed.

The main characteristic of the PVDF material of these UF modules is the resistance of
the membrane, in addition to the fouling effect produced by its pore size.

In terms of permeation and rejection, in order to obtain high-performing membranes
with better antifouling resistance, it is crucial to make the correct selection of nanocomposite
materials according to their properties, for instance, composition, surface charge, size,
type of material, surface area, material loading, hydrophilic/hydrophobic nature, and so
on [46-48].

3. Results

The raw water analysis before pilot testing is presented in Table 2 and that during
pilot testing is presented in the Table 3.

Table 2. Raw water analysis before pilot testing.

Data
Parameter Unit .
Min. Avg. Max.
Total suspended solids (TSS) mg/L n/a 2 5
Turbidity NTU 4 10
pH - 5.8 n/a 7.3
Temperature °C 8 14 25

The operational and laboratory results began being recorded in March 2018 and
operations were completed in June 2018. During this time period, three separate phases
were examined. The first was the demonstration phase, where the pilot unit was operated
with low filtration flux in order to gain operational insights into the suitability of the raw
water for fouling.

In phase 2 of the operation, the full-scale plant design was simulated with mod-
erate operational flux under various raw water conditions (the raw water quality was
artificially adjusted).

Owing to the low feed water turbidities, it was decided to increase the operational
flux in phase 3 in order examine the performance of the UF modules.
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Table 3. Raw water analysis measured during the pilot testing.
Data
Parameter Unit Min Avg. Max.
Colour degree 0 11.3 38
Free chlorine mg/L 0 0.7 15
Turbidity NTU 0.2 5.1 50.1
Total iron (Fe) mg/L 0 0.47 3
Aluminium (Al) mg/L 0.016 0.52 1.9
Alkalinity (as CaCOg3) mEq/L 0.3 1.8 3.0
Conductivity uS/cm 21.6 57.9 78.6
Oxidability Mg O, /L 0.5 12 2.4
Total manganese (Mn) mg/L 0.0007 0.023 0.181
Hardness (as CaCO3) mEq/L 0.2 2.0 6.2
pH - 5.4 7 7.7
Coliforms CFU/mL 0 0.1 1

In this pilot study, the HFU2008-N test module was used. The test module uses
the same membrane fibers as the larger HFU2020-N module, which is recommended for
the full-scale plant. The test module is a similar height (2.0 m) to HFU2020-N (2.1 m),
but the membrane surface area is lower. The test module has a surface area of 11.5 m?
while HFU2020-N has a surface area of 72 m?. Because the height of the fibers is similar
and the membrane chemistry is the same, the pilot test results accurately reflect how the
HFU2020-N module will perform in the full-scale plant.

3.1. Phase 1 (Demonstration Phase)

During the demonstration phase, from 8 March to 23 April 2018, all operating parame-
ters were well within the design guidelines. The pilot unit operated in filtration mode for
30 min and then backwashed for 45 s. For the BW, no chlorine was used.

In summary, during the first two months of the pilot study, the HFU pilot unit operated
with the following parameters:

Instantaneous flux rate of 45-50 L/m?h.

Average feed temperature of 13 °C.

Operating trans-membrane pressure (TMP) of 0.42 to 0.5 bar.

Average permeate turbidity of <0.03 NTU (peaks during the BW procedure due to the
presence of bubbles in the measuring cells).

Temperature-corrected permeability (20 °C) ranging from 90 to 95 L/ (hm?bar) (in the
45-50 L/m?h range).

The graphs demonstrating the performance trends noted above are attached for further
clarification in Appendix A: Performance Graphs Phase 1 (operational graphs are only
available from 18 April).

The operating guidelines state that the TMP should range from 0.14 bar to 1.4 bar and
CIP cleaning should be performed before 2 bar is reached.

In the appendix figures, there are some sudden changes in TMP caused by changes in
the feed water quality. From Figure A6 (in Appendix B), it is evident that, from 31 March
to 1 June 2018, a stable TMP of less than 0.28 bar was observed. It should be noted that
maintenance cleans were not included in the pilot study or in the full-scale design. From
Figure 2, it is evident that the operation with this low flux value is very stable. Throughout
the pilot test, the unit faced difficulties in flow control and required manual inputs. The
flowrate was manually checked and adjusted accordingly, which resulted in slight variation
in the flow curves. The backwash flowrate was manually checked and the throttle valve was

O 00O

O
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adjusted in order to reach the design set-point, which was 1.1x filtration flux. Figure A2,
in Appendix A, presents the flow and temperature variation in phase 1, which was in the
range between 12 and 14 °C. In Figures A3-A5, it is evident that the permeate quality
is excellent. The turbidity readings are consistently at 0.02 NTU, except where the BW
procedure occurred. Disturbance of the turbidity measurement occurred during the BW
procedure. During the BW procedure, the turbidity measuring cell was disturbed by the
presence of small bubbles, which resulted in short turbidity peaks. The regularly occurring
turbidity peaks are thus not related to the deterioation in permeate quality, but only to
this disturbance of the measurement. The graphs in Figures A3—-A5 provide evidence that
turbidity peaks (marked with red cells) only occurred during the BW procedure. The
typical turbidity reading during the filtration period is presented in Figure 2.

1195947 - f

TR
0.001 .,
DRTIE 1: 4-86nA

Figure 2. Typical turbidity reading during the filtration period.

3.2. Phase 2—Operation at 90 L/m?h + Simulating Turbidity Peaks by Bentonite Dosing

During the demonstration phase, the average feed turbidities were less than 4 NTU.
Because the maximum feed turbidity in the full-scale plant is likely to have peaks up to
10 NTU, phase 1 was designed to simulate 6-10 NTU peaks by bentonite dosing.

Before this artificial peak simulation, the unit was operated at a design point with
90 L/m?h instantaneous flux and at a recovery of 93.5%.

Therefore, the feed water particulate was concentrated 20 times.

Concentration Factor = 1/(1-recovery) =1/(1 — 0.935) =15

With a feed turbidity of 2 NTU at the end of the filtration cycle (30 min), the likely
turbidity would be 2 x 15 = 30 NTU. With a feed turbidity of 10 NTU at 93.5% recovery,
the concentrated feedwater would have a turbidity of 10 x 15 =150 NTU.

The concentration is also visually observable in the reject stream, as shown in Figures 3 and 4.

Figure 3. Feed, permeate, and reject water.
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Figure 4. Reject water after 30 min sedimentation.

Summary of operation at 90 L/m?h:

Instantaneous flux rate of 90 L/m?h.

Average feed temperature of 14 °C.

Operating trans-membrane pressure (TMP) of 0.7 to 0.8 bar.

Average permeate turbidity of <0.03 NTU (peaks during the BW procedure due to the
presence of bubbles in the measuring cells).

Temperature-corrected permeability (20 °C) ranging from 131 to 150 L/m?hbar at
90 L/m?h.

The graphs demonstrating the performance trends noted above are attached for further
clarification in Appendix B: Performance Graphs Phase 2.

From Appendix B Figure A6, it is evident that the operation with 90 L/m?h in the
temperature range of 13-15 °C is very stable. This operational regime can be maintained
without chemical cleaning. There is more information in Figures A7-A13.

By the beginning of May 2018, bentonite dosing was applied. From Figure 4, it is
remarkable that the system reacts with the increase in TMP. Nevertheless, this increase
in TMP was easily kept under control with the increase in BW time. The BW time was
increased from 45 s to 60 s and the air scouring was increased from 30 s to 50 s. This
impacted the overall recovery, reducing it from 93.5% to 92.4%. This intensification of the
BW procedure resulted in a much better de-concentration, and thus contributed greatly to
the stabilization of the operation at 90 L/m?h, without implementing any chemical cleans.

Summary of the operation with bentonite:

OO0O0O0

O

O Instantaneous flux rate of 90-95 L/m?h (because of some technical issues, the feed
flow control was not fully stable).

O  Average feed temperature of 14 °C.

O  Operating trans-membrane pressure (TMP) of 1 to 0.5 bar.

O Average permeate turbidity of <0.03 NTU (peaks during the BW procedure due to the
presence of bubbles in the measuring cells).

O  Temperature-corrected permeability (20 °C) ranging from 105 to 220 L/m?hbar at
90 L/m?h.

3.3. Phase 3—Operation at 105 L/m?h

In the final phase of the pilot, the unit was operated at 1200 L/h, which corresponds
to an instantaneous flux of 105 L/m?h. This rather short test period demonstrated that the
operation is stable even in the case of 105 L/m?h flux.



Water 2023, 15, 1031

8 of 17

Summary of the operation with bentonite:

Instantaneous flux rate of 105 L/m?h.

Average feed temperature increased to 17 °C.

Operating trans-membrane pressure (TMP) of 1 to 0.5 bar.

Average permeate turbidity of <0.03 NTU (peaks during the BW procedure due to the
presence of bubbles in the measuring cells).

Temperature-corrected permeability (20 °C) ranging from 103 to 153 L/m?hbar at
105 L/m?h.

No chemical cleaning was necessary to maintain the operational conditions. The TMP
was stabilised at 1.05 bar.

O OO0

O

3.4. Cleaning Results

Regarding cleaning dangers, we have to take special precautions when handling
chemicals during chemical cleaning. Safety gear such as safety glasses and protective
gloves should be worn. If chemicals come into direct contact with your skin or your clothes,
you should treat the affected area appropriately based on the SDS. Moreover, we cannot
mix sodium hypochlorite with acid. Such a mixture generates toxic chlorine gas. Finally,
we have to stop the operation whenever any anomaly occurs with the equipment; orange
signs indicate an anomaly [45,46].

Otherwise, you may damage the modules or negatively affect the membrane perfor-
mance. The only cleaning performed on the HFU pilot unit was a short CIP with sodium
hypochlorite (850 ppm, 3 h) followed by a short acid-CIP (4200 ppm citric acid, 3 h). These
cleanings were performed at the end of the demonstration phase in order to start effective
testing on the design flux with clean membranes. As in the further period of the piloting the
trans-membrane pressure did not rise above an acceptable level and therefore CIP cleaning
was not required [47,48].

CIP cleaning is to be considered in the full-scale design as a consolidated and secure
design approach. However, CIP is only to be performed if the increase in TMP reaches the
terminal point.

4. Conclusions and Future Lines

This paper presents the results of a new project about a pilot testing, where a UF
system was used to successfully produce excellent filtrate quality with turbidity readings
on average less than 0.03 NTU.

Moreover, membrane instantaneous flux of 90 I./m?h at 14 °C was achievable with
long-term stability under various feed water conditions.

The pilot unit was operated with low filtration flux in order to gain operational insights
into the suitability of the raw water for fouling. Moreover, peak operations are available at
105 L/m?h without a large impact on the filtration performance of the modules.

CIP cleaning was considered in the full-scale design as a consolidated and secure
design approach, but CIP is only to be performed if the increase in TMP reaches the
terminal point.
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Appendix A

Performance Graphs Phase 1.
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Figure A4. Flow and permeate turbidity (medium resolution).
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Appendix C
Performance Graphs Phase 3.
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Figure A13. Flow and permeate turbidity at 105 L/m?h.
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