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Abstract: Considering the fact that only pores can transport water, pores in the homogeneous control
volume are conceptualized as a three-dimensional orthogonal network of line elements, which is in
contrast to the continuum hypothesis in traditional numerical approaches. The related flow velocity,
hydraulic conductivity and continuity equation equivalent to the continuum model are formulated
based on the principle of flow balance. Subsequently, the unified form for flow velocity and continuity
equation is established based on the local coordinate system, and a finite line-element method is
developed, in which three-dimensional steady free surface flow is reduced to one-dimensional form,
and the numerical difficulty is greatly decreased. The proposed line-element model is validated by the
good agreements of free surface locations with other methods through steady flow in a rectangular
dam and a right trapezoidal dam, respectively. It is found that the proposed line-element model is
not heavily dependent on the mesh size and penalty parameter. Steady free surface flow on the left
bank abutment slope of the Kajiwa Dam in Southwestern China is further evaluated, and a parabolic
variational inequality algorithm based on the continuum model is also employed for comparison.
The consistent results indicate that the proposed line-element model can capture the steady free
surface flow behavior as well as the continuum-based method. Moreover, the proposed line-element
model can rapidly achieve accurate solutions whether for simple examples or for complicated
engineering applications.

Keywords: three-dimensional flow; free surface; line-element model; porous media

1. Introduction

Three-dimensional analysis of steady free surface flow through porous media is
critical in many engineering applications, such as seepage control of dam foundations and
underground powerhouses [1,2], stability analysis of reservoir banks [3,4] and water-sealed
evaluation of oil and gas storage caverns [5]. In general, the free surface and seepage face on
the downstream boundary are indeterminate in advance, which increases the nonlinearity
and difficulty of numerical solutions.

At present, the flow velocity and governing equations for porous media are commonly
established based on the continuum assumption that water flow is homogenized through-
out the whole domain, including pores and grains. The finite element method [1,6–10]
and numerical manifold method [11] have been widely used to model steady free surface
flow in porous media. In these methods, the nonlinear free surface is determined in a fixed
mesh by eliminating the flow contribution in the dry domain [6,7] or transforming the
free surface into a natural boundary condition [1,10]. In fact, from the physical process
of seepage, there should be a transition layer between the wet zone and the dry zone. As
reported by Bathe et al. [6] and Desai et al. [7], the coefficient of permeability is set as a
very minor value within the unsaturated zones. Instead, Zheng et al. [10] and Ye et al. [12]
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employed a continuous penalized Heaviside function to characterize the transition layer
between the wet zone and the dry zone.

In fact, water flow can only occur through the pores between solid grains. To avoid
the large computational difficulty of fluid motion at the pore scale, porous media with
triangular mesh is replaced by a pipe network, and water flow is transformed to the
three sides of each triangular element. This equivalent pipe network model has been
successfully applied to model steady seepage flow in fractured and porous media under
confined and unconfined conditions [13–17]. Nevertheless, additional equivalent hydraulic
conductivity for each pipe and auxiliary mesh reconstruction around the free surface [13,15]
are indispensable, which is greatly affected by the size of the triangular mesh and limited
by the isotropic media. Recently, the improved line-element model and equivalent fracture
network model have been developed by Ye et al. [12,18,19] and Wei et al. [20] to model
steady and unsteady free surface flow in anisotropic media, including fractures.

On the basis of the line-element model and equivalent fracture network model, the free
surface flow problems are solved in a one-dimensional space, and the numerical difficulty is
greatly lowered. However, previous studies have largely concentrated on two-dimensional
seepage analysis, and the three-dimensional effect in space cannot be quantified. The
objective of this study is to extend the line-element model for the three-dimensional analysis
of steady free surface flow through porous media and then establish the related finite
line-element algorithm without additional calculation of hydraulic parameters and mesh
reconstruction. In Section 2, the basic mathematical equations for three-dimensional free
surface flow are stated, and the equivalent one-dimensional form from the line-element
model is derived. In Section 3, the finite line-element algorithm subject to the line-element
model is derived. In Section 4, the proposed line-element model is validated by comparisons
with other numerical results, and an application in the left bank abutment slope of the
Kajiwa Dam in Southwestern China is used to indicate its reliability and feasibility for
complicated engineering problems.

2. Development of the Line-Element Model
2.1. Steady Free Surface Flow in Three-Dimensional Porous Media

For steady free surface flow through a three-dimensional soil dam, as plotted in
Figure 1, subsurface flow is promoted by the upstream and downstream head difference,
and a free surface exists between the wet domain and dry domain. When the porous media,
involving grains and pores, is supposed as a continuum, the three-dimensional seepage
flow through the wet domain is governed by:

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0 (1)

where x, y and z are three coordinate axes in the Cartesian system; vx, vy and vz denote the
flow velocity in the x, y and z (or 1, 2 and 3) directions, respectively:

vx = −kx∂φ/∂x
vy = −ky∂φ/∂y
vz = −kz∂φ/∂z

(2)

where kx, ky and kz denote the saturated hydraulic conductivity in the x, y and z (or 1, 2
and 3) directions, respectively; φ = p/(ρg) + z is the total head of water; and p/(ρg) is the
water pressure head.
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Figure 1. Steady free surface flow through a three-dimensional soil dam. 
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Figure 1. Steady free surface flow through a three-dimensional soil dam.

The boundary conditions subject to Equation (1) yield:

φ = φ on S1 (3)

qn = −
(
vxnx + vyny + vznz

)
= 0 on S2 (4)

φ = z; qn ≤ 0 on S3 (5)

φ = z; qn = 0 on S4 (6)

where the overline represents a given value, n denotes the unit normal vector; q is the
flow flux; and S1, S2, S3 and S4 are the water head, flux, seepage face and free surface
boundaries, respectively.

2.2. Equivalent Flow Velocity, Hydraulic Conductivity and Continuity Equation

Based on the concept of representative elementary volume, a hypothetical contin-
uum is frequently applied to describe the hydraulic behavior in porous media, and
water flow is homogenized to the whole control volume. Considering the fact that
water flow can only occur through the pores between solid grains, two-dimensional
homogeneous porous media have been simulated by a pipe network model proposed
by Xu et al. [13], Ren et al. [15], Afzali and Monadjemi [14], Abareshi et al. [16], Moosa-
vian [17], Ye et al. [12,18,19] and Wei et al. [20]. In order to extend the two-dimensional
pipe network model to three-dimensional porous media for free surface flow analysis, a
typical ordered porous medium with cubic packing of uniform spherical grains (grey color)
is shown in Figure 2a; the void space between spherical grains for water permeating in the
x, y and z directions can be generalized as a three-dimensional orthogonal line network, as
shown in Figure 2b,c.
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Figure 2. (a) The continuum model with cubic packing of grains. (b) The pore space occupied by
water flow. (c) The line-element model in three-dimensional space.

When the line elements in the x direction are specified with a hydraulic conductivity
klx and a cross-section area Alx, the flow velocity vlx and flow rate Qx through the line
elements in the x direction can also be described by Darcy’s law:

vlx = klx
∂φ

∂x
(7)

Qx = vlx·Alx NyNz = klx
∂φ

∂x
·Alx NyNz (8)

where Ny and Nz are the number of rows and columns of the x-directional line elements in
the control volume.

For the homogeneous continuum model, the x-directional flow rate yields:

Qx = vxdx = kx
∂φ

∂x
∆y∆z (9)

where ∆y and ∆z are the width and height of the control volume.
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In order to obtain a consistent numerical solution based on the line-element model, the
flow rate through the control volume should be balanced, and the equality of
Equations (8) and (9) gives:

klx =
kx

Alx

∆y
Ny

∆z
Nz

=
kx

Alx
ByBz (10)

where By and Bz are the row and column distances, as shown in Figure 2c, and are equal to
∆y/Ny and ∆z/Nz, respectively. For convenience, in mathematics, Aij is nominated as a
unit of area, and Equation (10) is reduced to:

klx = kxByBz (11)

Similarly, the equivalent flow velocity vly, vlz and hydraulic conductivity kly, klz can be
derived as:

vly = kly
∂φ

∂y
(12)

kly = kyBxBz (13)

vlz = klz
∂φ

∂z
(14)

klz = kzBxBy (15)

where Bx is the x-directional distance.
In the line-element model, the flow velocity is parallel to the line elements, and there

is no vertical component, such as vly = vlz = 0 in the x-directional line elements. Thus, the
continuity Equation (1) in the x, y and z directions can be simplified as:

∂vlx
∂x

=
∂

∂x

(
klx

∂φ

∂x

)
= 0 (16)

∂vly

∂y
=

∂

∂y

(
kly

∂φ

∂y

)
= 0 (17)

∂vlz
∂z

=
∂

∂z

(
klz

∂φ

∂z

)
= 0 (18)

2.3. Unified Formulations and Boundary Conditions

Instead of the Cartesian coordinate system, a local coordinate system l is assigned to
each line element. Therefore, the flow velocity in the x, y and z directions can be unified as:

vij = kij
∂φ

∂l
(19)

where i and j are the two endpoints of the line element.
In general, free surface flow problems are solved based on the fixed-mesh method,

and Darcy’s law for saturated flow is extended to the whole flow domain, including the
dry area. Following Zheng et al. [10] and Ye et al. [12], a continuous penalized Heaviside
function Hλ(φ− z) is employed to generalize the seepage flow through wet and dry areas:

vij = Hλ(φ− z)kij
∂φ

∂l
(20)

Hλ(φ− z) =


1 if φ− z ≥ 0
(λ + φ− z)/λ if 0 >φ− z > −λ

0 if φ− z ≤ −λ

(21)



Water 2023, 15, 1030 6 of 17

where λ is a penalty parameter to describe the transition thickness from the wet area to the
entirely dry area.

By combining Equation (20), the unified continuity equation from Equations (16)–(18)
can be stated as:

∂

∂l

[
Hλ(φ− z)kij

∂φ

∂l

]
= 0 (22)

The equivalent boundary conditions are expressed as:

φi = φi on S1 (23)

qi = 0 on S2 (24)

φi = zi; qi ≤ 0 on S3 (25)

φi = zi; qi = 0 on S4 (26)

3. Finite Line-Element Method

From Equations (20)–(26), it can be seen that the three-dimensional steady free sur-
face flow can be simplified into one-dimensional form based on the line-element model.
Thus, the functional I(φ) of Equation (22) can be derived based on the one-dimensional
line element:

I(φ) = ∑
Ω

∫
lij

1
2

Hλ(φ− z)kij

(
∂φ

∂l

)2
dl (27)

where Ω is the entire flow domain, including wet and dry areas.
Minimizing the functional I(φ) yields:

∂I
∂φi

= ∑
Ω

∫
lij

Hλ(φ− z)kij
∂φ

∂l
∂

∂φi

(
∂φ

∂l

)
dl = 0 (28)

When the linear interpolation method is applied to quantify the water head and coor-
dinate functions of each line element, the matrix form for Equation (28) can be expressed as:

Khη+1 = q (29)

in which
K = ∑

Ω

∫
lij

BTkijBdl (30)

q = ∑
Ω

∫
lij
(1− Hλ)BTkijBdl·φη (31)

B =
[
−1/lij 1/lij

]
(32)

where B is the one-dimensional geometric matrix in the local coordinate system, and η is
the iteration step. The iterative process should satisfy the convergence condition as below:

‖φη+1 −φη‖ ≤ δ‖φη‖ (33)

where δ is the error tolerance.

4. Validations
4.1. A Rectangular Dam with Tailwater

The classical numerical solution for steady free surface flow in a homogeneous rect-
angular dam from Lacy and Prevost [8] is employed to validate the proposed method.
The size and flow condition are shown in Figure 3a, and the hydraulic conductivity is
1 m/d. At first, the flow domain is meshed into three orthogonal sets of line elements with
Bx = By = Bz = 0.1 m, and the penalty parameter λ is valued as 1 × 10−10. The water head
distribution and free surface locations are shown in Figure 3b,c, respectively. For compari-
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son, the numerical predictions from Borja and Kishnani [9] and Bardet and Tobita [21] are
also plotted. The results from Borja and Kishnani have a considerable discrepancy near
the downstream because of singular seepage points. The free surface predicted by the
proposed line-element method agrees well with that from Lacy and Prevost and Bardet
and Tobita.
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Figure 3. (a) Rectangular dam with mesh size. (b) Water head distribution from the line-element
method. (c) Free surface locations from different methods.

In order to investigate the dependency of mesh sizes and penalty parameters on free
surface location, numerical efficiency and flow rate, seepage analysis with different mesh
sizes (Bx = By = Bz = 0.1 m, 0.25 m, 0.5 m) and penalty parameters (λ = 1 × 10−10, 0.01,
0.1, 0.25, 0.5) are considered. The free surface locations from different mesh sizes are
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plotted in Figure 4; the three curves are almost identical except that the seepage point from
Bx = By = Bz = 0.5 m is higher than others. As a result, the influence of mesh size is not
notable on the distribution of free surface but on seepage point.
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The effect of the penalty parameter λ on free surface locations is shown in Figure 5.
With decreasing λ, the free surface becomes steeper, and the seepage point becomes lower.
The discharges per unit width, iteration step and relative error are listed in Table 1. Based
on Dupuit’s formula q = k

(
φ2

1 − φ2
2
)
/2L [22], where φ1 and φ2 are the upstream and

downstream water heads and L is the dam length as 5 m, the analytical discharge per
unit width is equal to 1.111 × 10−4 m2/s. The relative error between the numerical and
analytical results decreases with the decrease in λ. It is found that when λ is equal to or less
than 0.1, the calculated free surface location, discharge per unit width and iteration step is
independent of λ. Therefore, λ = 0.1 is used for other illustrated examples. Note that the
error tolerance is set as 0.001, which can guarantee numerical accuracy and efficiency.
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Table 1. The discharge per unit width, iteration step and relative error.

λ
Analytical

(m2/s)
Numerical

(m2/s) Iteration Steps Relative Error

1 × 10−10

1.111 × 10−4

1.100 × 10−4 8 0.99
0.01 1.100 × 10−4 8 0.99
0.10 1.100 × 10−4 8 0.99
0.25 1.099 × 10−4 8 1.08
0.50 1.092 × 10−4 7 1.71

4.2. A right Trapezoidal Dam

As shown in Figure 6a, the size of a right trapezoidal dam is 7 m in length, 5 m in
height and 1 m in width. The upstream and downstream water heads are 5 m and 1 m,
respectively. The bottom boundary is impermeable. The dam is isotropic, and the hydraulic
conductivity is valued as 1 m/d. During numerical simulations, the dam is discretized by
three kinds of mesh size (Bx = By = Bz = 0.1 m, 0.2 m, 0.25 m), and the related predictions
of free surface are shown in Figure 6c. In addition, the finite element results based on the
continuum model from Lacy and Prevost [8] and Zheng et al. [10] are also presented in
Figure 6b for comparison. There is good agreement between the proposed line-element
approach and the continuum-based finite element methods. In this right trapezoidal dam,
the proposed line-element model is also not sensitive to the mesh size and can achieve an
accurate solution in six iterations.
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4.3. A Left Bank Abutment Slope of Kajiwa Dam in Southwestern China

Located in the upper reaches of the Muli River in Muli County, Sichuan Province, as
shown in Figure 7, Kajiwa Hydropower Station is about 178 km away from Muli County
and 424 km away from Xichang City, which controls a watershed area of 6598 km2 with an
annual average flow of 101 m3/s. This concrete face rockfill dam is 171 m in height, and the
crest elevation is 2885 m. The installed capacity is 452.4 MW, and the total storage capacity
is 374.5 million m3 at the normal water level of 2850 m.
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The dam site is located in a deep and slightly asymmetrical V-shaped valley, with
exposed bedrock on both the right and left banks and steep partial terrain. The left bank is
broken-line-type with a slope of about 50◦ between 2710 m and 2830 m, a slope of about
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30◦ between 2830 m and 2970 m, and there are multistage wide and gentle platforms with
slopes of 10~15◦ above 2970 m, as shown in Figure 8. Between 2710 m and 2830 m, a small
amount of landslide deposits have accumulated at the foot of the slope, and the residual
exposed bedrock consists of slate and phyllitic slate intercalated sandstone from the third
member (O1r3) and metamorphic quartz sandstone, carbonaceous slate and phyllitic slate
from the fourth member (O1r4) of the Rengong Formation of the lower Ordovician system.
Above 2830 m, the slope surface is covered by a large area of residual slope deposits and
mainly consists of the glacial fluvial (fglQ3), eluvial (el plus dlQ4), colluvial (col plus dlQ4)
and diluvial (plQ4) deposits.

Water 2023, 15, x FOR PEER REVIEW 12 of 19 
 

 

The dam site is located in a deep and slightly asymmetrical V-shaped valley, with 

exposed bedrock on both the right and left banks and steep partial terrain. The left bank 

is broken-line-type with a slope of about 50° between 2710 m and 2830 m, a slope of about 

30° between 2830 m and 2970 m, and there are multistage wide and gentle platforms with 

slopes of 10~15° above 2970 m, as shown in Figure 8. Between 2710 m and 2830 m, a small 

amount of landslide deposits have accumulated at the foot of the slope, and the residual 

exposed bedrock consists of slate and phyllitic slate intercalated sandstone from the third 

member (O1r3) and metamorphic quartz sandstone, carbonaceous slate and phyllitic slate 

from the fourth member (O1r4) of the Rengong Formation of the lower Ordovician system. 

Above 2830 m, the slope surface is covered by a large area of residual slope deposits and 

mainly consists of the glacial fluvial (fglQ3), eluvial (el plus dlQ4), colluvial (col plus dlQ4) 

and diluvial (plQ4) deposits. 

Overburden soil

Bedrock

x

y

z

290m

368.7m

2765m

3025m

 
Figure 8. The geological layers of the left bank abutment slope of Kajiwa Dam. 

The left bank abutment slope is close to important hydraulic structures such as the 

entrance of the no. 1 spillway tunnel, the entrance of the emptying tunnel and the left dam 

abutment; the influence of seepage flow on its stability has an important impact on the 

construction and permanent operation safety of the Kajiwa Hydropower Station. In order 

to investigate the seepage flow behavior around the left bank abutment, the size of the 

whole flow domain is 290 m along the river flow direction, 368.7 m perpendicular to the 

river flow direction and 260 m in height, as shown in Figure 8. The geological strata are 

simplified as two layers: overburden soil and bedrock, of which the permeabilities are 6.43 

× 10−6 m/s and 1.5 × 10−10 m/s, respectively. The water level along the mountain side is 2980 

m, and along the river side, it is 2850 m. The bottom and lateral boundaries perpendicular 

to the river are impermeable, and the residual boundary is specified as a potential seepage 

boundary. 

Based on the line-element model, the left bank abutment slope is discretized by three 

kinds of mesh size (Bx = By = Bz = 5 m, 10 m, 20 m). As shown in Figure 9, by comparing 

the three kinds of mesh size, it can be seen that the results from Bx = By = Bz = 5 m and Bx = 

By = Bz = 10 m are almost overlapped and agree well with the continuum model. In con-

trast, the deviation of Bx = By = Bz = 20 m is pronounced. In order to obtain higher calcula-

tion accuracy and consume less calculation time, the mesh size of Bx = By = Bz = 10 m is 

selected in this paper. 

Figure 8. The geological layers of the left bank abutment slope of Kajiwa Dam.

The left bank abutment slope is close to important hydraulic structures such as the
entrance of the no. 1 spillway tunnel, the entrance of the emptying tunnel and the left
dam abutment; the influence of seepage flow on its stability has an important impact on
the construction and permanent operation safety of the Kajiwa Hydropower Station. In
order to investigate the seepage flow behavior around the left bank abutment, the size of
the whole flow domain is 290 m along the river flow direction, 368.7 m perpendicular to
the river flow direction and 260 m in height, as shown in Figure 8. The geological strata
are simplified as two layers: overburden soil and bedrock, of which the permeabilities are
6.43 × 10−6 m/s and 1.5 × 10−10 m/s, respectively. The water level along the mountain
side is 2980 m, and along the river side, it is 2850 m. The bottom and lateral boundaries
perpendicular to the river are impermeable, and the residual boundary is specified as a
potential seepage boundary.

Based on the line-element model, the left bank abutment slope is discretized by three
kinds of mesh size (Bx = By = Bz = 5 m, 10 m, 20 m). As shown in Figure 9, by comparing
the three kinds of mesh size, it can be seen that the results from Bx = By = Bz = 5 m and
Bx = By = Bz = 10 m are almost overlapped and agree well with the continuum model. In
contrast, the deviation of Bx = By = Bz = 20 m is pronounced. In order to obtain higher
calculation accuracy and consume less calculation time, the mesh size of Bx = By = Bz = 10 m
is selected in this paper.
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During numerical simulations, the left bank abutment slope is meshed by three or-
thogonal sets of line elements with Bx = By = Bz = 10 m, as shown in Figure 10a, with line
elements and nodes. For comparison, the tetrahedron element mesh (Figure 10b) is also
presented to model the three-dimensional steady free surface flow based on the parabolic
variational inequality algorithm of Signorini’s condition proposed by Zheng et al. [10] and
Chen et al. [1], and the details are as follows:

By combining with Equation (21), the continuum-based finite-element matrix for
Equation (1) can be expressed as [1]:

Kφr+1 = qr (34)

in which
K = ∑

e

∫
Ωe

BTkBdxdydz (35)

qr = ∑
e

∫
Ωe

[1− H(φ− z)]BTkBdxdydz·φr (36)
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B =


∂N1
∂x

∂N2
∂x · · · ∂Nm

∂x
∂N1
∂y

∂N2
∂y · · · ∂Nm

∂y
∂N1
∂z

∂N2
∂z · · · ∂Nm

∂z

 (37)

N =
[
N1 N2 · · · Nm

]
(38)

where B is the partial derivatives matrix of N, Ni is the shape function and m is the node
number of volume element.
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The contours of the three-dimensional water pressure head between the proposed line-
element model and the parabolic variational inequality algorithm are shown in Figure 11,
and good agreement is obtained. Figure 12 also plots the free surface locations in the
profiles y = 50 m and 200 m. The calculated results from these two methods are very close,
which indicates that the proposed line-element model can well reproduce the numerical
predictions from the continuum-based method. For this three-dimensional seepage condi-
tion, the seepage point at the profile y = 200 m is higher than that at the profile y = 50 m;
this is because the exposed bedrock with weak permeability at the bottom of y = 200 m is
negative for water transportation. It should be noted that the numerical solution is achieved
at six iteration steps, indicating that the proposed line-element approach is feasible and
efficient for solving complicated engineering seepage problems.
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5. Conclusions

For three-dimensional steady free surface flow in porous media, a line-element model
was developed to characterize water flow through the pores between the solid grains in the
control volume. Instead of the hypothesis that water flow is homogenized to the whole
flow domain, including pores and solid grains, the pores in the x, y and z directions in
the control volume are conceptualized as a three-dimensional orthogonal network of line
elements. Considering the equivalent distributions of water head and flow balance between
the line-element model and continuum model, the equivalent flow velocities, hydraulic
conductivities and continuity equations in the x, y and z directions are derived.

In order to assess the steady free surface flow in a fixed domain, a continuous penalized
Heaviside function is employed to extend the saturated Darcy flow to the unsaturated
flow including the dry domain. Based on the local coordinate system, the equivalent
flow velocities and continuity equations in the x, y and z directions are unified in a one-
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dimensional form, and the finite line-element algorithm is established by minimizing the
functional of the continuity equation. Herein, three-dimensional steady free surface flow is
reduced to one-dimensional form, and the numerical procedure is highly simplified, such
as the geometric matrix only depends on the length of the line element, while that of the
continuum model is a function of the coordinates of x, y and z; the integral calculation of K
in the line-element model is accurate, while that of the continuum model is approximate
subject to Gaussian points. Therefore, the proposed line-element model can obtain accurate
solutions in a few steps, especially for complicated engineering applications, and the
numerical difficulty is greatly decreased.

During the comparisons with other methods for three-dimensional steady free sur-
face flow in a rectangular dam and a right trapezoidal dam, the numerical accuracy and
efficiency can be well guaranteed by the line-element model. The line-element model is
not highly sensitive to mesh size and penalty parameters, but large mesh sizes and penalty
parameters may lead to variation in seepage points and free surface distributions around
the seepage face.

From the application of the left bank abutment slope of the Kajiwa Dam in South-
western China, the heterogeneous slope generally contains two kinds of geological layers:
the overburden soil and bedrock, with several orders of hydraulic conductivity difference,
which arises through seepage points around the exposed bedrock domain that are higher
than those near the landslide deposits at the foot of the slope. At the same time, the nu-
merical results from the parabolic variational inequality algorithm are also provided, in
which the slope is meshed by the tetrahedron elements. The three-dimensional contours of
the water pressure head and free surface locations of the profiles between the line-element
model and continuum model are almost consistent. Therefore, the line-element model is
equivalent to the continuum model in numerical solutions. However, the line model seems
to be more reasonable in physics, more concise in mathematics and easier in solutions.
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