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Abstract: In order to investigate the law of basalt fibre to enhance the durability of concrete, this
paper selects basalt fibre length as the main factor, supplemented by novel research methods such
as neural networks, to study the rule of concrete resistance to multiple types of salt erosion. Tests
have shown that large doses of mineral admixtures and basalt fibres can prolong the time that
concrete is eroded by salt solutions; the age of maintenance has a small effect on the mechanical
and durability of the concrete; the increase in length of basalt fibres enhances the mechanical prop-
erties of the concrete, but weakens the durability. This is exacerbated by the mixing of fibres, but
the increase is not significant; the effect of length on concrete resistance to mass loss, corrosion
resistance factor of compressive strength, and resistance to chloride ion attack is ranked as follows:
6 mm > 12 mm > 18 mm > 6 mm + 12 mm > 6 mm + 12 mm + 18 mm. The opposite is true for effective
porosity; the highest compressive strength corrosion resistance coefficient was found in the length of
6 mm, with an average increase of 6.2% compared to 18 mm, and the mixed group was generally
smaller than the single mixed group. The average increase in chloride content was 25.1% for length
18 mm compared to 6 mm; the triple-doped L6-12-18 group was the largest, with an average increase
of 33.9% in effective porosity over the minimum 6 mm group. Based on the data from the above
indoor trials, artificial neural network models and grey cluster analysis were used to predict and
analyse the data, and the prediction and categorisation results were accurate and reliable, providing
a reference for subsequent studies.

Keywords: basalt fibres; durability; artificial neural networks; grey cluster analysis

1. Introduction

In more than 40 years of reform and opening up, China’s economy has developed
extremely rapidly. Concrete buildings have evolved with the times, with a gradual increase
in large projects such as large span bridges and heavily laden hydraulic buildings. These
buildings have high requirements for a range of mechanical properties, workability and
durability of concrete [1]. Considering the environment in which such buildings are located,
ordinary conventional concrete, with its disadvantages such as brittleness, susceptibility to
cracking, poor durability and serious cement consumption [2], restricts its use.

There was a major construction effort in the West, with the building of a large number
of concrete infrastructure facilities. Additionally, the soil in the area contains high levels
of corrosive salts that can cause corrosion to the concrete; among the main corrosive
substances are Cl−, SO4

2− etc. [3]. SO4
2− reacts with concrete, and the resulting calcium

alumina and gypsum are expansive. Pre-corrosion is mainly manifested by the precipitation
of crystals on the concrete surface, and the late stage of corrosion by spalling in the area of
concrete adsorption and exposed aggregates [4]. Cl− can cause damage to the passivation
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film of reinforcing steel in concrete, accelerating local corrosion of reinforcing steel, causing
expansion and cracking of the concrete protection layer [5]. Salt corrosion poses a serious
threat to concrete buildings, significantly shortening their service life and causing them to
deteriorate at an accelerated rate. Therefore, research into the durability of concrete against
salt erosion in coastal and western areas is essential.

In the face of the significant increase in concrete buildings, the consumption of concrete
raw materials is increasing day by day. This will determine the development of concrete
in the direction of green materials, reduced consumption of raw materials, high quality,
high durability and environmental protection. Basalt fibres have the advantages of stable
chemical properties, good thermal shock stability and high tensile strength, being green non-
polluting, and corrosion-resistant, etc. Basalt fibre fly-ash concretewhich has the advantages
of both basalt fibre concrete and fly-ash concrete, was then synthesised. The mixing of basalt
fibres with fly-ash has a synergistic effect in concrete, contributing to the improvement
of concrete in terms of compactness, tensile strength and erosion resistance, improving
the mechanical properties and durability of concrete. Lilli Matteo [6] et al. used plasma-
enhanced basalt fibres to deposit vinyl silane on the surface of basalt fibres. The results show
that the shear strength of the modified basalt fibre concrete increased by 79%, highlighting
the excellent properties of the composite. Venkat Raman et al. [7] studied the mechanism
of basalt fibre-reinforced concrete and tested the flexural performance of concrete; they
found that basalt fibre-wrapped concrete has higher flexural performance, and greater load
bearing capacity and economy compared to conventional concrete. Meyyappan PL [8]
et al. mixed basalt fibres (0.5%, 1%, 1.5%, 2%, 2.5% and 3%) into concrete for the purpose
of enhancing the tensile strength of concrete, and the strength performance of concrete
was optimal when the volume dose was 1%. The strength properties tend to decrease
with further increases in volume dosing. Sadjad Pirmohammad [9] studied the effect of
basalt fibres of different admixtures (0.1%, 0.2%, 0.3%) and different lengths (4 mm, 8 mm,
12 mm) on concrete, using fracture tests to standardise the degree of correlation. The
results show that the fracture toughness increases with the increase of fibre content; the
fracture toughness decreases with the increase of basalt fibre length; the fracture toughness
of basalt fibre concrete with 0.3% volume admixture and 4 mm length is the highest. Zhi
Pin Loh [10] used two different fibres of polyvinyl alcohol (Penicillin V Acylase) and basalt
to enhance the performance of concrete, and found that the fibres had little effect on the
compressive strength of FRCC, but there was a significant increase in splitting tensile and
flexural strength. Nasir Shafiq [11] investigated the compressive strength of short-cut basalt
fibre concrete, with the volume admixture, using the non-destructive testing technique
ultrasonic pulse velocity (UPV). Luigi Fenu [12] discusses the laws of basalt fibre-reinforced
concrete, analysing the energy absorption and tensile strength of concrete at high strain
rates. The results show that the addition of basalt fibre has a non-significant effect on
the dynamic increase factor and only slightly increases it. El-Gelani A. M. et al. [13],
investigated the effect of basalt fibre-reinforced concrete on mechanical properties. It was
found that the relative modulus of elasticity, splitting tensile strength, and flexural strength
of the concrete was significantly enhanced with the incorporation of basalt fibres, while
the compressive strength was slightly improved. Therefore, under the premise of green,
environmental protection and economy, the green building materials fly-ash and basalt
fibre were introduced into the development of concrete with the aim of improving the
mechanical properties and durability of concrete; this has carried on the correlation research.
In light of this, achieving a comprehensive grasp of basalt fibre fly-ash concrete to provide a
realistic basis for its application in the field of civil engineering has important significance.

The artificial neural network approach simulates the structure of neurons in the
human brain, which receives and processes information from outside. Artificial neural
network techniques are now used more and more maturely, and are also used more and
more in engineering [14–16]. The main methods of machine learning currently applied
to engineering are algorithms such as artificial neural networks, random forests, support
vector machines and decision trees. Where artificial neural networks have a huge advantage
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is the reflection of the uncertain relationship between the independent and dependent
variables; artificial neural networks can make non-linear connections between inputs and
outputs [17–19], and accurate and efficient models can therefore be built quickly. The
second advantage is these algorithms’ ability to learn. Artificial neural networks can
use several mathematical algorithms simultaneously to create weights between neurons
efficiently, and this process of creating and determining weights is an optimisation method
that reflects the powerful learning ability of artificial neural networks.

Among them, the use of artificial neural networks to predict the compressive strength
of concrete is more studied. For example, Garg A, Aggarwal P, Aggarwal Y, et al. [20],
using SVM and GPR to predict the compressive strength of concrete containing silica
nanoparticles, found results that show that SVM performs better in predicting the results.
Kandiri Amirreza [21] predicted the compressive strength of concrete containing recycled
aggregates and tested the validity of the algorithm using the M5P tree model; Ahmad
Ayaz [22] used supervised machine learning (ML) algorithms, gene expression program-
ming (GEP) and artificial neural networks (ANN) to predict the compressive strength of
rca-based concrete in comparison. The GEP model had a correlation (R2) value of 0.95,
while the ANN model had an R2 value of 0.92, making the GEP model more effective in
prediction; Adriana Trocoli Abdon Dantas [23] used an artificial neural network model
to predict the compressive strength of concrete containing construction and demolition
waste (CDW) at 3, 7, 28 and 91 days, respectively. Hosein Naderpour [24] employed a
model based on a neuro-fuzzy approach as a soft computing technique, and this model
predicted the compressive strength of environmentally friendly concrete more accurately;
Several scholars have used artificial neural networks to predict indicators of chloride ion
erosion in concrete, and Taffese Woubishet Zewdu [25] used the XGBoost machine learning
algorithm to predict the migration coefficient of chloride ions in concrete; Sun et al. [26]
used a multi-scale simulation approach and employed a spherical inclusions model to
calculate the diffusion coefficient of chloride ions in concrete.

Research on concrete durability using artificial neural networks has gradually started
to develop in recent years [27–31]. Liu Kaihua [32] used a machine learning model to
predict the carbonation depth of recycled aggregate concrete and showed that the random
forest model had better performance than the Gaussian progression regression model and
the independent artificial neural network (ANN) model. Z.H. Duan [33] investigated the
applicability of artificial neural networks (ANN) in modelling the modulus of elasticity
(Ec) of recycled aggregate concrete (RAC), and the results of the study showed that the
established neural network model was better in predicting the modulus of elasticity of
concrete from different sources of RA materials. Most of these are predictive models for
carbonation, porosity and resistivity. However, there has been relatively little research into
the durability of fibre fly-ash concrete.

This paper investigates the mechanism of resistance to multi-salt erosion under each
factor by studying the effect of basalt fibre length, curing age and other factors on mass
loss rate, compressive strength corrosion resistance factor, effective porosity and chloride
ion content in basalt fibre fly-ash concrete. Eight algorithms for artificial neural networks
were written using a python program to find the best-fit model for basalt fibre fly-ash
concrete durability prediction by seeking prediction results with higher prediction scores.
A clustering analysis was carried out on basalt fibre fly-ash concrete’s durability related
indicators, based on Matlab software using grey clustering analysis.

2. Materials and Methods
2.1. Materials

P.O42.5 ordinary Portland cement was selected for cement, and its chemical properties
meet national standards, and the physical and mechanical properties are shown in Table 1.
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Table 1. Cement properties.

Compressive Strength/MPa Flexural Strength/MPa Condensation Time/min

3 d 28 d 3 d 28 d Initial
coagulation

Final
coagulation

21.4 46.8 6.2 8.6 155 230

Basalt fibre is selected from basalt chopped fibre, and its main physical and mechanical
performance indicators are shown in Table 2.

Table 2. Physical and mechanical properties of basalt fibres.

Length (mm) Diameter (µm) Density (g/cm3)
Elastic Modulus

(GPa)
Tensile

Strength (MPa)

6/12/18 15 2.65 91 3900

The coarse aggregate adopts continuous graded crushed stone with a particle size of
5~20 mm; The fine aggregate adopts machined sand with a fineness modulus of 2.6 and an
apparent density of 2670 kg/m3.

Fly ash is selected secondary fly ash, and its main chemical composition and physical
properties are shown in Tables 3 and 4 respectively.

Table 3. Chemical composition of grade ii fly ash/%.

Chemical
Composition SO3 CaO SiO2 Al2O3 Fe2O3 MgO

Content 0.36 2.83 50.26 31.14 4.16 0.78

Table 4. Physical properties of fly ash.

Apparent Density
(g/cm3)

Moisture Content
(%)

Strength Activity
Index
(%)

Loss on Ignition
(%) Fineness (%) Water Demand

Ratio (%)

2.25 0.52 86 2.34 20 98

2.2. Test Mixes

In order to investigate the basic mechanical properties of basalt fibre fly-ash concrete,
the test mix was designed with a strength of C40, a water-cement ratio of 0.36 and a sand
ration of 40%. Of all the raw materials, aggregates make up the majority of the concrete,
and the moisture they contain has an important influence on the concrete mix design. It
is therefore important to carry out sand and stone moisture content tests to control the
moisture content in aggregates. The preliminary mix ratio is converted into a test mix
ratio by adjusting the influencing parameters according to the actual moisture content and
strength of the aggregates used. The specific parameters are shown in Table 5.
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Table 5. Mix proportion concrete (kg/m3).

Number
Cement Fly

Ash

Mineral
Pow-
der

Fine
Aggre-
gates

Coarse
Aggre-
gates

Water Water Reducing
Agents Short-Cut Basalt Fibres (%)

(kg/m3) (%) 6 mm 12 mm 18 mm

C0.12L6 237 118.5 39.5 735 1089 142 0.13 0.12 — —
C0.12L12 237 118.5 39.5 735 1089 142 0.27 — 0.12 —
C0.12L18 237 118.5 39.5 735 1089 142 0.30 — — 0.12

C0.12L6–12 237 118.5 39.5 735 1089 142 0.29 0.06 0.06 —
C0.12L6–12–18 237 118.5 39.5 735 1089 142 0.29 0.04 0.04 0.04

Note: Where L6, L12, L18, L6-12, L6-12-18 represent short-cut basalt fibre lengths of 6 mm, 12 mm, 18 mm, 6 mm
mixed with 12 mm (1:1) and three lengths mixed (1:1:1) respectively.

2.3. Durability Test Methods

The durability test methods for basalt fibres are shown in Table 6.

Table 6. Durability test methods.

Content of the Test Specific Test Indicators

Conservation age 28 d, 56 d, 84 d
Erosion solutions Sodium sulphate at 10%, sodium chloride at 7%
Erosion patterns Soaking erosion

Fibre length 6 mm, 12 mm, 18 mm, 6 mm + 12 mm, 6 mm + 12 mm + 18 mm
Fibre bulk rate 0.12%
Erosion time 0d, 30 d, 60 d, 90 d, 120 d, 180 d, 240 d

Test content Compressive strength corrosion resistance factor, mass loss rate,
effective porosity, chloride ion content

2.3.1. Mechanical Properties Test Procedure

Basalt fibre fly ash concrete specimens were tested for cubic compressive and splitting
tensile strengths after reaching the design curing age by removing and drying the surface
water. Its mechanical properties were tested in strict accordance with the specifications.

2.3.2. Durability Test Procedure

(1) The 100 mm × 100 mm × 100 mm cube specimen was taken out after 26 d of standard
maintenance, wiped off the surface moisture and placed in a ventilated environment
for 48 h to dry out the moisture.

(2) The dried specimens were placed in a well-configured mixed solution tank; the
solution should be 20 mm above the highest layer of concrete specimens and the
spacing between specimens should not be less than 20 mm. The immersion time was
calculated when the solution is ready, and the solution needs to be prepared for less
than 30 min and replaced every 30 d. The solution should be temperature controlled
to avoid errors caused by temperature, which should be controlled at 20 ◦C ± 2 ◦C.

(3) When the concrete specimens are removed after erosion to the specified age for the
compressive test, they should be wrapped in wet towels and transported to the
laboratory for the compressive test; to carry out the mass loss test, a balance must
first be prepared with an accuracy of 0.01 g, then the surface of the specimen should
be dried, removed from the erosion tank and immediately weigh the saturated mass
of concrete; to carry out the porosity test, the weighed saturated concrete specimens
were wrapped in towels, transported to the laboratory, dried in an oven at a controlled
temperature of 105 ◦C ± 5 ◦C, dried at high temperature for 48 h, then weighed again
for mass and finally the corresponding chloride ion measurements.
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2.4. Artificial Neural Networks

The artificial neural network approach simulates the structure of neurons in the human
brain, which receives and processes external information, thus achieving an intelligent
solution function similar to that of the human brain. It is the model that plays an important
role in the activity of artificial neural networks [34]. The basic building blocks of the
human brain are neurons, which are capable of thinking and learning from experience
and remembering. Many parallel structures make up the artificial neural network; these
cells receive data in the form of weighted inputs and then activate a series of neurons by
transferring the weighted outputs to other neurons through an activation function.

ANN is one of the most advanced artificial intelligence technologies available and it
has many advantages. One is a reflection of the uncertain relationship due to the dependent
and independent variables. The ANN method is able to achieve a non-linear connection
between input and output due to its excellent mathematical tools. This allows a valid
predictive model to be built up quickly. In addition, ANN has the advantage of improving
learning ability. ANN can effectively establish the weights between neurons using multiple
mathematical algorithms simultaneously. This process of creating and determining weights
is an optimised approach that reflects the powerful learning capabilities of artificial neural
networks. At the same time, the algorithm has some drawbacks, such as the large amount of
data needed to train the algorithm and the difficulty in explaining the internal mechanism
and the memory.

Training data gives good results, while test data produces bad results, the so-called
memory. To prevent this problem, the optimal model needs to be tested by examining the
degree of error in the training, validation and test data.

The input, hidden and output layers is the basic structure of the ANN model. ANN
models all have at least one input layer, a hidden layer and an output layer, and there can be
more than one hidden layer. For very complex problems, multiple hidden layers can be very
helpful. The ANN model is made up of the neurons, as shown in Figure 1. Although only
the values of the independent variables are present in the input layer neurons, mathematical
operations are performed in the hidden and output layers. Equation (1) represents the
mathematical operations performed in the neuron.

y = f (∑wi xi + b) (1)

y-represents the result of the neuron,
w-represents the inter-neuron weights,
x-means input from the upper level,
f -stands for transfer function,
b-represents deviation,
i-represents the number of neurons.
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The input obtained from the previous layer is multiplied by the weighted and increas-
ing deviations. The outcome of the neuron depends on the processing of this accumulation
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of transfer functions. This result is multiplied by the weights and dispersed to the next
layer. The neural network architecture consists of an input layer, a hidden layer and an
output layer, as well as other elements. At each layer, with the exception of the input layer,
linear combinations with biases are analysed first.

2.5. Decision Trees

The decision tree algorithm is a computational method to approximate the value of a
discrete function. This is a typical classification method which works by processing the data
and then generating readable rules and decision trees through inductive operations, and
finally analysing the new data through decision making. Essentially, a decision tree is a set
of rules used for classifying. The decision tree algorithm discovers the classification rules
hidden in the data by constructing a decision tree. The core component of the decision tree
algorithm is the construction of highly accurate, small-scale decision trees. The decision
tree is constructed in two stages. The first step is to generate a decision tree: a decision tree
is generated from the sample pool of the training set. Typically, training sample datasets
are historical data with a certain degree of synthesis, wherein the data are analysed and
processed according to actual needs. The second step is decision tree pruning; decision
tree pruning is the process of checking, correcting and trimming down the decision tree
generated in the previous stage; it focuses on pruning branches that affect prediction by
examining the initial rules generated during the generation of the decision tree with data
in a new sample dataset (the so-called test data set).

2.6. Grey Clustering Analysis

Grey clustering can be divided into two types: one is grey correlation clustering,
which is used for the grouping of similar factors, and the other is grey-whitening weight
clustering, which is used to detect the class to which an observation belongs.

Using grey correlation clustering analysis, we analyse whether several of the many
factors are more highly correlated; we use a composite average indicator of these factors or
one of them to represent them without significant loss of information, thus allowing us to
save costs and money by reducing the collection of unnecessary variables (factors) through
grey correlation clustering of typical sample data before conducting large scale research.

3. Results and Discussion
3.1. Effects of Length on Quality Loss Rate

Figure 2a,b reflect the variation pattern of basalt fibre fly-ash coagulation mass loss
rate with the fibre length. With the increase in erosion time, the concrete mass tends to
increase and then decrease, with the mass increasing phase from 0d to 90 d and the mass
decreasing phase after 90 d. The erosion time starts to show mass reduction at 240 d; for
example: lengths of triple-doped C0.12L6–12-18 [6 mm, 12 mm and 18 mm mixed in three
lengths (1:1:1)] underwent a mass loss rate change from negative to positive, that is, a mass
reduction. It can be deduced that all other lengths of specimens will also successively show
positive values after 240 d, with a loss of mass. As the length of basalt fibre increases, the
rate of mass loss also tends to increase, and the rate of mass loss is greater for mixed basalt
fibre lengths than for single mixes.

From experimental results, it can be seen that the choice of basalt fibre length has
a certain effect on the concrete mass loss rate, but it is not significant. For basalt fibre
lengths, the descending order of resistance to mass loss is 6 mm > 12 mm > 18 mm > 6 mm +
12 mm > 6 mm + 12 mm + 18 mm; this is due to the fact that at the same volume, the shorter
lengths of basalt fibres are more dense in comparison to the quantity, the concrete fills more
densely and binds the concrete surface debris more strongly. For mixed fibres, it is easy to
form agglomerates within the concrete; between the mass is a weak link, and the erosion
solution finds it easy to penetrate deep into the concrete, accelerating the erosion of the
concrete and resulting in accelerated quality loss of concrete.
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3.2. Effects of Length on Effective Porosity

The effective porosity can directly reflect the change in pore filling of concrete speci-
mens. Figure 3a,b show the change in effective porosity with increasing erosion time for
different lengths of basalt fibres of the same volume ratio. The effective porosity of basalt
fibre fly-ash concrete, with the increase in erosion time, always shows a trend of first declin-
ing and then rising. Thirty days is the lowest point of effective porosity, and after 60 d, this
grows slowly. The tendency is to increase with the length of basalt fibres, with the fibre mix
being significantly larger than the single group. The triple-doped C0.12L6–12–18 group was
the largest, with an average increase in effective porosity of 33.9% over the minimum
6 mm group. For basalt fibre lengths, the effective porosity in descending order is:
6 mm + 12 mm + 18 mm > 6 mm + 12 mm > 18 mm > 12 mm > 6 mm.
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The reason for this is that the shorter the length of the basalt fibre at the same volume
ratio, the greater the relative increase in its order of magnitude, the greater the reduction in
pore connectivity within the concrete, resulting in a reduction in porosity. The mixed fibres,
on the other hand, are weak due to more agglomeration [35], which leads to more cracks
and a larger effective porosity.

3.3. Effects of Length on the Corrosion Resistance Factor of Compressive Strength

From Figure 4a,b, it can be seen that the coefficient of compressive strength corrosion
resistance of basalt fibre fly-ash concrete tends to rise and then fall with the growth of
erosion time, reaching a peak at 90 d and slowly falling after 120 d. As the length increases,
it tends to decrease; the highest compressive strength coefficient of corrosion resistance is
found in the 6 mm length, with an average increase of 6.2% over the 18 mm length, and
the mixed group is generally smaller than the single group. For basalt fibre length, the
compressive strength corrosion resistance factor of basalt fibre fly-ash concrete is ranked
from largest to smallest as follows: 6 mm > 12 mm > 18 mm > 6 mm + 12 mm + 18 mm >
6 mm + 12 mm.
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Experiments have shown that the length of basalt fibres has a significant effect on the
corrosion resistance factor of compressive strength, that shorter fibres are more susceptible
to erosion by salt solutions than longer ones, and that with larger fluctuations in strength,
the mixed group is less affected by erosion than the single group. This is due to the fact
that the longer the fibres, the higher the binding force on the concrete and the better it can
counteract the expansion stress caused by mixed salt, reducing the external forces that the
concrete needs to resist and causing the corresponding compressive strength corrosion
resistance factor to be smoothed out. The mesh structure built up by the mixed basalt fibres
is slightly more binding than the single-doped group.

3.4. Effects of Length on Chloride Content

Figure 5a,b show the pattern of the effect of basalt fibre length on the chloride ion
content after different times. The chloride ion content tested in the trials was all at 2 mm
below the surface of the basalt fibre fly-ash concrete. The chloride ion content of basalt
fibre fly-ash concrete tends to rise with increasing erosion time. The chloride content rises
rapidly until 120 d, after which the rate of increase slows down; the trend increases slowly
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with the length of the basalt fibre, with an average increase of 25.1% for lengths of 18 mm
compared to 6 mm. At the same time, thte chloride ion content in the mixed group was
significantly higher than in the single group. For basalt fibre length, the basalt fibre fly-ash
concrete resistance to chloride ions is ranked from largest to smallest as follows: 6 mm > 12
mm > 18 mm > 6 mm + 12 mm > 6 mm + 12 mm + 18 mm.
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Figure 6 shows the chloride ion content at a depth of 0 mm to 30 mm below the surface
of the specimen after 90 d of erosion. The pattern of variation in chloride ion content along
the depth direction for different lengths of basalt fibres of the same volume ratio is shown.
The chloride content tends to decrease with increasing depth. At a depth of 15 mm, the
decreasing trend slows down and plateaus.
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This is due to the fact that the increase in length of basalt fibres leads to a decrease in
concrete compactness and an increase in porosity, which makes it easier for chloride ions to
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enter the concrete, resulting in a higher chloride ion content. Similarly, the mixed group
produces more inter-cluster cracks than the single group, and this weakness leads to higher
chloride ion content in the mixed group.

3.5. Effects of Curing Age on the Resistance of Concrete to Multi-Salt Attack at Different Fibre
Lengths

Table 7 shows the results of the concrete specimens tested for each index after 90 days
of immersion erosion under different curing ages. Basalt fibre fly-ash concrete, with the
growth of curing time, showed a decreasing trend except for the compressive strength;
the mass loss rate, effective porosity and chloride content trend upwards with increasing
length. The concrete cube compressive strength increases first and then decreases, with the
specimens numbered C0.12L6 + 12 lying between C0.12L6 and C0.12L12and the C0.12L6
+ 12 + 18 group being the strongest. This is due to the fact that in the single group, the
optimum length is 12 mm, and that the concrete with triple-mixing of the basalt fibres has
the best load-bearing capacity due to the mesh structure.

Table 7. Corrosion resistance test results of different curing ages.

Length (mm) 6 12 18 6 + 12 6 + 12 + 18

Compressive
strength

(MPa)

28 d 72.6 74.7 73.3 72.9 75.5
56 d 74.1 76.6 74.7 75.1 76.9
84 d 74.6 76.9 75.4 75.8 77.4

Quality
loss rate

(%)

28 d −0.2345 −0.1913 −0.1645 −0.1509 −0.1165
56 d −0.2662 −0.2271 −0.2035 −0.1859 −0.1541
84 d −0.2737 −0.2353 −0.2147 −0.1982 −0.1697

Effective
porosity

(%)

28 d 2.91 3.22 3.24 3.36 3.71
56 d 2.53 2.67 2.83 2.95 3.30
84 d 2.47 2.58 2.75 2.88 3.15

Chloride
ion content

(%)

28 d 0.27 0.30 0.33 0.36 0.43
56 d 0.27 0.28 0.31 0.33 0.39
84 d 0.26 0.27 0.30 0.31 0.37

3.6. Artificial Neural Network Prediction Analysis

In this paper, an artificial neural network model written in python software is used,
including eight algorithms of artificial neural network model. The eight algorithms are
random forest, decision tree, SVC, KNN, logistic regression, linear SVC, perceptron and
stochastic gradient decent. Eight algorithmic artificial neural network models were used to
predict and estimate the durability index of basalt fibre fly-ash concrete, and the prediction
accuracy of the eight models was compared to select the best model.

The artificial neural network input layer established in this paper has six units, which
are the water to cement ratio, fly ash, water reducing agent, basalt fibre length, compressive
strength and age. The output layer has three units, namely mass loss rate, effective porosity
and chloride content. The prediction results’ software scores are shown in Figure 7, from
which it is clear that the decision tree artificial neural network prediction results’ software
scores are the highest.
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When using the decision tree algorithm, the machine learning module based on python
software predicts the mass loss rate, effective porosity and chloride content of basalt fibre
fly-ash concrete; the predicted values closely matched the rate of change of the measured
values with very high accuracy, with an absolute error of <1% for all samples and a software
score of 99.6 for the prediction results. It shows that the decision tree model has good
application. A comparison of the artificial neural network prediction results of the decision
tree model with the experimental results is shown in Figures 8–10.
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3.7. Grey Clustering Analysis

Grey clustering is a method of classifying a number of indicators and observations
into definable categories based on an association matrix, where a cluster can be seen as a
collection of observations belonging to the same category. As the grey composite correlation
examines both similarity and proximity between data series, grey correlation clustering
can reduce the collection of unnecessary variables (factors) and therefore save costs and
money. Therefore, a comprehensive correlation degree model was used to analyse the
intrinsic connection between the durability indicators of basalt fibre fly-ash concrete, and
the calculation results are shown in Figure 11.
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Figure 11 shows that the combined correlation values between compressive strength,
effective porosity and chloride content are all close to or greater than 0.8, which is greater
than the correlation values between mass change rate and the other performance indicators.
The reason for this is that compressive strength, effective porosity and chloride ion content
reflect the changes in the internal pore structure of basalt fibre fly-ash concrete from
different aspects; the large porosity, loose internal structure, and macroscopic performance
of compressive strength is reduced; the effective porosity and chloride ion content are
decreased. The rate of change in the quality of basalt fibre fly-ash concrete correlates less
well with other macroscopic indicators, indicating that the change in the quality of basalt
fibre fly-ash concrete does not reflect well the change in its internal soil pore structure.
In summary, compressive strength, effective porosity and chloride ion content should be
grouped into one cluster. For the analysis of the pore structure, one of the indicators can
represent the others, which helps to reduce the interference among the indicators and
provides a reference for subsequent studies; the rate of mass change, on the other hand, is
grouped into a separate cluster, and its effect on the pore structure needs to be analysed
separately.

4. Conclusions and Discussion
4.1. Conclusions

In order to investigate the law of basalt fibre to enhance the durability of concrete,
this paper selects basalt fibre length as the main factor, supplemented by novel research
methods such as neural networks, to study the rule of concrete resistance to multiple types
of salt erosion. The salt was mixed in the experiments. The mass loss rate, effective porosity,
compressive strength corrosion resistance factor and chloride ion content were selected to
investigate the effects of basalt fibre length, curing age, erosion time and other influencing
factors on the erosion resistance of basalt fibre fly-ash concrete. Additionally, the durability
index of basalt fibre fly-ash concrete was predicted and analysed by eight artificial neural
network models and a grey clustering analysis. The specific results are as follows:

(1) Increasing the length of basalt fibres can enhance the mechanical properties of concrete
but weaken its durability. This is exacerbated by the mixing of fibres, but none of the
increases are significant. The ranking of basalt fibre lengths for concrete resistance
to mass loss and chloride erosion is as follows: 6 mm > 12 mm > 18 mm > 6 mm +
12 mm > 6 mm + 12 mm + 18 mm; the ranking of basalt fibre length for effective
porosity is 6 mm + 12 mm + 18 mm > 6 mm + 12 mm > 18 mm > 12 mm > 6 mm.
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(2) With large quantities of mineral admixtures and basalt fibres, the concrete can be
eroded by the mixed salt solution for a relatively longer period of time. The 120 d
erosion time is the turning point in the mechanical and durability performance of
basalt fibre fly-ash concrete, compared to the usual 60 d for conventional concrete.

(3) The extension of the age of maintenance improves the performance of the concrete in
terms of mechanical properties and durability, but to a lesser extent.

(4) The artificial neural network model was used to make predictions, and the results were
accurate and reliable; the artificial neural network prediction model with decision trees
had the highest accuracy with a score of 99.6. The decision tree was able to effectively
model the durability-related indicators (effective porosity, mass loss rate, chloride ion
content) of basalt fibre fly-ash concrete, providing a reference for subsequent studies
such as simplified indoor tests.

(5) The grey clustering model analysis resulted in the compressive strength, effective
porosity and chloride content being grouped into one cluster for uniform analysis,
while the mass loss rate needed to be grouped separately. Analysis of the results
reduces the collection of unnecessary variables (factors) and saves on the cost of the
experiment.

4.2. Discussion

(1) Basalt fibre, fly ash and mineral powder are all green and pollution-free environmental
protection materials, and their comprehensive application research in concrete is
small, and it remains to be studied to develop different mixing ratios for different
environments such as impact load, freeze–thaw environment and dry and wet cycle
environment, for the selection of the best mix ratio.

(2) In this paper, basalt fibre fly-ash concrete is analyzed at the macroscopic level; the
microscopic performance mechanism of basalt fibre dispersion and mineral admixture
products, during the erosion period, on the mechanical properties and durability of
concrete needs to be studied.
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