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Abstract: Low-impact development (LID) practices have been recognized as a promising strategy
to control urban stormwater runoff and non-point source pollution in urban ecosystems. However,
many experimental and modeling efforts are required to tailor an effective LID practice based on the
hydraulic and environmental characteristics of a given region. In this study, the InfoWorks ICM was
applied to simulate the runoff properties and determine the optimal LID design in a residential site at
Yixing, China, based on four practical rainfall events. Additionally, the software was redeveloped
using Ruby object-oriented programming to improve its efficiency in uncertainty analysis using the
Generalized Likelihood Uncertainty Estimation method. The simulated runoff was in good agreement
with the observed discharge (Nash–Sutcliffe model efficiency coefficients >0.86). The results of the
response surface method indicated that when the sunken green belt, permeable pavement, and green
roof covered 8.6%, 15%, and 10%, respectively, of the 11.3 ha study area, the designed system showed
the best performance with relatively low cost. This study would provide new insights into designing
urban rainfall-runoff pollution control systems.

Keywords: first flush effect; InfoWorks ICM; LID optimization; generalized likelihood uncertainty
estimation

1. Introduction

Urbanization, characterized by continuous growth in population and land develop-
ment, has altered the urban water cycle. Increasing urban impervious areas disrupted
the infiltration process and resulted in a significant increase in the amount of surface wa-
ter runoff, intensifying the frequency and severity of floods [1–3]. Besides, the growing
population and industry largely augment the pollution load, such as through emissions
from vehicles, the use of pharmaceuticals and personal care products, and the release of
micro-/nano-plastics [4–6]. These pollutants exhibit stronger interactions with each other
and may enrich adverse substances such as antibiotic resistance genes in surface water and
floods [7,8]. One of the greatest issues in urban runoff is the first flush effect (FFE), which
implies a greater discharge rate of pollutant mass or concentration in the early part of the
runoff as compared with later in the storm [9–11]. Chow and Yusop (2014) [9] examined
the water quality of 52 rainfall events and concluded that the first 10 mm of rainfall carried
about 50% of the total pollutants. Wang et al. (2016) [10] proposed that intercepting the first
30–40% of the surface runoff was the most effective in stormwater quality management.
As a result, controlling the first flush is critical for stormwater management.

Low impact development (LID) has been regarded as a promising strategy to com-
pensate for the influence of urbanization on hydrology and water quality by simulating
the pre-development site hydrology with site design techniques [12,13]. LID, as an effec-
tive and environmentally friendly practice for urban runoff management, is capable of
significantly reducing urban runoff pollution loads [14]. This strategy was first introduced
by the U.S. Environmental Protection Agency in the 1990s and has been widely used in
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many cities [12,15,16]. Green infrastructures such as bioretention cells, green roofs, and
permeable pavements are implemented for LID purposes [17,18]. However, the design
and implementation of these green infrastructures require optimization to achieve better
performance [14,19].

Due to the random and uneven distribution of surface runoff, optimizing LID prac-
tices based on model simulation has become an ideal strategy. SWMM, MIKE, and In-
foWorks ICM were often used by researchers to simulate the quality and quantity of surface
runoff [20–22]. SWMM is a commonly used software that is easy to operate and commonly
applied for secondary development. However, its input was complicated, and the results
were difficult to visualize [20,22]. MIKE was feasible to simulate the hydraulics and quality,
but some models required to be coupled manually [21]. InfoWorks ICM, developed by
Wallingford, facilitated the operation and visualization of the urban water cycle simulation,
making it a preferable choice for this study [23,24]. For example, Fan et al. (2022) [25]
applied InfoWorks ICM to analyze the hydrological and pollution reduction in outfall and
storage under different hydrological patterns, vertical parameter settings, and green infras-
tructure installation locations. However, most of the stormwater management practices in
China only focused on reducing the volume rather than the FFE, which is key to a more
effective LID practice design and stormwater runoff management [23,26].

Therefore, the aims of this study are: (1) to establish a model using InfoWorks ICM for
stormwater runoff quality monitoring and estimation; (2) to conduct sensitivity analysis,
calibration, validation, and uncertainty analysis on the established model; and (3) to
optimize various LID facilities to maximize their performance while minimizing the cost.
This study presents a promising method for urban runoff management, and the results are
available for decision-makers to use in future planning.

2. Materials and Methods
2.1. Site Description

This study took place in Yixing (31◦07′~31◦37′ N, 119◦31′~120◦03′ E), a city located
in the Southern part of Jiangsu Province, China (Figure 1). Yixing is hilly in the south,
flat in the north, and has Taihu Lake to the east. The city has a humid subtropical climate
and is influenced by the East Asian monsoon, which results in four distinct seasons and
dense river networks. The average annual rainfall is 1177 mm and mostly occurs during
the spring and summer. Rapid urbanization results in a growing amount of waste and
poses a threat to the environment, especially the Taihu Lake. Therefore, the control and
management of non-point pollution are of great significance. The study was conducted
in a 0.1113 km2 residential area with 8.6% green area, 48.4% construction area, and the
remaining 43% roads.

2.2. Stormwater Sampling and Data Acquisition

Flowrates were monitored at 5–10 min intervals, and the samples for water quality
analysis were manually collected in 500 mL polyethylene bottles. The data for four rainfall
events (7 November 2015, 22 August 2015, 5 April 2018, and 23 April 2018) were acquired
from the automatic rain gages at the 104 freeway, which recorded every 0.2 mm.

Then, the collected samples were sent to the laboratory for water quality analysis. The
samples were kept in the fridge before analysis, and all the experiments were performed
within 24 h. The concentrations of suspended solids (SS), NH4

+-N, chemical oxygen
demand (COD), and total phosphorus (TP) were measured by the weighing method,
Nessler’s reagent spectrophotometry method, rapid digestion spectrophotometry method,
and Mo-Sb anti-spectrophotometric method, respectively.

2.3. Data from Stormwater Monitoring

Four different storm events were used to calibrate and validate the rainfall-runoff
model (Table 1): storm events on 22 August 2015 and 11 July 2015 for the calibration process
and storm events on 4 May 2018 and 23 April 2018 for validation.
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Figure 1. Map of the study area: (a) location of Jiangsu Province in China; (b) location of Yixing City 
in Jiangsu Province; (c) the DEM (Digital Elevation Model) of Yixing City; (d) study area; (e) simu-
lated image of InfoWorks ICM. 
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23/4/2018 3 55.0 576 5.73 Heavy 
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module, the surface runoff in impervious areas, including roads and buildings, was 

Figure 1. Map of the study area: (a) location of Jiangsu Province in China; (b) location of Yixing City
in Jiangsu Province; (c) the DEM (Digital Elevation Model) of Yixing City; (d) study area; (e) simulated
image of InfoWorks ICM.

Table 1. Data from stormwater monitoring.

Previous Dry
Duration (h)

Depth
(mm)

Duration
(min)

Average
Intensity (mm/h) Characterization

22 August 2015 39 20.2 420 2.89 Moderate
11 July 2015 18 13.0 150 5.20 Heavy
4 May 2018 22 9.0 160 3.38 Moderate

23 April 2018 3 55.0 576 5.73 Heavy

2.4. Rainfall-Runoff Pollution Model Setup

InfoWorks ICM was applied to set up an urban rainfall-runoff pollution model, includ-
ing a hydrologic module and a water quality module (Figure 2). In the hydrologic module,
the surface runoff in impervious areas, including roads and buildings, was calculated by the
rational method, while the infiltration in the green areas was estimated using the Horton
equation [26,27]. The nonlinear reservoir method was applied in the routing model. Since
the study area has a separate sewer system, only the storm drain was simulated using the
Saint-Venant equations. In the model, the pipelines were generalized into connecting lines
between nodes, and the boundary conditions were the water outlet or head loss.

Based on the hydrologic module, the water quality module simulates the accumulation,
erosion, and transport processes of the pollutants [28]. In InfoWorks ICM, the accumulation
process was assumed to be linear, and the accumulation rate decreased exponentially as the
mass of surface sediments increased. The buildup of pollutants is calculated by the Euler
approximation equation as shown below:

dM
dt

= Ps− K1gM (1)

where M is the mass of accumulations (per unit area) (kg/ha), Ps is the pollutant accumula-
tion coefficient (kg/(ha×day)), K1 is the decay factor (day−1).
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Figure 2. Flowchart for optimizing LID size.

The wash-off process is modeled as the function of accumulated pollutants and rainfall
intensity:

dM
dt

= −KagM(t) (2)

Ka(t) = C1 I(t)C2 − C3 I(t) (3)

where Ka(t) is the wash-off rate; I(t) is the rainfall intensity; and C1, C2, and C3 are wash-off
coefficients.

The runoff is calculated by the single linear reservoir confluence equation. The model
also assumes that the quantity of pollutants in surface runoff equals the product of surface
sediments and the efficacy coefficient, which remains unchanged during a rainfall event.

2.5. Model Calibration and Uncertainty Analysis

For the hydrologic model, the sensitive parameters as well as their range were referred
to previous studies [12,29]. Then, the runoff model was calibrated by two rainfall events
in 2015 (22 August 2015 and 11 July 2015), and the remaining two (4 May 2018 and
23 April 2018) were applied for verification. The accuracy of the model was evaluated by
Nash–Sutcliffe Efficiency (NSE) graphically and statistically.

For the water quality model, the sensitivity, uncertainty analysis, and calibration were
analyzed by the Generalized Likelihood Uncertainty Estimation (GLUE) method, which is a
global analysis method that concludes several optimal parameter sets to avoid interactions
between parameters.

The first step of the GLUE method is to determine the likelihood function (Equation (4)).

L(α|y) =
(

1− σ2
ε

σ2
0

)N

(4)

where L(α|y) is the likelihood of parameter set α, given the observed data (y). The quantities
σ2

ε and σ2
0 refer to the error variance between model simulations and observed data and the

variance of the observed data, respectively.
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Then, the data of two rainfall events (22 August 2015 and 11 July 2015) are applied for
the rough calibration to narrow the range of parameters. By assuming that the distribution
of the parameters was uniform, 2000 sets of parameters were randomly chosen. The batch
input of model parameters and the automatic output of model results were realized by
redeveloping the InfoWorks ICM via RUBY. Then, the values of the likelihood function
were calculated using the VBA function in Excel.

2.6. LID Module

In InfoWorks ICM, the LID facilities are attached to the model as discrete elements, and
their performance is simulated by a unit-based process (Table S1). The model generalizes
each LID facility into a space composed of multiple vertical layers, including surface layers,
pavement layers, soil layers, storage layers, an underdrain, and a drainage mat. Then, the
simulation is achieved by estimating the water quantity and quality in different layers [12].

A sensitivity analysis was conducted to investigate how the parameters of the LID
facilities impact the volume and pollutant reduction in surface runoff. The sensitivity
analysis was performed by the Morris screening method using a random One-factor-
At-a-Time (OAT) design, in which only one input parameter ei is modified between two
successive runs of the model. The change induced on the model can then be unambiguously
attributed to such a modification using an elementary effect defined by

ei = (y(xi)− y)/∆x (5)

where y(xi) is the new outcome, y the previous one, and ∆x is the variation in the parame-
ter x.

The rainfall event used in this sensitivity analysis has a return period of three years,
a duration of 2 h, a peak coefficient of 0.4, and a 48-h dry period.

2.7. Optimizing LID Configuration

Since the size of LID facilities is the key to LID design, the EMC (Event Mean Con-
centration) equation (Equation (6)) was applied to analyze the influence of different LID
facility sizes on the volume and pollutants reduction in surface runoff. EMC is often used
in water quality evaluation, and when the reduction in pollutants is larger than the volume,
the EMC value is larger than 0.

EMC =
∑ CtQt∆t
∑ Qt∆t

=
∑ CtVt

∑ Vt
(6)

where ∆t is the calculation interval, Qt is the flux during the time interval, Vt is the volume
of runoff, and Ct is the concentration of the pollutants in ∆t.

The performance of LID facilities of different sizes was tested by rainfall events with
a peak coefficient of 0.4, a duration of 2 h, a dry period of 48 h and return periods of 1,
3, 5, and 10 years. By changing the portion of the bioretention cell (from 2.5% to 20%),
permeable pavement (from 10% to 90%), and green roof (5–50%) in the study area, the
results of water quality, volume, and EMC reduction versus the size were plotted as figures
for further analysis.

The response surface method (RSM) based on the Box–Behnken design (BBD) was
applied for the multi-purpose optimization calculated by Design-expert. The portion of the
bio-retention cell, permeable pavement, and green roof were set as factors, and the water
volume reduction rate (f1(x)), pollution removal rate (f2(x)), and cost (f3(x)) were set as
responses. The results were analyzed by the least-squares method, and individual linear,
quadratic, and interaction terms were determined by the analysis of variance (ANOVA).
The optimal design parameters were the values of the factors with the largest desirability
in the numerical optimization process (Equation (7)) (Table 2).

D =
(
dw1

1 × dw2
2 × · · · · · · × dwn

n
)1/(w1+w2+······+wn) (7)
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where dn is the dimensionless response and wn is the weights of each response.

Table 2. Objective, weights, and range of responses.

Objective Weights Minimum Maximum

Quantity reduction Maximize 4 0 100
Pollutant removal Maximize 2 0 100

Cost Minimize 4 0 15

As the study area has 8.6% of the green area, 43.0% of the road, and 48.4% of the
construction area, the portions of the sunken green belt (x1), permeable pavement (x2), and
green roof (x3) were set to be smaller than 8.6%, 43.0%, and 48.4%, respectively. These three
green infrastructures were chosen due to their wide applications as LID [17,30,31]. The
cost (f3(x)) is the sum of the area times the unit price of each LID facility, and the price
was collected from the market and relevant papers: the sunken green belt is $14.3/m2, the
permeable pavement is $28.6/m2, and the green roof is $25.3/m2. The design and solutions
are shown in Table 3.

Table 3. Experimental design and results for response surface analysis.

Design Matrix Solutions Solutions

Run X1 X2 X3 f1(x) f2(x) f3(x) f1(x) f2(x) f3(x)

1 7.6 10 30 44.95 84.43 6.74 35.15 83.12 6.74
2 7.6 30 10 49.86 92.50 6.97 38.57 91.30 6.97
3 7.6 20 20 66.49 95.58 11.19 56.54 95.00 11.19
4 7.6 10 10 71.35 97.62 11.42 59.94 97.68 11.42
5 6.6 20 30 47.43 84.43 7.08 39.74 83.12 7.08
6 8.6 20 30 52.34 92.50 7.30 43.16 91.30 7.30
7 8.6 10 20 63.99 85.66 10.86 51.95 95.00 10.86
8 8.6 20 10 68.85 97.62 11.08 55.35 97.68 11.08
9 7.6 20 20 39.14 82.77 4.96 30.64 81.04 4.96

10 7.6 30 30 60.69 94.10 9.41 52.16 93.21 9.41
11 7.6 20 20 55.72 94.10 8.75 42.97 93.21 8.75
12 8.6 30 20 77.11 98.52 13.20 64.37 98.51 13.20
13 6.6 30 20 58.21 94.10 9.08 47.56 93.21 9.08
14 6.6 10 20 58.21 94.10 9.08 47.56 93.21 9.08
15 7.6 20 20 58.21 94.10 9.08 47.56 93.21 9.08
16 6.6 20 10 58.21 94.10 9.08 47.56 93.21 9.08
17 7.6 20 20 58.21 94.10 9.08 47.56 93.21 9.08

3. Results and Discussion
3.1. Calibration, Validation, and Sensitivity Analysis
3.1.1. Hydrologic Model

Before calibration, the sensitive parameters of the hydrologic model were selected
from the InfoWorks ICM manuals, most of which suggested that the percent of impervious
area and the depth of depression storage on the impervious portion of the study area
were the most sensitive parameters (Table 4). The difference between the observed and
simulated flow is shown graphically in Figure 3. The Nash–Sutcliffe model efficiency
coefficients (NSEs) were 0.86, 0.89, 0.89, and 0.88 for the rainfall events on 7 November 2015,
22 August 2015, 5 April 2018, and 23 April 2018, respectively. As for the peak flow, the
differences in volume and time between the observed and simulated data were less than
20%. The results indicated that the simulated runoff was in good agreement with the
observed discharge and was acceptable for further analysis.



Water 2023, 15, 989 7 of 14

Table 4. Parameters for the rainfall-runoff model.

Models Parameters Value

Runoff model

Runoff coefficients for impervious pavements 0.93
F0 (Horton) initial infiltration (mm/h) 76.20
Fc (Horton) Permeability rate (mm/h) 3.81

K (Horton) reduction rate (L/h) 0.01
Horton recover rate (L/h) 0.014

Routing model

Slope of the impermeable surface (m/m) 0.003
Slope of the permeable surface (m/m) 0.00

Manning roughness of the impermeable pavement 0.013
Manning roughness of the permeable surface 0.15

Initial loss the impermeable surface (mm) 0.7
Initial loss the permeable surface (mm) 1.0
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3.1.2. Water Quality Model

For the water quality model, the uncertainty analysis was conducted by the GLUE
method, and the calibrated parameters are shown in Table S2.

The simulations of SS, COD, and TP are acceptable; however, the modeled NH4
+-N

concentration is not accurate enough (Figure 4). The inaccuracy in NH4
+-N modeling

indicated that the concentration of NH4
+-N in runoff might not be linearly related to the

concentration of SS [32]. According to the likelihood distribution of different parameters,
it can be concluded that the SS simulation is most sensitive to C3, and the NSE value
plateaus when C3 falls in the range of −8 to −6. The model is not sensitive to the value of
C1, since a high NSE value always occurs whatever C1 is in the range. The COD modeling is
sensitive to both γ1COD and γ3COD, and the NSE value reaches the maximum when γ1COD
is around 1 and γ3COD is around 0.25. For the NH4

+-N simulation, γ1NH+
4 −N and γ3NH+

4 −N
are the sensitive parameters, while for TP, the sensitive parameters are γ1TP and γ3TP.
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Then, the upper and lower ranges of the uncertainty analysis falling within the 90%
confidence interval were plotted with the observed data. The observed data for SS and
COD falls in the uncertainty range, while some of the observed NH4

+-N and TP concentra-
tions were not in the model’s uncertainty range. This exclusion can be explained by the
assumptions of the water quality simulation in InfoWorks ICM that the concentrations of
pollutants are linearly related to the concentration of SS and the coefficient is consistent in
a storm event [23]. Therefore, it neglected the relationship between pollutants and rainfall
characteristics and might result in errors. In addition, Deletic et al. (2012) [33] pointed out
that such integrated models containing several interdependent sub-models might cause
over-parametrization and enlarge the uncertainty of the models.

The model was then calibrated with rainfall events on 5 April 2018 and 23 April 2018.
The NSE values of the SS and COD modeling of both rainfall events imply that the model
is accurate enough; however, for NH4

+-N and TP modeling, with NSE values larger than
0.6 and a similar peaking time, the results can be regarded as acceptable.
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3.2. Impact of LID Sizes on the Volume and Pollutant Reduction of Surface Runoff

Size is the most important parameter in LID design because it directly influences the
volume and quality of the runoff in a catchment. As shown in Figure 5, when the area
of the sunken green belt is enlarged, the volume reduction increases linearly; however,
the pollutant reduction rate increased at first and then declined. The curve of pollutant
reduction is due to the FFE, for the initial rainfall carries most of the pollutants, and the
concentration of pollutants declines as the rainfall goes on. Likewise, according to the
figures, the FFE increased with the increase in rainfall intensity, the runoff interception
decreased, and the change in pollutant removal was negligible.
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Comparing the figures in Figure 5, it can be concluded that when the peak and duration
were consistent, the water quantity reduction rate decreased significantly with the increase
in rainfall intensity. However, the change in water quality reduction rate was negligible.
Besides, the FFE were enhanced with the increase in rainfall intensity. Therefore, even
though less water was retained by the sunken green belt when the precipitation intensified,
the change in intercepted pollutants was negligible.

Since permeable pavements only intercept rainfall on the surface, the reduction in
water quantity is directly proportional to the area of the LID facility with a slope of
around one (Figure 6). The pollutants accumulated on the surface were also intercepted
with the runoff, and thus the pollutant removal curve is almost the same as the quantity
reduction curve.

In the model, the green roof only received rainwater that fell directly on it, so the
water reduction rate was proportional to the area. When the rainfall intensity increased,
there would be an overflow on the green roof [34]. The water reduction rate would thereby
decrease, but the changes in the pollution removal rate were negligible (Figure 7). In this
model, the accumulated pollutants on the surface of green roofs were not considered. As a
result, the total amount of accumulated pollutants decreases when green roofs take up more
space in the study area, and therefore the pollutants in the stormwater are diminished.
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3.3. Optimization of LID Facilities

For water quantity reduction, the results were fitted with a first-order polynomial
equation (Equations (8) and (9)), and the value of the regression coefficients was calculated
for rainfall events with a three-year and ten-year return period. The p-Value for either
rainfall intensity is less than 0.0001, which indicates that the model is significant enough.
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For each rainfall event, since the determination coefficients R2, Adj R2,and Pred R2 were all
100%, the model fits perfectly.

f1three−years(x) = 1.59606 + 2.44357X1 + 1.07443X2 + 0.82593X3 (8)

f1ten−years(x) = 0.93942 + 1.70496X1 + 1.07295X2 + 0.61173X3 (9)

The response surfaces for runoff quantity reduction are shown in Figure S1, in which
the results indicate that there were no interactions between the portion of the sunken green
belt, permeable pavements, and green roof. The water reduction rate increased with any
one of the above variables when other variables remained unchanged.

For pollutant removal, the regression coefficients were calculated, and the response
variable was fitted with the following second-order polynomial equations:

f2 three−years(x)
= −41.52042 + 19.28233X1 + 2.23699X2 + 2.23699X3 − 0.15076X1X2
−0.15076X1X3 − 0.01728X2X3 − 0.70556X2

1 − 8.63834E−0.03X2
2

−8.63834E−0.03X2
3

(10)

f2 ten−years(x)
= −34.15688 + 16.9891X1 + 2.17877X2 + 2.17877X3 − 0.13749X1X2
−0.13749X1X3 − 0.017156X2X3 − 0.5773X2

1 − 8.57779E−0.03X2
2

−8.57779E−0.03X2
3

(11)

The ANOVA analysis indicated that the model was significant because either p-Value
was smaller than 0.0001 and the Adj R2 for rainfall events with different intensities was
0.9995, 0.9991, respectively. The determination coefficients (R2) for two simulated rainfall
events were 99.98% and 99.96%, respectively, which indicated that the model was adequate
for prediction and that only 0.02% and 0.04% of the total variation could not be explained
by the model within the range of experimental variables.

The response surface analysis of runoff pollution removal rate was also considered
accurate because the p values were smaller than 0.0001. The contour lines in Figure S2
were almost straight and parallel, indicating that the portion of the sunken green belt, the
permeable pavement area, and the green roof had little impact on the runoff pollutant
removal rate. Additionally, when other variables remained the same, the runoff pollutant
removal rate increased with any one of the above variables.

The combinatorial optimization function in Design-expert was employed to calculate
the optimal LID configuration under two rainfall intensities. The optimal solutions were
the overlapped areas of the contour figures (Figure 8). The maximal desirability for a 3-year
return period rainfall event was 0.585. The optimal configuration of LID facilities in the
investigated area was 8.6% of the sunken green belt, 15% of the permeable pavement, and
10% of the green roof, with an estimated cost of about $900,000. Under this LID design, the
runoff volume reduction rate and pollutant removal rate were 47.3% and 90.4%, respectively.
The outcomes were similar to the prediction values, which proved the effectiveness of the
response surface method in LID design optimization.

For precipitation with a 10-year return period, the maximal expectation was 0.538.
The optimal portion of the sunken green belt, permeable pavement, and green roof in the
study area was 8.6%, 19%, and 10%, respectively, with a total cost of about $1,000,000. The
runoff volume reduction rate and pollutant removal rate of this LID design were 42.1%
and 90.9%, respectively. These results indicated that the sunken green belt was a better
choice compared with permeable pavement and a green roof in terms of water quality
improvement and price. Therefore, in the LID design, the sunken green belt should take
priority over permeable pavement and green roof, and the optimal area of these two LID
facilities needs to be calculated [35,36]. However, Shen and Xu (2021) [30] found that the
runoff generated by impermeable roads drained directly into the rainwater wells and not



Water 2023, 15, 989 12 of 14

through the green belts. Therefore, the confluence relationship between impermeable roads
and green belt areas should be changed from parallel to series to improve the volume
control effect on rainfall-runoff [30].
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3.4. Perspectives and Limitations

This study established a rainfall-runoff model and calibrated and validated the data of
real-case rainfall events in InfoWorks ICM. The impact of the sizes of these three different
types of LID facilities on the water quantity as well as the water quality was examined
by different rainfall events with different intensities, and the optimal design in a certain
study area was determined by the response surface methodology using the Design Expert.
Ho et al. (2022) [31] reported that the green roofs and permeable pavements had a higher
unit cost reduction rate than the rain barrels. However, through our methods, we found
that the sunken green belt was a better choice compared with permeable pavement and a
green roof in terms of water quality improvement and price. Our study provided a strategy
for optimizing the design of LID facilities for stormwater runoff treatment, which could
provide insight into the future planning of LID facilities in urban ecosystems.

The limitations of this study lie in the water quality estimation of both the model and
the LID facilities. In InfoWorks ICM, the LID facilities are only modeled to remove the
pollutant from the intercepted runoff and neglect the physical removal processes, such as
filtration and sedimentation. Moreover, in this research, only runoff quantity reduction,
pollutant removal, and total investment were taken for optimization purposes; however,
other objectives, such as social and human benefits, and difficulty in construction should
be included.

4. Conclusions

This paper provided a strategy for optimizing the design of LID facilities for stormwa-
ter runoff treatment through the rainfall-runoff model and the response surface method-
ology. Using the GLUE method in the calibration and uncertainty analysis of the water
quality model avoided equifinality and improved the accuracy of the parameters as well
as the efficiency of model calibration. Results showed that LID facilities only removed
pollutants in the intercepted runoff, so the initial flush effect cannot be significantly allevi-
ated. Meanwhile, the sunken green belt was more effective and economical in reducing
the runoff volume and improving runoff quality. However, for areas with limited green
space, the optimal ratio of various LID facilities can be obtained from the surface response
method and the overall expectation function method. The optimization process used the
response surface methodology, which incorporates hydrological responses, water quality
dynamics, and the investment of different LID designs. However, other objectives, such as
social and human benefits and difficulty in construction, should be included in the future.
This proposed methodology may be helpful in stormwater management facility planning.
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Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15050989/s1. Table S1: Parameters for LID facilities. Table S2: The
values of water quality model parameters. Figure S1. Response surfaces for water quantity reduction
rate. (a) rainfall intensity once every three years. (b) rainfall intensity once every ten years. Figure S2.
Response surface diagram for water quality reduction rate. (a) rainfall intensity once every three
years. (b) rainfall intensity once every ten years.

Author Contributions: Conceptualization, Q.C. and R.X.; Formal analysis, Q.C. and J.C.; Investi-
gation, Q.C. and R.X.; Methodology, Q.C. and R.X.; Supervision, J.C.; Writing—original draft, Q.C.
and R.X.; Writing—review and editing, Q.C., R.X. and J.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Supporting data can be found by emailing runzexu@hhu.edu.cn.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Saraswat, C.; Kumar, P.; Mishra, B.K. Assessment of stormwater runoff management practices and governance under climate

change and urbanization: An analysis of Bangkok, Hanoi and Tokyo. Environ. Sci. Policy 2016, 64, 101–117. [CrossRef]
2. Kaykhosravi, S.; Khan, U.T.; Jadidi, A. A Comprehensive Review of Low Impact Development Models for Research, Conceptual,

Preliminary and Detailed Design Applications. Water 2018, 10, 1541. [CrossRef]
3. Krisnayanti, D.S.; Rozari, P.d.; Garu, V.C.; Damayanti, A.C.; Legono, D.; Nurdin, H. Analysis of Flood Discharge due to Impact of

Tropical Cyclone. Civ. Eng. J. 2022, 8, 1752–1763. [CrossRef]
4. Shi, H.; Yin, D.; Li, X.; Gong, Y.; Li, J. Urban stormwater runoff thermal characteristics and mitigation effect of low impact

development measures. J. Water Clim. Chang. 2019, 10, 53–62. [CrossRef]
5. Chen, Z.; Shi, X.; Zhang, J.; Wu, L.; Wei, W.; Ni, B.-J. Nanoplastics are significantly different from microplastics in urban waters.

Water Res. X 2023, 19, 100169. [CrossRef] [PubMed]
6. Hong, J.; Lee, B.; Park, C.; Kim, Y. A colorimetric detection of polystyrene nanoplastics with gold nanoparticles in the aqueous

phase. Sci. Total Environ. 2022, 850, 158058. [CrossRef] [PubMed]
7. Luo, T.; Dai, X.; Chen, Z.; Wu, L.; Wei, W.; Xu, Q.; Ni, B.-J. Different microplastics distinctively enriched the antibiotic resistance

genes in anaerobic sludge digestion through shifting specific hosts and promoting horizontal gene flow. Water Res. 2023,
228, 119356. [CrossRef]

8. Chen, Z.; Wei, W.; Liu, X.; Ni, B.J. Emerging electrochemical techniques for identifying and removing micro/nanoplastics in
urban waters. Water Res. 2022, 221, 118846. [CrossRef] [PubMed]

9. Chow, M.F.; Yusop, Z. Sizing first flush pollutant loading of stormwater runoff in tropical urban catchments. Environ. Earth Sci.
2014, 72, 4047–4058. [CrossRef]

10. Wang, M.; Zhang, D.; Adhityan, A.; Ng, W.J.; Dong, J.; Tan, S.K. Assessing cost-effectiveness of bioretention on stormwater in
response to climate change and urbanization for future scenarios. J. Hydrol. 2016, 543, 423–432. [CrossRef]

11. Suwarno, I.; Ma’arif, A.; Raharja, N.M.; Nurjanah, A.; Ikhsan, J.; Mutiarin, D. IoT-based lava flood early warning system with
rainfall intensity monitoring and disaster communication technology. Emerg. Sci. J. 2021, 4, 154–166. [CrossRef]

12. Baek, S.S.; Choi, D.H.; Jung, J.W.; Lee, H.J.; Lee, H.; Yoon, K.S.; Cho, K.H. Optimizing low impact development (LID) for
stormwater runoff treatment in urban area, Korea: Experimental and modeling approach. Water Res. 2015, 86, 122–131. [CrossRef]

13. Abduljaleel, Y.; Demissie, Y. Identifying Cost-Effective Low-Impact Development (LID) under Climate Change: A Multi-Objective
Optimization Approach. Water 2022, 14, 3017. [CrossRef]

14. Rong, Q.; Liu, Q.; Xu, C.; Yue, W.; Su, M. Optimal configuration of low impact development practices for the management of
urban runoff pollution under uncertainty. J. Environ. Manag. 2022, 320, 115821. [CrossRef] [PubMed]

15. Jeon, M.; Guerra, H.B.; Choi, H.; Kim, L.-H. Long-Term Monitoring of an Urban Stormwater Infiltration Trench in South Korea
with Assessment Using the Analytic Hierarchy Process. Water 2022, 14, 3529. [CrossRef]

16. Kaykhosravi, S.; Khan, U.T.; Jadidi, M.A. The Effect of Climate Change and Urbanization on the Demand for Low Impact
Development for Three Canadian Cities. Water 2020, 12, 1280. [CrossRef]

17. Chuang, W.-K.; Lin, Z.-E.; Lin, T.-C.; Lo, S.-L.; Chang, C.-L.; Chiueh, P.-T. Spatial allocation of LID practices with a water footprint
approach. Sci. Total Environ. 2023, 859, 160201. [CrossRef]

18. Lee, J.M.; Park, M.; Min, J.-H.; Kim, J.; Lee, J.; Jang, H.; Na, E.H. Evaluation of SWMM-LID Modeling Applicability Considering
Regional Characteristics for Optimal Management of Non-Point Pollutant Sources. Sustainability 2022, 14, 14662. [CrossRef]

19. Xiong, L.; Xu, Z.; Xu, J. Combined Optimization of LID Patches and the Gray Drainage System to Control Wet Weather Discharge
Pollution. ACS ES&T Water 2022, 2, 1734–1746. [CrossRef]

20. Gironás, J.; Roesner, L.A.; Rossman, L.A.; Davis, J. A new applications manual for the Storm Water Management Model (SWMM).
Environ. Modell. Softw. 2010, 25, 813–814. [CrossRef]

https://www.mdpi.com/article/10.3390/w15050989/s1
https://www.mdpi.com/article/10.3390/w15050989/s1
http://doi.org/10.1016/j.envsci.2016.06.018
http://doi.org/10.3390/w10111541
http://doi.org/10.28991/CEJ-2022-08-09-01
http://doi.org/10.2166/wcc.2018.145
http://doi.org/10.1016/j.wroa.2023.100169
http://www.ncbi.nlm.nih.gov/pubmed/36798904
http://doi.org/10.1016/j.scitotenv.2022.158058
http://www.ncbi.nlm.nih.gov/pubmed/35981582
http://doi.org/10.1016/j.watres.2022.119356
http://doi.org/10.1016/j.watres.2022.118846
http://www.ncbi.nlm.nih.gov/pubmed/35841793
http://doi.org/10.1007/s12665-014-3294-6
http://doi.org/10.1016/j.jhydrol.2016.10.019
http://doi.org/10.28991/esj-2021-SP1-011
http://doi.org/10.1016/j.watres.2015.08.038
http://doi.org/10.3390/w14193017
http://doi.org/10.1016/j.jenvman.2022.115821
http://www.ncbi.nlm.nih.gov/pubmed/36056481
http://doi.org/10.3390/w14213529
http://doi.org/10.3390/w12051280
http://doi.org/10.1016/j.scitotenv.2022.160201
http://doi.org/10.3390/su142114662
http://doi.org/10.1021/acsestwater.2c00259
http://doi.org/10.1016/j.envsoft.2009.11.009


Water 2023, 15, 989 14 of 14

21. Li, J.; Zhang, B.; Mu, C.; Chen, L. Simulation of the hydrological and environmental effects of a sponge city based on MIKE
FLOOD. Environ. Earth Sci. 2018, 77, 32. [CrossRef]

22. Rosa, D.J.; Clausen, J.C.; Dietz, M.E. Calibration and Verification of SWMM for Low Impact Development. JAWRA J. Am. Water
Resour. Assoc. 2015, 51, 746–757. [CrossRef]

23. He, Q.; Chai, H.; Yan, W.; Shao, Z.; Zhang, X.; Deng, S. An integrated urban stormwater model system supporting the whole life
cycle of sponge city construction programs in China. J. Water Clim. Chang. 2019, 10, 298–312. [CrossRef]

24. Li, J.; Deng, C.; Li, Y.; Li, Y.; Song, J. Comprehensive Benefit Evaluation System for Low-Impact Development of Urban Stormwater
Management Measures. Water Resour. Manag. 2017, 31, 4745–4758. [CrossRef]

25. Fan, G.; Lin, R.; Wei, Z.; Xiao, Y.; Shangguan, H.; Song, Y. Effects of low impact development on the stormwater runoff and
pollution control. Sci. Total Environ. 2022, 805, 150404. [CrossRef] [PubMed]

26. Zhang, Z.; Gu, J.; Zhang, G.; Ma, W.; Zhao, L.; Ning, P.; Shen, J. Design of urban runoff pollution control based on the Sponge City
concept in a large-scale high-plateau mountainous watershed: A case study in Yunnan, China. J. Water Clim. Chang. 2021, 12,
201–222. [CrossRef]

27. Kong, F.; Ban, Y.; Yin, H.; James, P.; Dronova, I. Modeling stormwater management at the city district level in response to changes
in land use and low impact development. Environ. Modell. Softw. 2017, 95, 132–142. [CrossRef]

28. Urich, C.; Rauch, W. Modelling the urban water cycle as an integrated part of the city: A review. Water Sci. Technol. 2014, 70,
1857–1872. [CrossRef] [PubMed]

29. Li, M.; Yang, X. Global Sensitivity Analysis of SWMM Parameters Based on Sobol Method. China Water Wastewater 2020, 36,
95–102.

30. Shen, H.B.; Xu, Z.X. Monitoring and Evaluating Rainfall-Runoff Control Effects of a Low Impact Development System in Future
Science Park of Beijing. J. Am. Water Resour. Assoc. 2021, 57, 638–651. [CrossRef]

31. Ho, H.C.; Lee, H.Y.; Tsai, Y.J.; Chang, Y.S. Numerical Experiments on Low Impact Development for Urban Resilience Index.
Sustainability 2022, 14, 8696. [CrossRef]

32. de Macedo, M.B.; Pereira de Oliveira, T.R.; Oliveira, T.H.; Gomes Junior, M.N.; Texeira Brasil, J.A.; Ferreira do Lago, C.A.;
Mendiondo, E.M. Evaluating low impact development practices potentials for increasing flood resilience and stormwater reuse
through lab-controlled bioretention systems. Water Sci. Technol. 2021, 84, 1103–1124. [CrossRef] [PubMed]

33. Deletic, A.; Dotto, C.B.S.; McCarthy, D.T.; Kleidorfer, M.; Freni, G.; Mannina, G.; Uhl, M.; Henrichs, M.; Fletcher, T.D.; Rauch, W.; et al.
Assessing uncertainties in urban drainage models. Phys. Chem. Earth Parts A/B/C 2012, 42-44, 3–10. [CrossRef]

34. Ouellet, V.; Khamis, K.; Croghan, D.; Gonzalez, L.M.H.; Rivera, V.A.; Phillips, C.B.; Packman, A.I.; Miller, W.M.; Hawke,
R.G.; Hannah, D.M.; et al. Green roof vegetation management alters potential for water quality and temperature mitigation.
Ecohydrology 2021, 14, e2321. [CrossRef]

35. Malekinezhad, H.; Sepehri, M.; Hosseini, S.Z.; Santos, C.A.G.; Rodrigo-Comino, J.; Meshram, S.G. Role and Concept of Rooftop
Disconnection in Terms of Runoff Volume and Flood Peak Quantity. Int. J. Environ. Res. 2021, 15, 935–946. [CrossRef]

36. Koc, K.; Ekmekcioglu, O.; Ozger, M. An integrated framework for the comprehensive evaluation of low impact development
strategies. J. Environ. Manag. 2021, 294, 113023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s12665-018-7236-6
http://doi.org/10.1111/jawr.12272
http://doi.org/10.2166/wcc.2018.197
http://doi.org/10.1007/s11269-017-1776-5
http://doi.org/10.1016/j.scitotenv.2021.150404
http://www.ncbi.nlm.nih.gov/pubmed/34818793
http://doi.org/10.2166/wcc.2019.120
http://doi.org/10.1016/j.envsoft.2017.06.021
http://doi.org/10.2166/wst.2014.363
http://www.ncbi.nlm.nih.gov/pubmed/25500475
http://doi.org/10.1111/1752-1688.12934
http://doi.org/10.3390/su14148696
http://doi.org/10.2166/wst.2021.292
http://www.ncbi.nlm.nih.gov/pubmed/34534109
http://doi.org/10.1016/j.pce.2011.04.007
http://doi.org/10.1002/eco.2321
http://doi.org/10.1007/s41742-021-00355-9
http://doi.org/10.1016/j.jenvman.2021.113023

	Introduction 
	Materials and Methods 
	Site Description 
	Stormwater Sampling and Data Acquisition 
	Data from Stormwater Monitoring 
	Rainfall-Runoff Pollution Model Setup 
	Model Calibration and Uncertainty Analysis 
	LID Module 
	Optimizing LID Configuration 

	Results and Discussion 
	Calibration, Validation, and Sensitivity Analysis 
	Hydrologic Model 
	Water Quality Model 

	Impact of LID Sizes on the Volume and Pollutant Reduction of Surface Runoff 
	Optimization of LID Facilities 
	Perspectives and Limitations 

	Conclusions 
	References

