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Abstract: The precipitation conce ntration degree (PCD) and precipitation concentration period 
(PCP) in the Liaohe River basin (LRB) from 1960 to 2020 were calculated depending on the daily 
precipitation data derived from meteorological stations. The mutations of the PCD and PCP were 
identified by sliding t-test, and spatiotemporal evolution characteristics before and after the muta-
tion point were further analyzed. Cross wavelet transform (CWT) was used to reveal the influence 
of four low-frequency climate factors (Pacific Decadal Oscillation (PDO), Arctic Oscillation (AO), El 
Niño -Southern Oscillation (ENSO), and Sunspots (SS)) on precipitation concentration. The results 
were presented as follows: Mutations occurred in the PCD sequence in 1980 and the PCP sequence 
in 2005 in the LRB. Spatial distribution of the PCD generally increased from the southeast to the 
northwest and tended to flatten. Over the past 60 years, the annual PCD tended to decrease, with a 
variation range of 0.53 to 0.80. The PCP was relatively concentrated in early July to early August, 
decreasing before and increasing after the mutation. Important climatic factors driving the mutation 
of PCD included PDO, SS, and AO. However, the resonance between climate factors and the PCD 
was characterized by complexity and diversity. The PCP was mainly affected by AO and SS before 
the mutation. ENSO had an important influence on both PCD and PCP, but had no significant cor-
relation with mutation occurrence. 

Keywords: the Liaohe River basin; precipitation concentration degree; precipitation concentration 
period; mutation characteristics; climate factors 
 

1. Introduction 
The water cycle is the most active and important hub in the interaction between 

ocean, land, and atmosphere, which plays a crucial role in changes to the global climate 
and ecological environment. In recent years, the uneven distribution of precipitation in 
temporal and spatial scales which result from global warming has been aggravated, 
which, in turn, has increased the frequency, extent, and intensity of extreme weather 
events such as droughts and floods [1–3]. 

The Liaohe River basin (LRB) is one of the seven major rivers in China, and has ex-
perienced an uneven distribution of precipitation, as well as frequent drought and flood 
disasters. It is of great significance to study the precipitation concentration to help further 
understand the formation of floods and droughts [4,5]. Darand et al. (2022) evaluated the 
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variation of precipitation concentration in Iran and found that the spatial variations of 
precipitation concentration are complex and uniform due to large regional differences us-
ing three precipitation indexes, namely, the precipitation concentration index (PCI), the 
precipitation concentration period (PCP), and the precipitation concentration degree 
(PCD) [6]. Liu et al. (2016) analyzed the spatiotemporal variation of precipitation in China 
from 1960 to 2013, and the results indicated that the precipitation in more parts tends to 
be normal or dispersed [7]. 

Many studies have shown that precipitation is affected by large-scale atmospheric 
circulation factors [8–16]. Yadav et al. (2009) analyzed the changes in large-scale circula-
tion characteristics associated with northwest India’s winter precipitation and found that 
the influence of El Niño–Southern Oscillation (ENSO) on this precipitation was strength-
ened, while that of the Arctic Oscillation index (AO) was weakened in recent decades [17]. 
Fuentes-Franco et al. (2016) studied the combined effects of ENSO and Pacific Decadal 
Oscillation (PDO) on the North American winter climate during 1951–2005 using the 
CMIP5 model and concluded that although rainfall in the southeastern United States in-
creased significantly when PDO was in the negative phase, ENSO events generally had a 
greater impact on the North American winter climate than PDO events [18]. Xie et al. 
(2022) analyzed the PCI in the Huaihe River basin and its relationship with teleconnec-
tions indices and suggested that ENSO and PDO have potentially negative effects on the 
annual and seasonal precipitation concentration [5]. Zhang et al. (2019) pointed out that 
extreme precipitation often occurs in the Loess Plateau of China in the following year after 
the occurrence of El Niño events and when the 10-year moving average curve of the South-
ern Oscillation Index (SOI) is negative, precipitation generally decreases [19]. Sun et al. 
(2017) analyzed the effect of ENSO oscillation on extreme precipitation on the global scale 
and found that with the warming of the climate, the chances of strong extreme precipita-
tion in El Niño years are more than twice those in La Niña years [20]. Zhang et al. (2021) 
found that there is a significant correlation between the AO and the annual PCI in China 
[21]. Nazari-Sharabian and Karakouzian (2020) found that most precipitation peaks oc-
curred 1–3 years after the maximum of SS in Iran; therefore, they reasoned that the num-
ber of sunspots (SS) has a significant correlation with annual precipitation [22]. In addi-
tion, when these climatic factors are at different stages, the regional response of the PCI is 
different. Therefore, the variation of the precipitation indexes is complex and may be re-
lated to global atmospheric characteristics and geographical factors [19]. An adjustment 
of precipitation distribution on a global scale has significant effects on hydrological and 
climate events, leading to serious ecological damage [23]. The above studies indicated that 
the correlation between precipitation concentration and low-frequency climate factors is 
significant.  

Previous works mainly focused on the spatial and temporal distribution characteris-
tics and variation trends of precipitation [24–27]. However, the change in precipitation 
concentration is usually nonlinear and has mutation points in its variation period [28]. 
The identification of mutation points of precipitation concentration and their differences 
before and after mutations is not clear enough at present. Based on this, a sliding t-test 
was used to identify the time node of a sudden change in precipitation concentration se-
quences, and a cross-wavelet transform was used to investigate the relationship between 
precipitation and low-frequency climate factors. 

Our study aims to evaluate the spatiotemporal mutation characteristics of precipita-
tion concentration and its potential correlation with low-frequency climate factors in the 
LRB area from 1960 to 2020. This would contribute to a better understanding of the char-
acteristics of precipitation variation in the LRB and provide theoretical support for disas-
ter prevention, ecological management, and water resource management.  
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2. Research Area, Data and Methods 
2.1. Research Area 

The LRB is located in the southwest of Northeast China and flows through the four 
provinces (or Autonomous Region) of Hebei, Jilin, Liaoning, and Inner Mongolia into the 
Bohai Sea, with a total length of 1345 km and a drainage area of 219,000 km2. It is one of 
the seven major rivers in China. The LRB has a semi-humid monsoon climate in most 
parts. Floods in the basin are frequent, and a large flood occurs every 7–8 years on average. 
The LRB is becoming a key research objective in the field of climate and hydrology. The 
range of 116°E–129°E, 38°N–46°N was selected as the research area. 

2.2. Data 
The precipitation data in the LRB from 1960 to 2020 were obtained from the China 

Meteorological Data Service Centre (https://data.cma.cn/ (accessed on 18 March 2022)). 
This study selected the precipitation and temperature records at 30 meteorological sta-
tions in the basin. The time series spans nearly 60 years, which ensured the reliability of 
the analysis and conclusion of this study. The geographic information and meteorological 
stations of the LRB are shown in Figure 1. The same period of AO and PDO were from the 
National Oceanic and Atmospheric Administration (http://www.noaa.gov/ (accessed on 
5 March 2022)). The Canonical ENSO index dataset was from the UK Met Office’s Hadley 
Centre (HadISST1). The Annual average of SS relative activity was derived from Solar 
Influences Data Analysis Center (http://sidc.oma.be/products/meu/index.php (accessed 
on 5 March 2022)).  

 
Figure 1. Map of meteorological station distribution in LRB. 

2.3. Methodology 
To visualize the spatial distribution pattern of precipitation concentration character-

istics in the LRB, this study applied the sliding t-test method to identify whether a muta-
tion point existed in the time series of PCP or PCD from 1960 to 2020. The cross-wavelet 
transform and wavelet coherence analysis methods were used to explore the interaction 
between precipitation concentration (PCD and PCP) and climate factors.  
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2.3.1. The PCD and PCP 
The calculation method of the PCD and PCP was proposed in 2003 by Zhang and 

Qian [29]. The PCD is one of the important indicators to evaluate the uniform distribution 
of regional precipitation in recent years and the PCP could quantitatively reveal the non-
uniformity of precipitation in the time field, as shown in previous studies [30–32]. 

The PCD and PCP are calculated as follows: 

PCD =
1
𝑅𝑅𝑖𝑖
�(�𝑟𝑟𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

× 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑖𝑖)2 + (�𝑟𝑟𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖=1

× 𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑖𝑖)2 (1) 

PCP = arctan (
∑ 𝑟𝑟𝑖𝑖𝑖𝑖 × 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝑛𝑛
𝑖𝑖=1

∑ 𝑟𝑟𝑖𝑖𝑖𝑖 × 𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑛𝑛
𝑖𝑖=1

) (2) 

where, n is the total number of days in year i; 
j is the daily ordinal number in year i;  
rij is the precipitation of a station in year i on day j; 
Ri is the total precipitation of the station in year i, Divide [−π,π] equally according 

to the number of days in year i, and θj is the azimuth of the jth day. 
The PCD value is between 0 and 1. The closer the PCD value is to 1, the more con-

centrated the annual precipitation. On the contrary, the closer the PCD value is to 0, the 
more uniform the annual precipitation distribution. In this study, the PCP was converted 
into a daily ordinal number, which is conducive to the analysis of the period of precipita-
tion concentration intuitively. 

2.3.2. Sliding t-Test 
The sliding t-test divides a climate series into two subsequences to test the significant 

difference between the average values of the two subsequences. If the difference between 
two subsequences exceeds a certain level of significance, it is considered that a mutation 
has occurred [33].  

The function t(n,i) is defined as follows:  

t(𝑠𝑠, 𝑠𝑠) =
(𝑥𝑥𝚤𝚤�2 − 𝑥𝑥𝚤𝚤�1) 

𝑠𝑠 ∙ � 1
𝑠𝑠1
− 1
𝑠𝑠2

 (3) 

𝑠𝑠 = �
𝑠𝑠1𝑠𝑠𝑖𝑖12 + 𝑠𝑠2𝑠𝑠𝑖𝑖22

𝑠𝑠1 + 𝑠𝑠2 − 2
 (4) 

where, xi is the ith element in the time series, and the sample length n before and after the 
mutation point can be set artificially to make the test more reliable.  

For the time series xi with ni sample sizes, a certain time was artificially set as the 
reference point, and two sub-sequences xi1 and xi2 before and after the reference point, 
with 𝑥𝑥𝑠𝑠�1 and 𝑥𝑥𝑠𝑠�2 are the mean values, variances of si12 and si22 and H: 𝑥𝑥𝑠𝑠�2 − 𝑥𝑥𝑠𝑠�1 = 0, t 
meets the distribution of (n1 + n2 − 2) t; and α is the given significance level (this study 
takes n1 = n2 = 10, α = 0.05). If |𝑡𝑡| > 𝑡𝑡𝛼𝛼, then H is false, that means if the mean difference 
between two sequences exceeds a certain level of significance 𝑡𝑡𝛼𝛼, a mutation can be con-
sidered to have occurred.  

2.3.3. Student t-Test 
The student t-test is mainly for small sample sizes (n < 30); if two sets of independent 

normally distributed samples x1 and x2 have different sample numbers n1 and n2 and their 
respective variances s12 and s22 are not equal, then the following statistic t-test can be used: 
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𝑡𝑡 =
𝑥𝑥𝚤𝚤�2 − 𝑥𝑥𝚤𝚤�1 − 𝜇𝜇0 

�𝑠𝑠12
1
𝑠𝑠1

+ 𝑠𝑠22
1
𝑠𝑠2

 (5) 

𝑠𝑠 = �
𝑠𝑠1𝑠𝑠𝑖𝑖12 + 𝑠𝑠2𝑠𝑠𝑖𝑖22

𝑠𝑠1 + 𝑠𝑠2 − 2
 (6) 

where, 𝑥𝑥1��� and 𝑥𝑥2��� are the mean values. This statistic t follows a t-distribution with confi-
dence df under the null hypothesis H0: μ1 − μ2 = μ0 is true, where μ0 is some specified dif-
ference that you wish to test. The critical values of t, tα/2 (α/2 = 0.05) are based on (n1 + n2 − 
2) df [34]. 

2.3.4. Cross Wavelet Transform (CWT) Analysis 
Meteorological time series have characteristics of randomness, multiple, non-linear-

ity and non-stationarity. CWT method based on wavelet transform can analyze the time-
frequency domain fluctuation characteristics of two mutually coupled time series, which 
combines wavelet coherent (WTC) and cross wavelet power (XWT) analysis. The XWT 
exposes regions with high common power and further reveals information about the 
phase relationship [35,36]. In recent years, CWT decomposition has been widely used in 
the multi-scale analysis of meteorological data [12,37–39].  

In this method, WX (s) and WY(s) are set as the cross wavelet transform of two-time 
series X and Y, then the cross wavelet power spectrum is defined as:  

W𝑠𝑠
𝑋𝑋𝑋𝑋(s) = W𝑠𝑠

𝑋𝑋(𝑠𝑠)𝑊𝑊𝑠𝑠
𝑋𝑋∗(𝑠𝑠)   (7) 

The absolute value of the left term in the above equation is the cross-power spectral 
density. The larger the absolute value, the higher the correlation. It is assumed that the 
expected spectra of sequences X and Y are both red noise spectra P𝑘𝑘𝑋𝑋and P𝑘𝑘𝑌𝑌; thus, the 
cross-wavelet power spectrum distribution relationship can be expressed as follows: 

|W𝑠𝑠
𝑋𝑋(𝑠𝑠)𝑊𝑊𝑠𝑠

𝑋𝑋∗(𝑠𝑠) |
𝜎𝜎𝑋𝑋𝜎𝜎𝑋𝑋

=
𝑍𝑍𝑣𝑣(𝑃𝑃)

𝑣𝑣
�P𝑘𝑘

𝑋𝑋P𝑘𝑘
𝑋𝑋   (8) 

where, σX and σY are the standard deviations of time series X and Y, respectively. The 
freedom degree (v) of the Morlet wavelet transform is set as 2. When the left term exceeds 
the upper bound of 95% confidence limit of the power spectrum of red noise, it is consid-
ered to pass the test of the standard spectrum of red noise with a significance level of 0.05. 

Wavelet coherence transform makes up for the deficiency of cross-wavelet in identi-
fying the correlation between sequences in low-energy regions. The wavelet coherence 
spectrum of sequences X and Y are defined as follows: 

𝑅𝑅𝑁𝑁
2 (𝑠𝑠) =

|S(𝑠𝑠−1)𝑊𝑊𝑠𝑠
𝑋𝑋𝑋𝑋(𝑠𝑠) |2

S(𝑠𝑠−1|𝑊𝑊𝑠𝑠
𝑋𝑋(𝑠𝑠)|2) ∙ S(𝑠𝑠−1|𝑊𝑊𝑠𝑠

𝑋𝑋(𝑠𝑠)|2) (9) 

where, s is the smoother. In this study, only the parts of the wavelet coherence spectrum 
whose phase difference 𝑅𝑅𝑁𝑁2 (𝑠𝑠) ≥  0.5 were marked. 

3. Results and Discussions 
3.1. Mutation Points Identification of The PCD and PCP 

The annual average PCD and PCP were calculated in this study based on nearly 60 
years of daily precipitation datasets from 30 meteorological stations in the LRB. To make 
the exploration of secular trends in sequence more convincing, 10-year moving averages 
were calculated, and the sliding t-test was performed to identify the mutation point of the 
PCD and PCP sequences (Figure 2). 
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The results show that the PCD and PCP have different temporal evolution character-
istics in the LRB. The variation range of the PCD was between 0.53 and 0.80 during 1960–
2020. The mutation of the PCD sequence occurred around 1980 (Figure 2c). The PCD 
showed a downward trend before and after the mutation. The decrease in the PCD was 
−0.03/10 a before the mutation (1960–1979), and −0.01/10 a after the mutation (1980–2020). 
Wang et al. (2019) also pointed out that the annual precipitation concentration of 90% of 
stations in northeast China showed a downward trend in the period of 1961–2016, and 
that of 32.39% of stations had a sudden change [11]. The mutation occurred in the PCP 
sequence around 2005 (Figure 2d). The PCP decreased by −0.09/a before the mutation 
(1960–2004) and increased by 1.01/a after the mutation (2005–2020).  

In the past 60 years, the annual precipitation concentration in the LRB area tended to 
decrease, which means that the spatial distribution of precipitation tends to be uniform 
and flattening. After the mutation, the homogenization trend of precipitation distribution 
was weakened. However, the annual PCP in LRB decreased before 2005, and then in-
creased after the mutation year. In general, the PCP was relatively concentrated, mainly 
distributed from the 184th to 218th d, that is, from early July to early August. 

 
Figure 2. Moving t-test schematics of (a) PCD and (b) PCP; (The dashed line is the annual PCD/PCP 
series, the black solid line is the 10-year moving average, and the blue (red) solid line shows the 
linear regression before (after) the mutation point) and the t values of (c) PCD and (d) PCP (The 
black solid lines represent the t-values, and the red (blue) dashed lines represent the 0.05 signifi-
cance upper (lower) bound). 

3.2. Spatial Pattern of PCD and PCP 
The spatial interpolation method was used to obtain the regional distribution maps 

of the PCD and the PCP, and the differences before and after the mutation point are com-
pared (Figure 3). 
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Figure 3. Spatial distribution maps of PCD&PCP: Spatial distribution of (a) PCD and (b) PCP before 
mutation year; spatial distribution of (c) PCD and (d) PCP after mutation year; differences before 
and after the mutation of (e) PCD and (f) PCP. 

Throughout the study period, the PCD was distributed with high values in the north-
west and low values in the southeast in the LRB, as shown in Figures 3a,c. The large value 
region of PCD (>0.72) was mainly concentrated in the upstream area of the basin and the 
part of Changchun City in the downstream of the basin. Areas with higher PCD value are 
at greater risk of storm, flood, and debris flow disasters. In the middle and downstream 
regions with low PCD values (<0.72), there are more possibilities of drought disasters and 
dust weather. Figure 3e compares the differences between the PCD before and after the 
mutation year (1980), and shows that the PCD value decreased significantly, especially in 
the eastern region, the decrease is up to −0.19, and all stations had passed the significance 
test. This means that the spatial distribution of precipitation in the whole basin tends to 
be flat and uniform. Liu et al. (2020) also found that the annual PCI in most areas of the 
LRB showed an insignificant downward trend from 1960 to 2018, especially in the eastern 
part of the basin [28].  

The spatial distribution characteristics of the PCP were quite different from those of 
the PCD. Figure 3b,d show that the low values of the PCP (<200th d) were mainly located 
in the areas to the north of the center of the basin, while the areas with high values of PCP 
(>204th d) were distributed at the edge of the basin (with the highest values in the north-
west and southeast). Figure 3f compares the differences before and after the mutation year 
(2005) and shows that the PCP decreased (the rains came 0–6 days earlier in the year) in 
most parts of the basin, but a delayed trend of 1~3 days could still be observed in the 
northeast corner of the basin. However, only a few stations with the most significant ad-
vance trend had passed the significance t-test for the change of PCP. Wang et al. (2019) 
also found the anomaly of summer precipitation in Northeast China, and they believe that 
it is driven by changes in atmospheric circulation [11].  

Overall, the spatial distribution of annual precipitation in the LRB tended to flatten, 
and the PCP was slightly earlier after the mutation point. The uniform spatial distribution 
of precipitation means that the probability of high-level mountain flood and debris flow 
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events is decreasing, and the challenge of source utilization is also decreasing. It is bene-
ficial to human activities. On the other hand, if the precipitation in the main water resource 
area and the influent area decreases significantly, it would cause further economic losses 
in the influent area [40]. The detailed analysis of precipitation concentration would help 
us to make scientific management of water resources in the LRB according to local condi-
tions.  

3.3. Relationship between Precipitation Indexes and Low-Frequency Climate Factors 
Previous studies showed that low-frequency climate factors have an important im-

pact on regional precipitation [41–44]. To further explore the influence of the variation of 
precipitation indexes, CWT analysis was performed on the precipitation concentration se-
quences (PCD and PCP) and four low-frequency climate factors (PDO, AO, ENSO, and 
SS), to explore the variation characteristics (such as resonance period, phase relationship 
and significant period, etc.) between them. 

In XWT and WTC power spectrum, the thin black solid line is the influence cone of 
the wavelet boundary effect. The 5% significance level against red noise is shown as a 
thick contour. The relative phase relationship is shown as arrows (with in-phase pointing 
right, anti-phase pointing left, an arrow pointing straight down means the low-frequency 
climate factor series lags the precipitation index by 90°, and the yellow color represents a 
high-intensity common period) [35].  

3.3.1. PCD 
The XWT and the WTC analysis between the PCD and four climate factors are shown 

in Figure 4. It can be observed from the Figure 4a that multiple resonances between the 
PCD and PDO exhibited in the high-energy region include two anti-phase resonances 
with a period of 1–4 a in 1981–2001 and in 2003–2007, separately, and an in-phase reso-
nance with a period of 8–11 a in 1988–2004. In the low-energy region, there are three res-
onance regions in Figure 4b that include a significant resonance with a period of 3.5–5 a 
from 1968 to 1974 (PDO leads PCD by nearly 90°), an anti-phase oscillation with a period 
of 1–3 a from 1988 to 2001, and an in-phase oscillation with a period of 8–10 years from 
1980 to 2019.  
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Figure 4. CWT spectrum between PCD and PDO/AO/ENSO/SS. (a,c,e,g) show the results of XWT; 
(b,d,f,h) show the results of WTC. 

In the high-energy region, PCD and AO show anti-phase oscillations, respectively, 
with a period of 3.5–5.5 a (in 1968–1971) and 8–10 a (in 1980–1994) only in the low-energy 
region in Figure 4d.  

The resonance between PCD and ENSO in the high-energy region mainly distributes 
in the high-frequency domain (with a period of 0–5 a), as is shown in Figure 4e. In the 
low-energy region, a very significant anti-phase resonance with a period of 1–6 a can be 
observed from 2006 to 2014 in Figure 4f.  

PCD and SS show a significant correlation in the high-energy region between 1974 
and 2004 in Figure 4g, that is an anti-phase resonance with a period of 8–12 a. In the low-
energy region, three SS lagged in-phase resonance regions can be observed in Figure 4h 
with a period of 2–3.5 a from 1974 to 1981, a period of 0–3.5 a from 1988 to 1992, and a 
period of 1–3 a from 2010 to 2012 respectively. In addition, a significant anti-phase vibra-
tion with a period of 8–15 a from 1975 to 2005 also can be seen here. 
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3.3.2. PCP 
The XWT and the WTC analysis between the PCP and four climate factors are shown 

in Figure 5. Between PCP and PDO, it can be observed in Figure 5a that three resonance 
domains are exhibited in the spectral analysis of XWT. One is a weak in-phase resonance 
from 1988 to 2005, with a period of 2–6.5 a, one is a PDO ahead anti-phase oscillation from 
2008 to 2014, with a period of 5–7 a, the other one is in-phase resonance from 1988 to 2008, 
with a period of 8–10 a. There are four small resonance domains with PDO ahead dis-
persed in the map of spectral analysis of WTC in Figure 5b. One of the more significant is 
in 1963–1968 (with a period of 0–1.5 a), and the others appear in 1981–1988 (with a period 
of 7 a), in 2008–2009 (with a period of 2 a) and 2009–2011 (with a period of 5.5 a).  

 
Figure 5. CWT spectrum between PCP and PDO/AO/ENSO/SS. (a,c,e,g) show the results of XWT; 
(b,d,f,h) show the results of WTC. 

Between PCP and AO, it can be obviously seen that an AO ahead anti-phase oscilla-
tion exists in 1968–1974 (with a period of 3.5–5.5 a), and a significant AO lagged anti-phase 
oscillation appears in 1971–1999 (with a period of 3–10 a) in the map of WTC spectrum in 
Figure 5d.  
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In Figure 5e, the resonances between PCP and ENSO in the XWT spectrum are all 
insignificant; three of them exist in 1964–1972 and are in-phase, and the other two exist in 
1972–2013 and are anti-phase. In the spectral analysis of WTC for PCP and ENSO in Figure 
5f, there is an in-phase synchronization with a period of 0.5–4 a in 1964–1973, and two 
ENSO ahead anti-phase oscillations can be observed in 1978–1984 and 2009–2013. 

In the spectral analysis of XWT of PCP and SS in Figure 5g, it can be observed that 
the PCP has a significant anti-phase oscillation with SS from 1974 to 2001 with a period of 
7.5–14 a. In addition, a small anti-phase oscillation in 2009 with a period of 1.5 a is exhib-
ited in the spectral analysis of XWT in Figure 5h.  

Information regarding the resonance phenomenon between PCD and PCP and the 
four climate factors are summarized in Table 1. The PCD experienced a sudden change 
around 1980, while the resonance relationship between the three climate factors (PDO, 
AO, SS) and PCD also changed significantly around 1980. This indicates that climate fac-
tors are important reasons driving PCD change, but the resonances between them vary 
greatly in frequency and phase relationship in different periods. However, the intrinsic 
mechanism is complex. The effects of PDO and AO on PCD were reflected in the changes 
of resonance frequency after mutation. The study of Wang et al. (2019) pointed out that 
PCI is negatively correlated with PDO in the Northeast region [11], but the positive corre-
lation is different at different frequencies in this study. The resonance period of PDO and 
AO with PCD ranged from 3 to 5 a before the mutation year, but changed (existing in the 
high-frequency region of 2–3 a and the middle-frequency region of 8–11 a, respectively) 
after the mutation. The effect of SS on PCD began from 1974, and was enhanced after the 
mutation year. Regarding PCP, before the mutation year (2005), it was mainly affected by 
AO and SS, both of them showed anti-phase resonance with PCP, and these two climate 
factors were slightly delayed. ENSO had different degrees of influence on both PCD and 
PCP over the entire study period, but there was no correlation with the occurrence of mu-
tations. The correlation between PCP and PDO was not significant. Precipitation indexes 
(PCD and PCP) had diverse resonance phenomena with low-frequency climatic factors 
(PDO, AO, ENSO, and SS) at different scales and the differences were obvious before and 
after mutation. 

In the LRB area, SS, PDO, and AO were the important factors driving the abrupt 
change of the PCD around 1980. Previous studies have also fully confirmed that SS activ-
ity has a profound effect on precipitation [44], and the summer precipitation in China 
increased significantly during the peak of SS activity periods [45]. Rahman and Islam 
(2019) pointed out that SS is the most important factor affecting the precipitation system, 
and SS has a negative impact on most precipitation indicators [46]. In this study, it was 
also found that SS had a negative effect on the PCP and PCD (in the middle and low-
frequency domains with a period of 8–15 a), while SS had a positive effect on the PCD in 
the high-frequency oscillations (with a period of 0–3.5 a) in some years (1974–1981, 1986–
1992, 2010–2012). AO showed anti-phase changes with PCD and PCP, while ENSO and 
PDO had different effects on precipitation indexes at different periods. Zhang et al. (2019) 
showed that the regional response of the annual precipitation concentration value to the 
climate factors of the previous 0 years and the previous 1 year was different when the 
climate factors (ENSO, AO, and PDO) were at different stages [19]. It was also reported 
that the variation of the PCI is complex and might be related to global atmospheric char-
acteristics and geographical factors. The results of Gong and Wang (2003) indicated that 
AO has a strong influence on winter precipitation variation in most areas of southern 
China [47]. Cui et al. (2022) pointed out that the PCD has lagged synchronization with 
low-frequency climate factors, such as AO and PDO [2].  
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Table 1. Period and occurrence years of CWT analysis between PCD/PCP and PDO/AO/ENSO/SS. 

PCD 

 
XWT WTC 

Period Years Period Years 

PDO 
1–4 a 
1–4 a 
8–11 a 

1981–2001 
2003–2007 
1988–2004 

3.5–5 a 
1–3 a 

8–10 a 

1968–1974 
1988–2001 
1980–2019 

AO / / 
3.5–5.5 a 

8–10 a 
1968–1971 
1980–1994 

ENSO 0–5 a 1964–2013 1–6 a 2006–2014 

SS 8–12 a 1973–2003 

2–3.5 a 
0–3.5 a 
1–3 a 

8–15 a 

1974–1981 
1988–1992 
2010–2012 
1975–2005 

PCP 

 
XWT WTC 

Period Years Period Years 

PDO 

2–6 a 
5–7 a 
8–9 a 

 

1986–2009 
2008–2011 
1986–2008 

 

0–1.5 a 
7 a 
2 a 

5.5 a 

1964–1968 
1981–1988 
2008–2009 
2009–2011 

AO / / 
3.5–5.5 a 

3–10 a 
1968–1974 
1971–1999 

ENSO 
0–4.5 a 
1–6 a 

 

1964–1972 
1980–2013 

 

0.5–4 a 
11–14 a 

2–6 a 

1964–1973 
1978–1984 
2009–2013 

SS 7.5–14 a 1974–2001 1.5 a 2009 

This study mainly focuses on the correlation and the phase analysis of changes be-
tween climate factors and precipitation. However, the climatic dynamics of precipitation 
are complex and not fully understood. A more comprehensive and quantitative under-
standing of this system would require more complex analyses, including consideration of 
a wide range of circulation patterns, or further analysis of ocean–land–atmosphere condi-
tions. How climate factors affect precipitation through atmospheric circulation, and the 
mechanisms by which they do so, are topics in need of further study. 

4. Conclusions 
(1) Mutations occurred in the PCD sequence in 1980 and the PCP sequence in 2005 in the 

LRB area from 1960 to 2020. 
(2) Over the past 60 years, the annual PCD variation range was between 0.53 and 0.80 

and it tended to decrease. The decrease in PCD was −0.03/10 a before the mutation 
(1960–1979), and −0.01/10 a after the mutation (1980–2020). The PCP decreased by 
−0.09/a before the mutation (1960–2004) and increased by 1.01/a after the mutation 
(2005–2020). The daily sequence of PCP in this basin was quite concentrated and 
ranged from 184th to 218th d, that is, from early July to early August. 

(3) In the LRB, PCD increased from southeast to northwest. Two high PCD (>0.72) areas 
were concentrated separately in the northwest of the upstream and downstream in 
Changchun. The spatial distribution of the PCD generally tended to flatten over the 
entire study period. 

(4) PDO, SS, and AO were the important climate factors driving the abrupt change of 
PCD, and the resonance between climate factors and the PCD was characterized by 
complexity and diversity. Before the mutation year 2005, the PCP was mainly af-
fected by AO and SS, both of them showed anti-phase resonance with the PCP, and 
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evolution lagged. ENSO had an important effect on both PCD and PCP but had no 
significant correlation with the occurrence of the mutations. 
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