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Abstract: The advantage of a sprinkler irrigation method is that it saves up to 50% of water con-
sumption during the application of water, as compared to any other surface irrigation system. To
assess the behavior of a sprinkler irrigation method, wind drift and evaporation losses (WDEL) are
often employed as important parameters. The predictive capacities of four previous mathematical
empirical models and two data mining algorithms, namely, reduced-error pruning tree (REPTree)
and artificial neural network (ANN) models, were employed to evaluate the impact of the operating
parameters of a sprinkler irrigation method on WDEL. The inputs to the REPTree and ANN models
were the working pressure, vapor pressure deficit, air temperature, wind speed, nozzle diameter,
and air relative humidity. In the experimental field, for data collection, a solid set of sprinklers and
collectors positioned per ASAE standards was employed. Promising results showed remarkable
performance for one of the mathematical empirical models tested, with a confidence index value of
0.829. Meanwhile, the REPTree and ANN models presented smaller errors for testing data set and are
qualified for use given their confidence index values of 0.956 and 0.964, respectively. The REPTree
and ANN algorithms were classified as optimal models, indicating that the use of mathematical
experimental models alone is inadequate in operational situations involving the nozzle diameter,
working pressure, and other variables.

Keywords: sprinkler irrigation; wind drift; evaporation losses; reduced-error pruning; multilayer
perceptron; Weka software

1. Introduction

Irrigation water scarcity is a significant issue that has an impact on agricultural pro-
duction in arid and semi-arid countries [1]. However, fresh water is mostly used for
irrigation [2,3]; additionally, irrigated agriculture today accounts for 70–80% of water con-
sumption worldwide [4–7]. In order to reduce the wastage of precious water resources,
research on water conservation should be continued using contemporary irrigation tech-
nologies, such as sprinkler and trickle irrigation [8], or using correctly designed and
maintained irrigation systems [9,10]. Additionally, the development of water conservation
techniques requires a thorough understanding of the variables influencing the operation of
a sprinkler irrigation system [11].

When compared to surface irrigation methods, sprinkler irrigation methods can cut
irrigation water consumption by up to 50%, while also offering the benefits of excellent
quality, affordability, and simplicity of installation [12]. A sprinkler irrigation method is not
always preferable to drip irrigation or other types of surface irrigation methods. Because
the water is transported through pipes, modern pressurized irrigation techniques, such as
sprinkler and trickle watering, help reduce water waste [13]. Additionally, the sprinkler
irrigation method is a recommended technique in arid and semi-arid environments, owing
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to the lack of irrigation water [14]. A portion of the irrigation water delivered by the
sprinkler nozzles during sprinkler irrigation operation evaporates before reaching the soil,
and this is lost water. Interception losses and wind drift and evaporation losses (WDEL)
are two categories that apply to these losses [15]. The performance behavior of a sprinkler
irrigation method can be assessed using the parameter WDEL [16]. For the purpose of
creating irrigation water management strategies, it is crucial to have a thorough grasp of
the variables impacting WDEL in a sprinkler irrigation method. The amount of water that
could be lost in semi-arid regions due to wind speed and evaporation would be substantial.
WDEL vary from 1.4 to 12.8% of applied water under experimental conditions [17].

The first step in analyzing the WDEL in a sprinkler irrigation method is to undertake an
experimental investigation that adheres to a thorough theoretical approach (modeling) [14].
Experimental values of WDEL have ranged from 2 to 50%, as reported in the literature [18].
The climate and hydraulic properties present at the experimental locations are to blame
for this variability. As a matter of fact, it has been noted that WDEL are influenced by the
wind speed, air relative humidity, pressure head at the nozzle, riser height, air temperature,
and drop diameter [11]. Yazar [19] demonstrated that WDEL may comprise a significant
portion of the supplied irrigation water in arid and semi-arid regions.

Accurate models for forecasting future water needs are required in order to enhance
water management in irrigated areas [5]. Operating conditions, such as working pressure
and nozzle diameter, and meteorological factors, such as air temperature, wind speed,
vapor pressure deficit, and air relative humidity, have been combined to modify the existing
empirical models for WDEL calculation [11,19–23].

Due to the complexity of the application of mathematical modeling of WDEL during
irrigation—which is influenced by numerous elements that have been required—a number
of simplifications of WDEL mathematical modeling have been presented [24]. The applica-
tion of empirical models should, according to Saraiva et al. [23], be restricted to operational
conditions, such as nozzle diameter and working pressure. Nonlinear correlations between
WDEL and impact parameters are used in the majority of empirical models. With the
assumption that WDEL are a function of water discharge, nozzle diameter, working pres-
sure, air relative humidity, and wind speed, however, Al-Jumaily and Abdul-Kader [25]
used a dimensional analysis technique to develop a prediction equation for WDEL. The
correlation coefficient was 0.93 between the predicted and actual WDEL, which appears to
be acceptable.

Data mining algorithms have been increasingly used in recent years for modeling in
the field of hydrology, according to Pulido-Calvo et al. [26], for the development of predic-
tive models to predict different hydrological parameters, such as pan evapotranspiration,
flood forecasting, rainfall forecasting, and weather forecasting; however, these algorithms
have limited applications for WDEL prediction. By examining intriguing and practical
information, data mining extracts fresh and practically relevant information from enormous
datasets. These algorithms are strong, adaptable, and promising for future investigations of
mutable or susceptible phenomena [27]. The approach of default equations is not used in
data mining algorithms, which is the primary distinction between data mining algorithms
and statistics. Statistics experts look for equations that fit the defaults for the majority of
the statistical procedures used [28].

There are numerous uses for data mining methods in the agricultural sector. The
capacity of 10 Weka data mining models to forecast monthly potential evapotranspiration
for upcoming months was tested by Mirhashemi and Tabatabayi [29]. REPTree, Additive
Regression, Bagging, M5P, Kstar, Linear Regression, Zero, and M5Rules are examples of
data mining algorithms that can be employed for modeling purposes. The dew point,
relative humidity, average wind speed, average temperature, daylight hours, and satura-
tion vapor pressure deficit were used as the inputs. The statistical indices indicate that
Tree Bagging models are more accurate in determining the monthly average temperature.
Teixeira et al. [30] used Weka software to predict the amount of organic matter and clay
content in the soil by applying the different data mining algorithms available in it. With
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better determination coefficients and fewer errors, the results suggested that the Lazy Kstar
method has stronger potential for data mining. Terzi [31] used data mining models to
estimate rainfall; Terzi [32] employed a data mining model to predict daily pan evaporation,
while Keskin et al. [33] created, using data mining algorithms, a model to predict daily pan
evaporation and demonstrated that the REPTree model had greater agreement with actual
daily pan evaporation than other models. Artificial neural networks (ANNs) have found
widespread use in modeling and simulation due to their high performance and capacity
to identify nonlinear complex correlations between the input and output variables of a
system [34]. ANNs were employed to predict the reference evapotranspiration [35,36].

The quantification of WDEL is of great significance, both economically and envi-
ronmentally. It may be possible to minimize WDEL in sprinkler irrigation systems by
quantification; however, the estimation of WDEL is very complex, owing to the difficulties
encountered in the techniques used to measure such losses [22]. Therefore, this investiga-
tion was established to evaluate the impact of different parameters for a sprinkler irrigation
method on WDEL for a single sprinkler type (a model by Riegos Costa 130 H—RC130-
BY). Moreover, the other goal was to evaluate the ability of seven previous mathematical
empirical models and two data mining algorithms to estimate WDEL using experimental
data. The data mining algorithms were the reduced-error pruning tree (REPTree) and an
ANN of the multilayer perceptron type. The accuracy of the calculated WDEL investi-
gated by means of empirical and data mining algorithms was also compared according to
statistical criteria.

2. Materials and Methods
2.1. Experimental Site

Field tests were carried out at the experimental educational farm of the College of Food
and Agriculture Sciences, King Saud University, in Riyadh, Saudi Arabia. The location’s
latitude and longitude are 24.67◦ N and 46.69◦ E, respectively. The experiments were
carried out between February and April 2017. The soil texture in the experimental location
was identified as a sandy clay loam. A fixed sprinkler irrigation system provided the water.
In all, 81 tests were conducted throughout the day at various times to ensure logical and
trustworthy results.

2.2. Procedures for Sprinkler Tests

The experiments, which used a solid set of sprinklers fixed at a rectangular spacing of
18 × 18 m, were carried out while taking Merriam and Keller’s [37] recommendations into
consideration. As shown in Figure 1, the catch cans were distributed in accordance with
the ASAE Standard [38], and Table 1 displays the distances between collectors (catching
cans) for each determination of the throw radius. At varied values of 200, 300, and 400 kPa
for sprinkler working pressures and at a riser height of 2 m, one sprinkler, type RC130-BY,
was assessed.

The pluviometers were placed along four mutually perpendicular radii from the
sprinkler, and they were employed to obtain the irrigation depth (ID) that was released
by the spray. There was a distance of 50 cm between the sprinkler and collector, since a
total of 120 pluviometers were set along each radius at 1.5 m above ground level. The three
inner diameters of the primary nozzle were under test (4, 4.5, and 5 mm). For all of the
experimental tests, the sprinkler’s plastic auxiliary nozzle had an inner diameter of 2.5 mm.

The experimental tests were conducted under windy conditions because a dead calm
was not possible, and the experimental plot was bordered by windbreaks to lessen the
impact of the wind. The experimental tests took 2 h on average to complete. To assess
the WDEL, 81 experiments consistent with various arrangements of the three working
pressures and three primary nozzle diameters were carried out.
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Figure 1. Schematic diagram representing the distribution of catch cans.

Table 1. Spacing of collectors according to the ASAE Standard [38].

Sprinkler Throw Distance (m) Maximum Collector Distance between
Centers (m)

0.3–3 0.30
3–6 0.60
6–12 0.75
>12 1.50

A manometer was mounted in the experiment’s head control and manual valves
were used to manage the working pressure. A meteorological station situated in a plot
close to the testing location automatically kept track of the air temperature, air relative
humidity, and wind speed throughout the experiments. Averaged records of the climatic
variables were used. Using Equation (1), the amount of irrigation water discharged (Q,
L/s) was calculated:

Q = Cd × A × (2g × P)q (1)

where Cd is the coefficient of discharge (Cd = 0.98) according to findings from experiments
performed by Playán et al. [39] and Ouazaa et al. [40]. By monitoring the flow rate in
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the field, Playán et al. [39] obtained the coefficient of discharge of the RC130-BY sprinkler
for a range of working pressures. The nozzle orifice’s area is A, the acceleration due to
gravity is g (measured in m/s2), the working pressure is P (measured in kPa), and q is
a constant [41–43]. For this study, q was taken to be equal to 0.50. In each set test, the
irrigation water depth (ID) released by the sprinkler was estimated using Equation (2):

ID =
Q × t

S
(2)

where Q is the amount of irrigation water discharged (L/s), computed using Equation (1);
t is the test time (seconds); and S is the sprinkler spacing, which was determined to
be 18 × 18 m in the experimental tests (i.e., 324 m2). The proportion of the irrigation
water depth (ID) released by the sprinkler that was not collected in the pluviometers was
employed to obtain the percentage of WDEL during each test [18,44,45]. The WDEL were
calculated using Equation (3):

WDEL =
(ID − IDCC)× 100

ID
(3)

where ID is the average water depth that the sprinkler emits, while IDCC is the average
water depth measured by the pluviometers.

2.3. WDEL Mathematical Empirical Models

Murray [46] defined the vapor pressure deficit, ∆e (kPa), as shown in Equation (4):

∆e = (es − ea) = 0.611 × exp
(
(17.27 × T)
(237.3 + T)

)
×
(

1 − RH
100

)
(4)

where ea and es are the actual vapor pressure of the air and the saturation vapor pressure,
respectively, kPa; T is the air dry-bulb temperature, ◦C; and RH is the relative humidity of
the air, %. The same meteorological and operating conditions were simulated for WDEL
using the mathematical empirical models of Yazar [19], Trimmer [20], Tarjuelo et al. [11],
and Playán et al. [18]. Table 2 lists the investigated empirical equations, where WDEL are
expressed as a percentage (%), D is the primary nozzle diameter expressed in millimeters,
∆e is the vapor pressure deficit expressed in kPa, P is the working pressure expressed in
kPa, and W is the wind speed expressed in meters per second.

Table 2. The investigated previous mathematical empirical models to estimate WDEL.

Model Empirical Equation

Trimmer
[20] WDEL =

(
1.98 × D + 0.22∆e0.63 + 3.6 × 10−4 × P1.16 + 0.14 × W0.7

)
Yazar [19] WDEL = (0.003× exp(0.2 × W)×

(
10 × ∆e × 100.59 × T0.23 × P0.76

)
+ 0.2

Tarjuelo
et al. [11] WDEL =

(
0.007 × P + 7.38 × ∆e0.5 + 0.844 × W

)
Playán

et al. [18] WDEL =
(

20.3 + 0.214 × W2 − 2.29 × 10−3 × RH2
)

2.4. Details of the Data Mining Algorithms

The data mining algorithms used in this study were implemented in Weka [47]. Weka
is a Java program that is free to download from the website. The algorithms used were
ANN and REPTree models. The algorithms were trained using 81 data points by using a
percentage split of the collected experimental data (80% for training and 20% for testing).
The study inputs were the working pressure (P), nozzle diameter (D), air temperature (T),
air relative humidity (RH)H), vapor pressure deficit (∆e), and wind speed (W).
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2.5. Multilayer Perceptron

According to Bishop [48], a Multilayer Perceptron (MLP) is an artificial neural network
that has been trained via backpropagation. A directed link from lower neurons to a neuron
in a higher layer is formed by feed-forward connections between the layers of computing
units that make up an MLP. An MLP’s fundamental building blocks are an input layer, one
or more hidden layers, and an output layer. The output of neurons in the hidden layer is
what gives them their name; it is only used within the network and is not visible to outside
observers. Figure 2 displays an ANN model with a single hidden layer that can forecast
the WDEL. Units use an output from one unit in the layer below as an input. There is a
weight attached to each connection between units in successive layers.
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Figure 2. An ANN model with one hidden layer to predict WDEL. Each connection is linked with a
weight. Sigmoid units are employed as hidden and output units (number of epochs were 500, error
per epoch was 0.0072431, learning rate was 0.3, and momentum was 0.2).

The hidden and output units are based on sigmoid units. Input is combined linearly
by a sigmoid unit, which then applies the sigmoid function to the output. In Equation (5),
the sigmoid transfer function for net input x is condensed.

Sigmoid (x) =
1

(1 + e−x)
(5)

The backpropagation algorithm is used by an ANN model to learn its weights [49].
For the purpose of learning, the backpropagation method uses a set of training cases. The
weights are set to small random numbers for the specific feed-forward network. Every
training example is sent into the network, and each unit’s output is computed. To determine
the error, the network compares the target output to the output it computed, and the error
value is then sent back into the network. Backpropagation employs gradient descent to
minimize the squared error between the goal output and the computed output in order to
modify the weights. Each unit in the network uses its error value to modify the weights
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of its connections, starting with the output unit and working down to the hidden units.
Equation (6) is used to update the weights:

wji = wji + α× δj × xji (6)

where xij is the input from unit i to j, wji is the weight from unit i to j, α is the learning rate,
and δj is the error discovered at unit j. The weights are adjusted using training examples,
and this procedure is repeated a certain number of cycles or until the inaccuracy is negligible
or cannot be lowered. The weight update at the nth iteration of the backpropagation is
made partially dependent on the amount of weight changed in the (n − 1)th iteration in
order to increase the performance of the backpropagation process. A constant termed the
momentum term (β) controls how much the (n − 1)th iteration contributes; however, it is
increased to produce a quicker convergence. Equation (7) provides the new rule applied
for the weight update at the nth iteration.

∆wji(n) = α× δj × xji + β× ∆wji(n − 1) (7)

2.6. REPTree

The reduced-error pruning tree (REPTree) is a quick decision tree learning algorithm. It
utilizes information gain and variance to construct a decision/regression tree and reduced-
error pruning to prune it (with back fitting). For numeric attributes, it only sorts values
once. In order to handle missing values, the associated instances are divided into pieces
(Weka Software). We refer the reader to Witten and Frank [47] for more information on the
REPTree. Weka provides different options to apply the REPTree for modeling and, in this
study, default data were selected.

2.7. Prediction Performance of Fitted Models

The suitability of the WDEL results, which were also produced using several simula-
tion models for sprinkler irrigation systems in accordance with Conceição and Coelho’s
guidelines [50], was assessed. According to Willmott [51], the confidence index (c) of
Camargo and Sentelhas [52] is created by multiplying the correlation coefficient (r) by the
index of agreement (d). The effectiveness of the confidence index (c) was assessed using a
scale suggested by Camargo and Sentelhas [52]. Using Equation (8), the confidence index
(c) was calculated.

c = r × d (8)

The performance confidence index was evaluated according to the classification
of Camargo and Sentelhas [52]: optimal (c > 0.85); very good 0.76 ≤ c ≤ 0.85; good
(0.66 ≤ c ≤ 0.75); average (0.61 ≤ c ≤ 0.65); tolerable (0.51 ≤ c ≤ 0.60); bad (0.41 ≤ c ≤
0.50); and terrible (c ≤ 0.40).

Using Equation (9), the index of agreement (d) was calculated and using Equation (10),
the correlation coefficient (r) was calculated.

d = 1 −
[

∑
(
Ŷi − Yi

)2

∑
(∣∣Ŷi − Y

∣∣+ ∣∣Yi − Y
∣∣)2

]
0 ≤ d ≥ 1 (9)

r =
∑Nt

i=1
(
Yi − Y

)
×
(

Ŷi − Ŷ
)

√
∑Nt

i=1
(
Yi − Y

)2 ×
√

∑Nt
i=1

(
Ŷi − Ŷ

)2
(10)

Here, Ŷ is the predicted or estimated WDEL by the investigated models, Yi is the
value of WDEL observed in field experiments, Y and Ŷ are the means of the observed and
predicted WDEL values, and Nt is the number of data points in the testing data set.

The accuracy of the chosen predictive models was evaluated using statistical crite-
ria, such as the mean absolute error (MAE) and root mean square error (RMSE) (Equa-
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tions (11) and (12)). The correlation coefficient, in particular, measures the degree of
statistical agreement between the target variable’s estimated and actual values. This co-
efficient has a value of 0 when there is no connection and ranges from +1 (the ideal case
of perfect direct correlation) to −1 (perfect inverse correlation). For reasonable prediction
algorithms, negative values should not happen. The RMSE runs from 0 (the ideal scenario)
to ∞ (infinity) and is measured in the same unit as the dependent variable. The average of
errors without their sign is equivalent to the mean absolute error [47].

RMSE =

√√√√( 1
Nt

)
×

Nt

∑
i=1

(
Ŷi − Y

)2 (11)

MAE =

(
1

Nt

)
×

Nt

∑
i=1

∣∣Ŷi − Yi
∣∣ (12)

3. Results and Discussion
3.1. Wind Drift and Evaporation Losses (WDEL)

To analyze the WDEL from the RC130-BY sprinkler irrigation system, various tests
were run with a single nozzle in the field. Table 3 presents the average data for operational
and meteorological variables, such as the nozzle diameter, temperature, wind speed, and
relative humidity, and their influence on WDEL.

Table 3. WDEL averaged across a range of working pressures, nozzle diameters, and environmen-
tal factors.

Nozzle
Diameter

Actual
Working
Pressure

Wind
Speed

Air Tem-
perature

Air
Relative

Humidity

Vapor
Pressure
Deficit

WDEL

(mm) (kPa) (m/s) (◦C) (%) (kPa) (%)

4 188.1 0.82 14.93 57.11 0.73 11.60
4 286.6 1.07 19.12 47.89 1.16 14.85
4 379.4 1.27 21.59 40.56 1.54 18.49
Overall mean 1.05 18.55 48.52 1.14 14.98

4.5 191.3 0.92 15.17 59.44 0.70 11.17
4.5 287.5 1.87 17.97 51.33 1.02 14.17
4.5 384.5 2.85 24.89 38.44 1.95 17.94

Overall mean 1.88 19.34 49.74 1.22 14.43
5 190.4 0.87 10.83 59.22 0.53 10.61
5 287.3 1.82 14.73 49.11 0.86 13.68
5 379.8 2.58 16.71 35.67 1.23 16.25
Overall mean 1.76 14.09 48.00 0.87 13.52

The WDEL increased from 11.6% to 18.49% for a nozzle diameter of 4 mm as working
pressure, air temperature, and wind speed rose but relative air humidity fell. For additional
nozzle sizes of 4.5 and 5 mm, the same trends and conditional changes were observed.
For a nozzle diameter of 4.5 mm, the WDEL increased from 11.17% to 17.94%, and for
a nozzle diameter of 5 mm, they increased from 10.61% to 16.25% (Table 3). According
to several research publications, operating and meteorological conditions, particularly
wind speed, have an impact on WDEL values [10,25,53,54]. The results from Bishaw and
Olumana [8] indicated that the threshold value for WDEL in a sprinkler irrigation system
was <20%. Additionally, with a solid-set system during day and night irrigation, Playán
et al. [18] recorded WDEL of 15.4% and 8.5%, respectively. Fortunately, at all nozzle sizes
and working pressures, the results of our study fell inside the range of threshold values
(<20%, as reported by [8]). For data associated with a nozzle diameter of 4 mm, the overall
mean values of wind speed, air temperature, relative humidity, and vapor pressure deficit
were 1.05 m/s, 18.55 ◦C, 48.52%, and 1.14 kPa, respectively (Table 3). For data associated
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with a nozzle diameter of 4.5 mm, the overall mean values of wind speed, air temperature,
air relative humidity, and vapor pressure deficit were 1.88 m/s, 19.34 ◦C, 49.74%, and
1.22 kPa, respectively (Table 3). For data associated with a 5 mm nozzle diameter, the
overall mean values of wind speed, air temperature, air relative humidity, and vapor
pressure deficit were 1.76 m/s, 14.09 ◦C, 48.00%, and 0.87 kPa, respectively (Table 3). The
numbers in Table 3 also show that, when air temperatures are high and air relative humidity
is low, the WDEL will be at their highest. However, we should be aware that, when the air
relative humidity level is high while air temperatures are low, the WDEL will also be low.
Additionally, regardless of the air temperature, the WDEL will be low when the relative
humidity is high. As wind speed and droplet size increase, WDEL rise; this is consistent
with the findings of Alnaizy and Simonet [24].

3.2. Prediction of WDEL—Data Mining Models

Weka software version 3.6.13 was employed to create an ANN model [47], and
training data (full field data) were applied and distributed by Weka into 80% for train-
ing and 20% for testing. The Weka graphical user interface (GUI) was used to gather
the following data for this study on an irrigation system: the package functions of the
weka.classifiers.MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a (which can
handle sequences), where -L indicates the learning rate, -M indicates the momentum, -N
indicates the number of training cycles, -V indicates the validation set size, -S indicates the
seed value used by the random number generator (random values are used for initializing
weights), -E indicates the validation threshold, and -H indicates the number of hidden
layers, with its value “a” representing (num_attributes+num_classes)/2 layers. The value
of Num_classe was 0, and the time taken to create the model was 0.29 s. As seen in Figure 2,
the default setting of three nodes for the hidden layer was used. In Figure 2, it can be seen
that, when the output was compared to the measured WEDL values, the network with
three neurons in the hidden layer showed the lowest error of 0.0072431. The values of the
error parameters for the ANN model with a structure of three nodes in the hidden layer
are presented in Table 4.

Table 4. Error statistics regarding WDEL estimation by the REPTree and ANN models using testing
data set.

The Tested Model RMSE (%) MAE (%)

ANN 0.771 0.600
REPTree 0.679 0.544

Table 4 compares the error statistics for the ANN and REPTree models for WDEL
estimation using the testing data set. The ANN model performed somewhat worse than the
REPTree model in terms of accuracy, with RMSE and MAE values of 0.771% and 0.600%,
respectively. Figure 3 presents a scatter diagram comparing the ANN-calculated values to
the actual values for the testing data set, showing that the ANN model offered a respectable
determination coefficient (R2). The points in this figure are sparsely distributed around
the regression line (R2 = 0.967), indicating that the values derived from the experimental
data are either overestimated or underestimated. The distribution of points around the
best fit line demonstrates the method’s great accuracy in estimating low WDEL values.
Weka software version 3.6.13 was also used to create a REPTree model using the same data
used to train the ANN model [47]. Figure 4 displays a scatter plot of the estimated WDEL
values from the REPTree model against the values of the tested data that were actually
observed. A proper agreement is indicated by the R2 score of 0.943. When predicting low
WDEL values, the distribution of points around the best fit line illustrates how inaccurate
this method is; nevertheless, as WDEL increase, the amount of error diminishes.



Water 2023, 15, 922 10 of 14

Water 2023, 15, x FOR PEER REVIEW 11 of 16 
 

 

Table 4. Error statistics regarding WDEL estimation by the REPTree and ANN models using testing 
data set. 

The Tested Model RMSE (%) MAE (%) 
ANN 0.771  0.600 

REPTree 0.679 0.544 

 
Figure 3. Scatter plot of estimated WDEL values using ANN model against observed values of 
testing data set. Figure 3. Scatter plot of estimated WDEL values using ANN model against observed values of testing

data set.
Water 2023, 15, x FOR PEER REVIEW 12 of 16 
 

 

 
Figure 4. Scatter plot of estimated WDEL values using REPTree model against observed values of 
testing data set. 

3.3. Mathematical Empirical Models for WDEL Simulations 
Table 5 lists the outcomes of the WDEL simulations performed using the exploratory 

variables of working pressure, nozzle diameter, air temperature, vapor pressure deficit, 
wind speed, and air relative humidity for the testing data set by the empirical models of 
Yazar [19], Trimmer [20], Tarjuelo et al. [11], and Playán et al. [18], as well as our ANN 
and REPTree models. The average WDEL results from Yazar [19], Trimmer [20], and 
Tarjuelo et al. [11] were 3.22%, 5.99%, and 10.06%, respectively. Additionally, the average 
WDEL values produced by the Playán et al. [18], REPTree, and ANN models were 14.54%, 
13.50%, and 13.0%, respectively. The testing data’s equivalent observed WDEL were 
13.58%. With the exception of the empirical model [18], which is constrained by the 
operational conditions, the latter models, therefore, showed lesser errors for testing data 
set and are better equipped to be utilized in predicting WDEL (nozzle diameter, operating 
pressure, etc.). 

For the testing data set (Table 6, c = 0.314), the model suggested by Trimmer [20] to 
predict the WDEL of the examined sprinkler displayed a “Terrible” performance index, 
estimating smaller WDEL values than those that actually occurred. When the Trimmer 
[20] model was used to analyze the data by Beskow et al. [22], a poor performance index 
was likewise demonstrated in their study. The nozzle diameters and pressure ranges for 
which the Trimmer model is appropriate can be blamed for the model’s limitations. For 
testing data set (Table 6, c = 0.393), the model suggested by Yazar [19] to forecast the 

Figure 4. Scatter plot of estimated WDEL values using REPTree model against observed values of
testing data set.



Water 2023, 15, 922 11 of 14

3.3. Mathematical Empirical Models for WDEL Simulations

Table 5 lists the outcomes of the WDEL simulations performed using the exploratory
variables of working pressure, nozzle diameter, air temperature, vapor pressure deficit,
wind speed, and air relative humidity for the testing data set by the empirical models
of Yazar [19], Trimmer [20], Tarjuelo et al. [11], and Playán et al. [18], as well as our
ANN and REPTree models. The average WDEL results from Yazar [19], Trimmer [20],
and Tarjuelo et al. [11] were 3.22%, 5.99%, and 10.06%, respectively. Additionally, the
average WDEL values produced by the Playán et al. [18], REPTree, and ANN models were
14.54%, 13.50%, and 13.0%, respectively. The testing data’s equivalent observed WDEL
were 13.58%. With the exception of the empirical model [18], which is constrained by the
operational conditions, the latter models, therefore, showed lesser errors for testing data
set and are better equipped to be utilized in predicting WDEL (nozzle diameter, operating
pressure, etc.).

Table 5. Observed and predicted WDEL values using different approaches under various climatic
and operating conditions (testing data set).

D P W T RH ∆e Observed
WDEL

Predicted WDEL

Trimmer
[20]

Yazar
[19]

Tarjuelo et al.
[11]

Playán
et al. [18] REPTree ANN

(mm) (kPa) (m/s) (◦C) (%) (kPa) (%) (%) (%) (%) (%) (%) (%)

4.5 193 1.20 15.40 56 0.77 12.44 1.99 3.75 8.84 13.43 12.104 11.91

4.5 288 1.98 19.11 49 1.13 14.65 3.99 8.16 11.53 15.64 15.638 14.63

4.5 195 0.47 14.30 64 0.59 9.20 1.35 2.49 7.42 10.97 8.885 9.18

5.0 272 1.43 14.63 51 0.82 12.51 2.43 5.23 9.78 14.78 13.473 12.30

4.5 194 1.18 14.50 58 0.69 12.00 1.90 3.49 8.50 12.89 11.037 11.42

4.0 186 0.80 16.90 56 0.85 13.08 2.17 3.41 8.77 13.26 13.473 11.45

5.0 388 2.57 16.81 36 1.23 16.76 5.57 12.10 13.06 18.75 15.683 16.03

5.0 189 0.93 10.51 60 0.51 11.01 1.26 2.47 7.37 12.24 11.037 9.80

4.5 299 1.89 17.50 52 0.96 13.81 3.77 7.35 10.92 14.87 13.473 13.86

5.0 195 0.95 11.24 59 0.55 11.23 1.33 2.68 7.63 12.52 11.037 10.05

4.0 379 1.30 22.10 41 1.57 18.50 6.18 9.91 13.00 16.81 18.204 17.98

4.0 376 1.28 20.50 40 1.45 18.18 5.86 9.21 12.59 16.99 18.204 17.79

4.0 290 1.02 19.10 53 1.04 13.40 3.59 5.80 10.42 14.09 13.473 12.71

4.0 285 0.87 19.46 49 1.15 14.50 3.53 5.84 10.65 14.96 15.683 13.20

4.5 190 0.52 14.70 62 0.64 9.96 1.40 2.62 7.65 11.56 8.885 9.52

5.0 379 2.43 16.32 34 1.23 16.10 5.26 11.35 12.87 18.92 15.638 16.19

Average 13.58 3.22 5.99 10.06 14.54 13.50 13.00

Minimum 9.20 1.26 2.47 7.37 10.97 8.89 9.18

Maximum 18.50 6.18 12.10 13.06 18.92 18.20 17.98

Standard deviation 2.75 1.75 3.30 2.11 2.40 2.89 2.86

For the testing data set (Table 6, c = 0.314), the model suggested by Trimmer [20] to
predict the WDEL of the examined sprinkler displayed a “Terrible” performance index,
estimating smaller WDEL values than those that actually occurred. When the Trimmer [20]
model was used to analyze the data by Beskow et al. [22], a poor performance index was
likewise demonstrated in their study. The nozzle diameters and pressure ranges for which
the Trimmer model is appropriate can be blamed for the model’s limitations. For testing
data set (Table 6, c = 0.393), the model suggested by Yazar [19] to forecast the WDEL of
the examined sprinkler showed a “Terrible” performance index, estimating smaller WDEL
values than those that actually occurred. Table 5 further demonstrates that Yazar [19]
underestimated WDEL, which was previously noted in research by Beskow et al. [22]. For
testing data set, the Tarjuelo et al. [11] model provided an “Average” performance indicator
(Table 6, c = 0.617), estimating slightly lower WDEL values than those that actually occurred.
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However, the respective standard deviations of the observed data and data from Tarjuelo
et al. [11] were 2.75% and 2.11%. The Playán et al. [18] model estimated a maximum value
of 18.92% and provided a “Very good” performance index for the testing data set (Table 6,
c = 0.829). The maximum value for the measured WDEL was 18.50%; this is due to the
likelihood that the results would have been used for a sprinkler system with a comparable
design (nozzle diameter and working pressure range). As fantastic models, REPTree
and ANN displayed confidence index values of 0.956 and 0.964, respectively, in Table 6,
demonstrating that the use of empirical models is restricted to operational settings (nozzle
diameter, working pressure, etc.). Due to the ANN model’s greatest correlation coefficient
values, the confidence index for ANN model was greater than that for REPTree model.

Table 6. Results of the index of agreement (d), correlation coefficient (r), and confidence index (c)
tests for the different prediction methods in relation to observed WDEL using the testing data set.

Prediction Method Index of
Agreement

Correlation
Coefficient Confidence Index

Performance
Based on

Confidence Index

The model described by Trimmer [20] 0.325 0.966 0.314 Terrible
The model described by Yazar [19] 0.437 0.898 0.393 Terrible
The model described by the model

described by Tarjuelo et al. [11] 0.650 0.949 0.617 Average

Playán et al. [18] 0.913 0.908 0.829 Very good
REPTree model 0.984 0.971 0.956 Optimal

ANN model 0.980 0.983 0.964 Optimal

4. Conclusions

When compared to the use of any other surface irrigation method, the sprinkler
irrigation method has the advantage of using less water. However, before reaching the soil
in the sprinkler irrigation method, some of the water emitted by the nozzles is lost to wind
drift and evaporation losses (WDEL). According to reports, WDEL values range from 2%
to 50% and are influenced by factors such as riser height, vapor pressure deficit, air relative
humidity, wind speed, air temperature, working pressure, and nozzle diameter. In arid and
semi-arid environments, WDEL may make up a significant portion of the water delivered.
Therefore, using a local sprinkler, this study examined the impact of the operating pressure
and nozzle diameter on WDEL. Furthermore, for the sustainable management of irrigation
water, a reliable and accurate WDEL forecast model is essential. The novelty of the paper
lies in estimating WDEL using the empirical and data mining models, such as the multilayer
perceptron neural network and REPTree. The average observed value of WDEL was 13.58%;
meanwhile, the predicted average values of WDEL using the investigated empirical models
were 3.22%, 5.99%, 10.06%, and 14.54% and they were 13.50% and 13.00% using REPTree
and multilayer perceptron neural networks models, respectively. Overall, the multilayer
perceptron neural network outperformed the other models on the testing data set. The
practical achievement of this research is that choosing a simulation model to predict WDEL
is important in traditional sprinkler irrigation systems.
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