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Abstract: Water pollution is a serious concern for developing and undeveloped countries. Photo-
catalytic degradation of organic pollutants is an effective degradation method to restrain the green
ecosystem. This research article presents a green, low-cost, and benevolent eco-friendly biosynthesis
of cobalt oxide (Co3O4) nanoparticles using Curcuma longa plant extract. The UV and visible region
absorbance of Co3O4 nanoparticles estimated the Co2+ and Co3+ transitions on the lattice oxygen,
and their bandgap of 2.2 eV was confirmed from the UV-DRS spectroscopy. The cubic structure and
spherical shape of Co3O4 nanoparticles were estimated by using XRD and TEM characterizations.
Plant molecules aggregation and their agglomerations on the nanoparticles were established from
FTIR and EDX spectroscopy. Multiple cobalt valences on the oxygen surfaces and their reaction, bond-
ing, and binding energies were analyzed from XPS measurements. The biogenic Co3O4 nanoparticles
were executed against gram-positive (Staphylococcus aureus—S. aureus) and gram-negative (Escherichia
coli—E. coli) bacteria. A gram-positive bacterial strain exhibited great resistivity on Co3O4 nanopar-
ticles. Degradation of organic dye pollutants on the Co3O4 nanoparticles was performed against
methylene blue (MB) dye under the conditions of visible light irradiation. Dye degradation efficiency
pseudo-first-order kinetics on the pseudo-first-order kinetics denotes the rate of degradation over the
MB dye. This research work achieved enhanced degradation potency against toxic organic dye and
their radicals are excited from visible light irradiations. Absorption light and charged particle recom-
binations are reformed and provoked by the plant extract bio-molecules. In this process, there is no
inferior yield development, and electrons are robustly stimulated. Furthermore, the biosynthesized
Co3O4 nanoparticles determined the potency of bacterial susceptibility and catalytic efficacy over the
industrial dye pollutants.

Keywords: nanoparticles; photocatalysis; green synthesis; metal oxides; zero-valent atoms

1. Introduction

Water contamination is currently a serious environmental problem and a major menace
to community physical conditions all over the human race as a consequence of the speedy
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advancement of economies, manufacturers, and population growth [1,2]. Most pollutant
types include pesticides, dyes, pigments, phenol, organic contaminants, fungicides, e-waste,
oil refineries, and so on [2,3]. When compared to other types of water pollutants, organic
dyes are one of the most significant sources of environmental pollution [4,5]. Dye-based
products attract a large portion of fast-moving consumer goods to humans because they
are extensively used as color tones in the textile, printing, rubber, cosmetics, plastics, and
leather industries [2–6]. The presence of hazardous materials in industrial wastewater
endangers human health and aquatic organisms in the environment. Dyes are categorized
into three major types: anionic, cationic, and non-ionic. These dyes are very stable and
can only be decomposed at temperatures above 200 ◦C [3–6]. The presence of hazardous
dye materials in industrial wastewater endangers human health and aquatic organisms
in the environment [4–6]. Among them, cationic dyes are more colorful but have some
toxic properties for humans, the environment, and ecology [5,6]. Methylene blue is a
common cationic dye that is commonly applied in textiles, cosmetics, leather industries,
paper industries, and foodstuffs [5,6]. After implanting, these dyes into their applied goods
inappropriate releases of this dye contaminant into the water bodies create a major problem.
It has been linked to several health risks, such as eye irritation, respiratory problems,
gastrointestinal tract problems, and cerebral failure [6].

The elimination of the MB dye molecule from industrial effluent has been studied
using a variety of methods, including enzymatic processes, photodegradation, chemical
coagulation, electrochemical removal, ozonation, ion exchange, sonication, membrane
filtration, and physical adsorption [7–9]. Among these commercial methods, photocatalysis
is gaining popularity due to its simple process, easy catalytic recovery, and low secondary
pollution formation seismology [8,9]. Zeolites, metal MXenes, metal oxides, conducting
polymers, and other materials are used in dye treatments. Due to their remarkably high
surface area and superior semiconducting properties, many transition metals and their
oxide nanoparticles have been synthesized and tested for photocatalytic performance. Metal
oxides such as ZnO, CuO, TiO2, AgO, and Co3O4 are commonly used in photocatalytic
dye degradation [8–12].

Among these, Co3O4 in particular demonstrated an impressively extensive application
for catalysts, sensors, magnetic materials, and energy storage electrode materials [12]. The
methods used to prepare these metal oxides, such as sol-gel, hydrothermal, electrochemical,
solvent evaporation, co-precipitation, and green synthesis, are extensively used. Among
them, green synthesis is a low-cost, environmentally friendly, and simple method for pro-
ducing metal oxide nanoparticles [13]. Many green-mediated metal oxide syntheses are
ZnO, Fe2O3, AgO, CuO, and Al2O3 using plant sources such as Agathosma betulina, Sida
cordifolia, Pedalium murex, Gloriosa superba, and Prunus yedoensis [14]. Curcuma longa is
a tropical rhizomatous mostly extensively cultivated in India. The medicinal benefits of Cur-
cuma longa include anti-inflammatory, antimicrobial, antiseptic, anti-fungal, antiallergenic,
antioxidant, anthelmintic, antimalarial, antiallergic activity, antiarthritic, antiulcer, antidia-
betic, antiaging, anti-mutagenic and anti-cancer activity [15–19]. For the green synthesis of
metal oxide using curcumin as a reducing agent for different nanoparticle preparations by
assembling the work presented in many works of literature. In general, green synthesis
involves two vital steps in the synthesis of nanoparticles. Curcumin, as a reducing agent,
provides metal reduction from Mx+ to M0 while also stabilizing the formation of arbitrary
aggregation and controlling the size and shape of the nanoparticles [20–22].

The present work focuses on three major points, which are: (i) The metal oxide Co3O4
nanoparticles are constructed using green synthesis curcumin extract. The plant extract
helps to attain the nanostructure formation, reduced the light recombined activity and
increased the ROS activities. (ii) Organic contaminants of MB dye were removed from
aquatic surfaces through the photocatalysis method under visible light irradiation. Bacterial
strains of E. coli and S. aurues are eradicated by using Co3O4 nanoparticles.
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2. Materials and Methods
2.1. Materials

Cobalt nitrate hexahydrate (Co(NO3)2. 6H2O) and Methylene Blue (C16H18CIN3S)
was acquired from HiMedia, Mumbai, India. The purchased chemicals were obtained at
99.9% purity in analytical reagent (AR) grade, and no extra refinement occurred in the
synthesis time. The fresh leaf of the Curcuma longa plant was collected from Kerala, India.

2.2. Plant Extract Preparation

The Curcuma longa plant leaves (5 g of fresh leaves) were washed with running tap
water. The round bottom flask was used to combine the cleaned green leaf and 100 mL
double distilled water. The combinations of leaf and distilled water were heated for 30 min
at 60 ◦C, and Whatman No. 1 filter paper was used to filter the sediment. The obtained
pure leaf extract solution was kept at 4 ◦C conditions for further evolutions.

2.3. Biosynthesis of Co3O4 Nanoparticles

0.1 M Cobalt nitrate hexahydrate (Co(NO3)2. 6H2O) and 10 mL plant extract of
Curcuma longa were used in the nanoparticle synthesis process. Both sources were mixed
by using a magnetic stirrer at constant rpm (750 rpm) for 30 min. The color deviations
from light brown to dark brown specify the nucleation and growth of Co3O4 nanoparticles.
The obtained color-modified nanoparticle solutions were centrifuged at 10,000 rpm for
10 min (repeated three times), and their obtained pellet was washed with double distilled
water. Finally, the collected nanoparticle precipitate was filtered (with Whatman No. 1
filter paper) and dried in the oven at 100 ◦C for 60 min. The dried nanoparticle samples
were processed for further measurements [23,24].

2.4. Characterization of Nanoparticles

Structural phase and material crystallinity are evaluated from XRD (PANalytical X’Pert
Pro Diffractometer; radiation = Cu Kα (1.5405 Å); working condition = 30 kV and 40 mA)
analysis. The nanoparticle formation, reaction, and functional group involvement were
captured by Perkin Elmer FT-IR spectroscopy, and their wavelength limit is 4000 cm−1 to
400 cm−1. The optical imperfections and their transition properties were observed from UV-
visible DRS (UV-2600 Shimadzu) analysis. The nano-sized surface structural modification
and their elemental compositions were analyzed from FESEM (Carl Zeiss) and TEM (Titan)
with EDX spectroscopy. The valency, bonding, and binding energies of the synthesized
nanoparticles were characterized by using x-ray photoelectron spectroscopy (XPS; PHI
5000 Versa Probe III, Physical Electronics, Chanhassen, USA) [23,24].

2.5. Photocatalytic Activity

The photocatalytic activity of biosynthesized Co3O4 nanoparticles was examined
using the organic effluent of MB dye. The visible light source (Xenon lamp wavelength
= 400 nm) irradiated the Co3O4 nanoparticles. The 10 mg of Co3O4 nanoparticles were
mixed with 100 mL (10-ppm) of MB dye solution by using a magnetic stirrer and kept
in a dark environment for 40 min. The dark condition stirring process helps to attain
the adsorption-desorption equilibrium positions. Visible light photocatalytic activity of
Co3O4 nanoparticles and dye solution were processed by closed chamber xenon lamp
irradiation. The light irradiation dissociated the dye bonding and decreased the absorbance
strength over the catalyst; it was measured at 10 min intervals. 10 min time gap, the
dye solution was taken out and centrifuged for 1000 rpm to remove the catalyst from the
dye solution and measured in UV-Visible spectroscopy. The dissociated dye absorbance
was calculated [25–27].

2.6. Antibacterial Activity

The microbial resistance of Co3O4 nanoparticles was measured in gram-positive
Staphylococcus aureus (ATCC 6538) and gram-negative Escherichia coli (ATCC 8739) through
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the well diffusion method. The 106 CFU/mL concentrated bacterial culture was inoculated
into the nutrient broth and placed in the incubator for overnight incubation. The Muller-
Hinton agar medium was poured into sterilized Petri plates and incubated overnight, and
the growing culture was swabbed on the sterilized Petri plates. The 5 mm holes were made
by the gel puncture method in the Muller-Hinton agar plates, and the holes were filled with
different concentrations of Co3O4 nanoparticles (10, 20, 50, and 100 µg/mL) nanoparticles.
Then, the plates were incubated at 37 ◦C for 24 h. The cell death and deactivation were
assessed by the development of a clear zone around the holes, which was measured on a
millimeter (mm) scale [27].

3. Result and Discussions
3.1. XRD Analysis

The biosynthesized Co3O4 nanoparticles’ x-ray diffractive pattern is presented in
Figure 1. The diffraction peaks of Co3O4 nanoparticles appearing at 2θ = 19.00◦, 31.008◦,
36.88◦, 44.72◦, 59.18◦, and 65.19◦ can be assigned to the (111), (220), (311), (222), (400),
and (511) planes. The obtained Co3O4 nanoparticles peaks are well-coincided with the
cubic structure of standard JCPDS card number 042-1467 [28]. The bio-molecule interaction
on the cobalt sources exhibited the cobalt and oxygen nucleation sites and attracted each
other by electron donor of plant molecules, which derived the Co3O4 nanoparticles. The
high-intensity peak of 36.88◦ represents the high crystallinity and lattice strain of Co3O4
nanoparticles. The crystallite size of Co3O4 nanoparticles was determined by using the
Debye-Scherrer formula [29]. The obtained 26 nm, the crystallite size of cubic Co3O4
nanoparticles, derived the narrow crystallite size, and it emanated the high electron ac-
cumulation of the surfaces. The smallest crystallite size increased the surface area, which
enhanced the degradation capability of the hazardous dyes and organic substances.

3.2. FTIR Analysis

The Co3O4 nanoparticle purity, plant extract bio-molecule qualitative measurement,
and surface modifications were determined by FTIR spectroscopy and displayed in Figure 2.
The cobalt oxide nanoparticles FTIR spectrum derived the cobalt, oxygen and reaction
involved plant nutrients. FT-IR results for plant extract revealed absorption bands at
3261 cm−1 and 1636 cm−1. The broad peak at 3261 cm−1 indicates O-H stretching vibrations
and absorbed water molecules in the plant extract. The sharp peak at 1636 cm−1 indicates
the presence of amides. The phytochemicals, such as terpenoids, alkaloids, phenols,
steroids, and flavonoids, are mostly found in the C. longa extract. After the addition of C.
longa leaf extract to the cobalt nitrate solution, the color change indicates the formation
of Co3O4 nanoparticles. Curcumin, one of the major polyphenolic compounds found in
the C. longa plant, might be involved in the synthesis of copper oxide and nickel oxide
nanoparticles. Herein, the Co2+ ions were reduced to form Co3O4 nanoparticles by donating
the electrons from curcumin. The broad two prominent peaks are indicating the formation
of Co3O4 nanoparticles at 555 cm−1 and 659 cm−1 [30,31]. Co(III)-O bonds were obtained
from 659 cm−1 Co-O stretching vibrations associated with 555 cm−1. The plant extract
produced amide and carboxylic acid on the cobalt materials, which can be used for the
reduction, capping, and stabilization of Co3O4 nanoparticles [32,33]. The minor peaks of
1382 cm−1 and 1639 cm−1 denote the amide and carboxylic acid from plant biomolecules.
The water molecule and carbon attachment on the surfaces were observed from the peaks of
2331 cm−1 and 3415 cm−1 it representing the -OH stretching and C=O asymmetric vibration
of the CO2 molecule [34–36]. The existing carbon and OH molecules are responsible for the
reduction and enhanced activity of Co3O4 nanoparticles.
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3.3. UV-DRS Analysis

The absorbance and bandgap spectra of green-mediated Co3O4 nanoparticles are
displayed in Figure 3. The green-mediated Co3O4 nanoparticles establishment was identi-
fied from the absorbance peaks at 380 and 690 nm [37,38]. Broad two-peaks from green-
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mediated Co3O4 nanoparticles elucidated the transition of charges from O to Co orbitals.
Co2+ and Co3+ orbital electrons move towards the O2-, which indicates the double oxidation
state of cobalt elements [37,38]. P-type green-mediated Co3O4 nanoparticles optical imper-
fections were derived from Kubelka-Munk relations. Green-mediated Co3O4 nanoparticles
calculated bandgap is 3.4 eV, which was well matched with previously reported Co3O4
nanoparticles [39]. The wide bandgap of Co3O4 nanoparticles explained the gap between
the holes and electrons, which suppressed the recombined activity. The obtained photo
exciton charge carriers provoke the oxygen vacancy on the Co3O4 nanoparticles [39]. The
charge carrier mitigations and partings may deduce the organic pollutants and deactivate
the bacterial system in wastewater and biomedical applications.
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Figure 3. UV-DRS absorbance (a) and bandgap energy (b) spectrum of Co3O4 nanoparticles.

3.4. FESEM with EDX Analysis

Surface morphological and elemental analysis of biogenic synthesized Co3O4 nanopar-
ticles studied by FESEM with EDX and their belongings are displayed in Figure 4a–d.
Spherical-shaped and mixed spherical nanoparticle morphologies were observed in bio-
genically synthesized Co3O4 nanoparticles. The spherical shape of Co3O4 nanoparticles
was achieved through the nucleation, growth, and aggragation of the synthesized materials.
Mixed shaped Co3O4 nanoparticles were obtained from the aggomeleration of synthesized
Co3O4 nanoparticles due to the capped plant molecules. Plant derivatives controlled the
nucleation, growth, and structuring of nanoparticles, and their enriched quantities of phy-
tonutrients agglomerated the biogenically synthesized Co3O4 nanoparticles [40,41]. Metal
and oxygen stabilization/interface formed the nanostructure of biogenically synthesized
Co3O4 nanoparticles. EDX spectroscopy of biogenically synthesized Co3O4 nanoparticles
confirmed the existing elements of Co and O (Figure 4c,d). Their Co and O presence
elucidates the phase of pure biogenically synthesized Co3O4 nanoparticles, and no other
element is evolved in the reactions. Metal compound occurrence is high in the biogenically
synthesized Co3O4 nanoparticles because of their lattice oxygen stabilization [41–43]. Fur-
ther, the oxygen vacancy was stabilized and filled by cobalt cations, and their values are
presented in Figure 4d.
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Figure 4. FESEM images (a,b), EDX peak spectrum (c) and EDX table (d) of Co3O4 nanoparticles.

3.5. TEM Analysis

The TEM analysis examined the surface morphology and particle size of the bio-
genically synthesized Co3O4 nanoparticles. The two different magnifications with two
different parts of biogenically synthesized Co3O4 nanoparticles are exhibited in Figure 5a,b.
The biogenically synthesized Co3O4 nanoparticles revealed the spherical shape and lite
black surroundings over spherical and conjoint spherical shapes representing the plant
molecules encapsulations [44,45]. The plant molecule encapsulations over the biogenically
synthesized Co3O4 nanoparticles are relieved from FTIR and XPS analysis. The particle
size of biogenically synthesized Co3O4 nanoparticles is 22 nm. The obtained particle size
values denoted the lattice constraint between the cobalt and oxygen, and their electron
mobilization was evident from XRD and UV-DRS analysis.
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3.6. XPS Analysis

The XPS analysis examined the chemical valency and binding energy of the biogeni-
cally synthesized Co3O4 nanoparticles. The valency of the material is determined by the
catalytic efficiency of the synthesized compounds. The XPS spectrum displays the wide,
Co, O, and C elements from biogenically synthesized Co3O4 nanoparticles, as displayed in
Figure 6a–d. A wide spectrum of biogenically synthesized Co3O4 nanoparticles presented
Co, O, and C elements (Figure 6a). The Co and O elements confirmed the formation of
Co3O4 nanoparticles, and the C elements come from plant extract. The Co elements are
represented by two major peaks and their Co-2p state existence in 796 eV = Co-2p1/2 and
780.2 eV = Co-2p3/2 respectively (Figure 6b). The Co double splitting is well documented
with the previously reported work and standard Co element [46,47]. The O spectrum
is located at 529–531 eV, and its valency is O-1s (Figure 6c). The lattice oxygen peaks
complete the reaction of the biogenically synthesized Co3O4 nanoparticles, and their in-
terface was led by the plant nutrients [46]. The cationic metals interacted with the organic
plant molecules, and they could create oxygen vacancies on the surfaces. Three peaks
were obtained in the O-1s XPS spectrum, including lattice oxygen, surface oxygen, and
oxygen defect. The oxygen spectra determined the robust interface between metal and
plant organic molecules. The absorbed oxygen on cationic metal is established the metal
oxide nanostructure [47]. The plant extract reduced the zero valent cobalt and re-oriented it
with lattice oxygen, which formed the biogenically synthesized Co3O4 nanoparticles. The
bio-reduction of the biogenically synthesized Co3O4 nanoparticles was assured by the C-1s
peak (Figure 6d). The three different small peaks are depicted in the C-O, C-C, and C=O
bonds, which provoke the reduction and stabilization of Co and O elements to produce
the biogenically synthesized Co3O4 nanoparticles [47,48]. Further, the attained findings
confirmed the high-purity biogenic synthesized Co3O4 nanoparticles.
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3.7. Photocatalytic Dye Degradation

Photocatalytic degradation of MB was studied using as-synthesized Co3O4 nanoparti-
cles under visible light irradiation. The visual color of the treated dye and UV-vis spectrum
are shown in Figure 7a. In this present case, the photocatalyst, Co3O4 nanoparticles, has a
complex spinel structure in which Co2+ ions occupy tetrahedral sites and Co3+ ions occupy
octahedral sites of the cubic close-packed lattice of oxide anions [49]. The valance band is
characterized by the (2p) orbital having O2

− carriers, whereas the 3d orbital contributes
Co2+ carriers in the conduction band. As a result, the charge transfer band (O2

− to Co2+)
that appears in the wavelength range 400–800 nm is the primary governing factor for
Co3O4 nanoparticle-based photocatalytic processes. When photons were illuminated, the
methylene blue dye produced reactive species that inserted electrons back into the lattice
plane of Co3O4 nanoparticles, assisting in the creation of superoxide radicals in the presence
of accessible oxygen in the solution, further enhancing the photodegradation process. The
breakdown of the chromophoric group and the transformation of dye into low molecular
weight by-products are connected with the photocatalytic degradation of the target dye [50].
Under visible light irradiation, dye degradation is primarily caused by the creation of elec-
trons (e−) and holes (h+) on the catalyst surface. Water molecules mix with holes h+ to
form the OH radical. The O2 molecule scavenges the electrons e− and converts them to
OH through HOO and H2O2 intermediates. The OH is a powerful oxidizing species that
non-selectively degrades the organic molecule dye into H2O, CO2, and inorganic ions [51].
The same work was repeated three times with the same experimental conditions, and their
standard deviation values were calculated. The MB dye degradation (90%) during the
40-min radiation exposure is depicted in figure (b). The rates of methylene blue degradation
using Co3O4 photocatalyst were determined from the graph of ln(Co/Ct) vs time (min).
The kinetic study infers the pace of the order of the reaction. The graph depicts a straight
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line with a positive slope and a rate constant of 0.05468 min−1 for Co3O4 nanoparticles.
The mechanism of photodegradation is shown in Equations (1)–(7).
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3.8. Photodegradation Mechanism

The degradation of organic pollutants is influenced by various parameters such as
light source, surface area, bandgap, sizes, ion releasing capacity, dye concentration and
catalyst dosage etc. The cobalt oxide nanoparticle degradation of various dye solutions
is listed in Table 1. The present work degradation efficiency is compared with previous
reported work, and the obtained degradation is expressed as the enhanced degradation
potential of published work [52–61].

Co3O4 + light energy→ h+ + e− (1)

H2O + h+→ H+ + OH (2)

e− + O2→ O2
− (3)

H+ + O2
−→HOO (4)

HOO→ O2 + H2O2 (5)

H2O2→ OH (6)
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OH + Dye→ Dissociated dye products (7)

Table 1. Comparison table of Co3O4 nanoparticles degradation against different conditions.

S.No Sample Dye Dye volume Dosage Degradation (%) References

1. Co3O4 MB 50 mL 0.1 mg 93.8 [52]

2. Co3O4 TY 100 mL 0.0020 g 51.4 [53]

3. Co3O4 BO 100 mL 0.5 g 78.45 [54]

4. Co3O4 MV, CV 50 mL 1.0 g 92 and 64 [55]

5. Co3O4 MG 100 mL 50 mg 91.2 [56]

6. Co/Co3O4 AR and AB 50 mL 0.04 g 93 and 69.5 [57]

7. Co and Co3O4 murexide dye and EBT 100 mL 0.1 gL−1 43 and 39 [58]

8. Co3O4 CR 100 mL 0.50 g 98 [59]

9. Co3O4 MB 20 mL 5 mg 86 [60]

10. Co3O4 MO 100 mL 6 mg 95 [61]

11. Co3O4 MB 100 mL 10 mg 90 Present work

Effect of Catalyst Dosage

The various catalyst dosages were scrutinized against the MB dye solution. The
photocatalytic dye degradation of various catalyst concentrations was demonstrated in
Figure 8. A low catalyst dosage of 1 mg causes 58% degradation and 5 mg causes 69%
degradation against MB dye. The excitation of electrons and light absorption is based
on the catalyst surface area, and it can be motivated by radical genericity. 10 mg catalyst
dosage is optimized concentrations of Co3O4 nanoparticles than 1 mg, 5 mg and 15 mg
(71%) Co3O4 nanoparticles. The high surface area and OH radical productivities destroyed
the dye bonding and increased the active sites of the nanomaterial surfaces. The 15 mg
of Co3O4 nanoparticles restricted the electron mitigations from different bands due to
their high occupations, which do not allow light movements that can suppress the charge
carrier multiplicity. Therefore, 10 mg of Co3O4 nanoparticles are produced for improved
photocatalytic dye degradation.

3.9. Antibacterial Activity

Bacterial contamination leads to a variety of issues for all, such as infection, mortality,
and organ defects, which are controlled by antibiotics. The high usage of antibiotics is
expressed by the many irregularities and the complete suppression of the bacterial domains.
Good bacteria are also degraded by antibiotics, and their long-term use inhibits the nerve
action system. Hence, researchers are focusing to raise innovative techniques to reduce
the hazardous evolution and dispersion. Nanophase materials are always a new and
effective antibacterial output for the scientific community. Biogenic nanoparticles give a
superior bacterial resistive property in various bacterial strains [62]. The present study
of biogenic Co3O4 nanoparticles showed significant bacterial output against E. coli and S.
aureus bacterial strains. The results of using Co3O4 nanoparticles showed an increased zone
of inhibition with increasing nanoparticle concentrations [63–65]. The inhibited bacterial
plate was shown in Figure 9. The statistical analysis of the Co3O4 nanoparticles antibacterial
activity was calculated. The zone of inhibitions tells the sensitivity and resistivity of Co3O4
nanoparticles. Gram-positive bacteria of S. aureus have a higher effective sensitivity than
gram-negative bacteria of E. coli. The lipopolysaccharide protected cell wall could not be
easily destructed by the metal ions due to its thickness. Peptidoglycan-covered cell wall
bacterial strains are easily penetrated by nanoparticles due to their 80 nm layered thickness
of the cell wall [62–66]. This is the main reason for the metal ions entry into the interactions
of the bacterial structure. The disrupted cell wall permits the Co3O4 nanoparticles, and it
provokes ROS production. Increased toxic levels in the cell system suppressed the nucleus
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and DNA production. Without nutrients, a cell body lost its energy, which stopped the cell
active signaling and induced the cell demise.
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4. Conclusions

Bio-mediated nanophase material constructions are gaining extra attention in all re-
search sectors due to their noxious, cost-effective, and pollution-free method of synthesis.
Curcuma longa plant extract achieved the in-situ reduction of valence-free cobalt atoms and
encouraged lattice oxygen stabilizations. The crystallite size and spherical morphologies of
the Curcuma longa-derived Co3O4 nanoparticles designate their 26 nm size and a large area
on the surfaces of the Co3O4 nanoparticles. The optical and chemical valency of the Co3O4
nanoparticles projected the Co2+ and Co3+ valency over the oxygen vacancies. Electronic
transitions of Co3O4 nanoparticles specify the formation of Co and O stabilization and
improved the material interface by plant extract of Curcuma longa. Biogenic Co3O4 nanopar-
ticles exhibited enhanced antibacterial efficiency in gram-positive bacterial strains. Visible
light photocatalytic dye degradation activity of Co3O4 nanoparticles was investigated
against MB dye under and obtained the degradation is 90%. The double valency of Co3O4
nanoparticles increases the lifetime of electron-hole pair recombination and intensifies the
oxidation and reduction properties against the MB dye. Therefore, oxidation of Co3O4
nanoparticles enhanced the parting of charge particles, enlarged the radical speciation,
and produced noxious-free end products. Consequently, obtained results advocate the
Co3O4 nanoparticles can be used for further growth and applications in the water-treatment
process and biomedical-related areas.
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