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Abstract: This study is focused on technology development for microplastic removal from wastewater
using a sorption process, which would be suitable not only as a tertiary stage of purification in
wastewater treatment plants but also for other waters, e.g., process water and surface water. Therefore,
cheap natural materials such as zeolites and bentonites were tested as possible sorbents. This study
aims not only at sorbent selection but also at their possible modification by a special water regime
improving sorption efficiency and lifetime. Microplastic particles of the majority of common types of
plastics were prepared by a newly developed abrasion technique from various plastic items used at
home, thus microplastic particle sizes and shapes corresponded to the real microplastics found in
waters. Based on results with high reproducibility, a novel method for microplastic characterization
based on Raman spectroscopy in combination with SEM/EDX was developed. The removal of
microplastics from waste water was tested not only at the laboratory scale but also in a developed
semi-operational sorption unit at a real wastewater treatment plant throughout the year with the
efficiency of over 90%

Keywords: microplastics; water treatment; sorption; scale up; bentonite

1. Introduction

Microplastics in water are among the most problematic emerging pollutants and
have become a major environmental issue. It is estimated that the leakage of secondary
microplastics alone reaches 176,000 tons per year in European surface waters [1]. In an
effort to prevent the release of microplastics into the environment, the European Chemicals
Agency (ECHA) prepared a proposal to limit microplastics in products placed on the EU
market in January 2019 [2], and in August 2022, the ECHA further prepared a proposal to
change the list of substances subject to restrictions according to Annex XVII of the REACH
Regulation [3]. Owing to these bans, it is expected that 500,000 tons of microplastics will not
be released into the environment over the next twenty years. Their adoption will prevent
the entry of primary microplastics; however, secondary microplastics will continue to occur
in the environment and will need to be removed from the environment, not just water.

Ubiquitous microplastics are ingested by aquatic creatures from microorganisms to
fish (for Mullus barbatus [4] and, at the end of the food (for radish, see [5]) chain, by
humans [6–12]. Four high-production-volume polymers applied in plastic (polyethylene
terephthalate, polyethylene, polystyrene derivates as expanded polystyrene and acetonitrile
butadiene styrene) were identified and quantified for the first time in blood [13]. Dumping
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of plastic waste, the lack of standard detection methods with specific removal techniques
together with the slow disposal rate of microplastics make them ubiquitous in the environ-
ment [14]. There are some biological, chemical, electrochemical and physical techniques for
microplastic removal; however, their wide applicability and cost-effectiveness are issues.
Recently, Sing et al. [15] discussed the existing and upcoming treatment technologies for
microplastic removal from wastewater and mentioned that conventional wastewater treat-
ment plants are not fully efficient. In fact, the final effluent contains significant amounts of
microplastics. Sun et al. [16] and Liu et al. [17] reviewed the characteristics and removal of
microplastics in 38 wastewater treatment plants (WWTPs) in 11 countries worldwide and
reported that 88% overall microplastic removal could be achieved when tertiary treatment
was absent, and 97% when tertiary treatment was involved. It follows that it is necessary
to equip WWTPs with tertiary treatment; however, it is also necessary to consider the
economic factor.

Various removal methods for microplastics exist; nevertheless, they are, unfortunately,
only verified at the laboratory scale [18–20]. Coagulation with aluminum and iron salts is
widely used in water treatment facilities; however, process efficiency strongly depends on
the coagulant type and microplastic size/type and is generally low (up to 50%). However,
under optimized conditions and with high coagulant doses, high efficiency can be reached
(up to 91%) [21]. Electrocoagulation also shows an equally similar efficiency [22]. Biochar
or activated carbon filtration appears quite effective; however, the process is slow, results
in pore clogging, and regeneration is difficult [23]. In addition, activated carbon filtration
has been tested together with coagulation [15,24,25]. The authors mentioned other meth-
ods, such as sorption on algae, bio-inspired molecules, metal organic framework (MOF)
foams or photocatalytic micromotors; regrettably, the majority of them cannot be used for
practical purposes.

Interestingly, Ariza-Tarazona et al. [26] found that exposure to photocatalysis (e.g.,
with TiO2) also decreased the microplastic concentration, perhaps indicating microplas-
tic photocatalytic degradation. However, the application of these techniques might not
currently be feasible owing to the high costs and complexities involved; nevertheless, in
the near future and considering the necessary degradation of emerging pollutants, such
techniques will have to be employed. In this context, the development of smaller filter units
as a tertiary treatment, which would remove microplastics and other pollutants, appears to
be a suitable approach [15].

In fact, there is no operational-scale microplastic removal technology in operation.
Membrane filtration [27,28] and coagulation–flocculation–settling [29] treatments

are non-destructive, requiring an additional step to degrade microplastics. Biological
treatment was demonstrated as unsatisfactory for microplastic treatment. On the other
hand, a few recent works identify advanced oxidation processes (photocatalysis, Fenton,
and wet oxidation) as feasible alternatives, since they present high-efficiency microplastic
degradation (≈30–95%) [30–32]. However, further studies should be conducted to evaluate
the performance of advanced oxidation processes on the degradation of microplastics in
real conditions. Tests in larger treatment systems are critical to promote a scale up for
the real application [33]. A very limited number of studies on microplastic degradation
technologies are available in the research literature. Clearly, a significant gap in knowledge
is the lack of results from scale-up studies as well as laboratory studies with the potential
for a scale up [34].

For this reason, our study is focused on the development of a technology for microplas-
tic removal from water using a sorption process, which would be suitable not only as a
tertiary stage in wastewater treatment plants but also as a secondary stage of purification
of surface and industrial waters. Due to economic reasons, this study utilizes low-cost
natural materials such as zeolites or bentonites and their possible modification with the
aim to increase removal efficiency and their lifetime, not only at the laboratory scale but
also in a real waste water treatment plant.
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2. Materials and Methods
2.1. Used Materials

A list of the used sorbents and plastic materials is presented in Tables 1 and 2, including
their description and source. Particles sizes were specified directly by the manufacturer,
and the sizes of the prepared microplastic particles were determined by scanning electron
microscopy (SEM, Tescan Indusem).

Table 1. Used adsorbents.

Material Used Description Origin/Manufacturer

Bentonite Braňany EXTRA Clay, powder, particle size < 3 mm Dekonta, a.s.
Bentonit Braňany STELIVO Clay, powder, particle size < 3 mm Dekonta, a.s.

Zeolite Clinoptilolite Zeolite, particle size 1–2.5 mm Uprav vodu.cz

Table 2. Used plastic materials.

Used plastic Material Description Origin/Manufacturer

Polyethyleneglycol terephthalate Particle size < 500 µm Drinking bottle
Polypropylene Particle size < 500 µm A cup of yogurt

Polystyrene Particle size < 500 µm A cup of yogurt
Polycarbonate Particle size < 500 µm CD/DVD disc

Polymethyl methacrylate Particle size < 500 µm Raw piece of Plexiglas
Stainless steel sieve Wire stainless steel fabric with

mesh size 25, 50, 500 µm
Euro SITEX s.r.o.

Textural characteristics of specific surface area (SBET), specific surface area of meso-
pores (Smeso), and pore size distribution were determined by physical adsorption of nitrogen
at −196 ◦C on ASAP 2050 and 2020 instruments (Micromeritics). The pretreatment pre-
ceding the analysis consisted of drying the samples under vacuum (1 Pa) at 105 ◦C for
12 h. The micropore volume (Vmikro), SBET and Smeso were determined from the adsorption–
desorption isotherm using a modified BET (according to S. Brunauer, B.H. Emmet and E.
Teller; 1938) equation [35] and a t-plot using the standard Lecloux–Pirard isotherm [36].

2.2. Preparation and Characterization of Microplastics

Microplastics for laboratory tests were prepared by simulated abrasion. The prepara-
tion consisted of abrasion by sandpaper, a corundum grinding stone and a direct electric
grinder. The force and preparation time of particles depended on the properties of the
individual plastic materials (stiffness, softness, and brittleness).

Prepared microplastic particles were characterized by scanning electron microscopy
(SEM, Tescan Indusem). The images were taken at the accelerating voltage of 15 kV. The
surface of microplastic particles was mapped by SEM, which enabled the determination of
their size and shape.

The particles were characterized by Raman spectroscopy (Nicolet Almega XR with
Olympus BX51 microscope, excitation laser 473 nm, 5 mW power). The library for mi-
croplastic detection was created from spectra of the individual microplastics prepared
by abrasion.

Elemental analyses were performed by SEM equipped with energy-dispersive X-ray
spectroscopy (EDX, XFlash 5010 detector and Quantax 200). All measurements were
performed at an accelerating voltage of 15 kV. The combination of EDX and micro-FTIR
(Fourier transform infrared spectrometer, Nicolet Avatar 360, Zn Se ATR) methods was used
for a complete qualitative analysis of samples containing multiple types of microplastics.

2.3. Laboratory Sorption Experiments

The sorption apparatus consisted of a 50 cm-long glass tube with an inner diameter
of 4.1 cm, which was terminated by a tap; see Figure 1. Above the tap, the tube was
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provided with a perforated glass partition supported with a stainless sieve (mesh 1 mm).
The sorption part consisted of a 2 cm layer of clinoptilolite covered by a sorbent bentonite
(Branany EXTRA). The sorbent height ranges from 1 to 20 cm according to the experiment.
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Figure 1. Apparatus with the sorbents bed; (a) layer of bentonite Braňany EXTRA; (b) layer of
clinoptilolite; (c) stainless sieve (mesh 25 µm); (d) glass perforable bottom; (e) tap.

After filling with the sorbent, the column was flushed with at least two liters of water,
which ensured a constant flow of water. The capture of microplastics at the laboratory
scale was tested using simulated samples with a volume of 0.5 L tap water. The water
was running off the tap for 5 min. It was used to simulate potable water. The pH was
tested once a week with small differences found (6.6 + −0.2). The salinity was not tested. It
contained 5–50 mg of microplastics. A stainless steel sieve with a mesh size of 25 µm was
placed at the exit of the column, on which microplastics passing through the column were
captured. Sampling was carried out after a flow of 0.5 L of individual samples containing
the prepared microplastics. Following that, the column was washed with 0.5, 1, 1.5, 2.5
and 10 L of clean water. The flow rate depended on the amount of sorbent in the column.
The captured microplastics on the stainless steel sieve were analyzed by SEM combined
with EDX and FTIR. This combination of methods made it possible to evaluate not only the
amount but also the type of microplastic. The images of individual microplastic particles
captured on the sieve were obtained using SEM, and spectra characteristic for individual
types of microplastic were determined using EDX and FTIR, which made it possible to
determine the identity of the captured microplastic particles.

Based on these experiments, the semi-operational column presented in the Results
section was developed and constructed (see Results section).

2.4. Sampling and Analysis by Raman Spectroscopy

Wastewater samples were taken through a sampling device containing three stainless
steel filters with a diameter of 17 mm and metal fabric roughness of 500, 50 and 25 µm
(Eurositex, Czech Republic). The sampling device was originally designed for pilot-scale
testing; however, initially, it was inspired by Martin et al. [37].

Before sampling, each filter was washed twice in ultrapure water (PURELAB flex 1,
ELGA LabWater, High Wycombe, UK) and ethanol p.a. (Sigma-Aldrich, Prague, Czech
Republic), dried in a laboratory drier at 45 ◦C (ED 115, Binder, Tuttlingen, Germany) and
placed into by the same procedure prewashed 50 mL glass bottle sealed with a lid with
internal aluminum foils. After sampling, each filter was taken from the sampling device
and placed into the same bottles sealed and tightly closed. Subsequently, and on the same
day, the samples were transported into an analytical laboratory.
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In the laboratory, each filter was taken out from its glass bottle by a stainless steel
tweezers washed in ethanol p.a. and put into a Petri dish of 40 mm diameter, prewashed
by the same procedure as the sample’s glass bottle. All filters were dried at 45 ◦C for 24 h
prior to their analyses on a Raman device (WiTec WMT50 with alpha300 R microscope,
WiTec, Ulm, Germany). On each filter, a composite image of the area of 1 cm2 (resolution
1.25 µm/px) was taken at 100 times magnification and sharpening of the Z-axis. Within
this area, particles were searched. Each particle was first photographed at five hundred
times magnification (resolution 0.25 µm/px), and then its spectrum was measured using a
Raman laser excitation laser of 532 nm.

2.5. Determination of the Effectiveness of Removal

To determine the degree of microplastic removal at the technology/laboratory scale, a
statistical methodology was developed to evaluate the Raman spectra and determine the
frequency/concentration of microplastics. The results were analyzed in R-language using
integrated statistical packages (StatModel). Preliminary concentrations of microplastics
in WWTP water and laboratory samples were compared using an (unpaired) two-sample
t-test [38]. Particle size distributions were fitted to “bin” widths of 25–50–500 µm. Fur-
thermore, the results of visual analysis of microplastics and Raman spectroscopy were
compared using Spearman’s correlation at both the laboratory and industrial scales.

3. Results and Discussion

First, it was inevitable to have sufficient quantities of different types of microplastics
for laboratory experiments with simulated water. Microplastic particles found in real water
possess all possible shapes. Unfortunately, commercially available microplastic particles
exist only in the form of balls. Thus, the first task was focused on the preparation of
microplastic particles, whose shape would correspond to real microplastics.

3.1. Preparation and Characterization of Microplastic Particles

Several options of microplastic particle preparation by various abrasion tools were
tested. Initially, sandpaper with different grain sizes was applied. The obtained parti-
cles precisely corresponded to the requirements related to sizes and shapes; regrettably,
the particle amount for the majority of plastics was nearly negligible. The only particles
possible to be prepared by means of using sandpaper were microplastic particles of poly-
tetrafluoroethylene (PTFE) and polyethylene terephthalate (PET). The same results were
obtained with a grinding stone. Thus, an electric straight grinder with a rich constellation
of diamond bits was applied. The obtained results were excellent. Prepared microplastic
particles of all types of plastics could be prepared in a sufficient amount, and the particle
sizes and shapes corresponded to the real microplastics found in waters. The shape and
particle sizes of four types of microplastics are shown in Figure 2. The microplastic particles
prepared from polyethylene glycol terephthalate (PET bottles) are shown in Figure 2a. This
material was soft; thus, very small particles below 40 µm were formed together with larger
irregular particles with a high degree of fragmentation (>100 µm). The particle sizes of
polyterrafluoroethylene (PTFE) prepared from the raw piece of PTFE rod, which varied
between 60 and 100 µm, are shown in Figure 2b.
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Figure 2. Images of individual microplastics taken by SEM: (a) PET SP 320; (b) PTFE SP 240; (c) PS
EG 400; (d) PC EG 400.

Polystyrene particles (PS) prepared from cups (minimally of 100 µm in size) are shown
in Figure 2c. Polycarbonate (PC) particles prepared from CD/DVD discs are shown in
Figure 2d. On the other hand, the polycarbonate was hard, and there was partial heating
during grinding; therefore, these particles revealed the highest sizes from approximately
50 to 400 µm.

3.2. Sorbent Selection and Modification

Since the work was focused on a scale-up process suitable for real use at WWTPs,
properties and price were taken into consideration when choosing a suitable sorbent. Thus,
three sorbents—zeolite clinoptilolite and two types of bentonites, Branany EXTRA and
STELIVO—were chosen. Their textural characteristics are summarized in Table 3 and
Figures 3 and 4.
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Table 3. Characterization of sorbents.

Sorbent SBET
(m2/g)

Smeso
(m2/g)

Vtot
(mm3

liq/g)
Vmicro

(mm3
liq/g)

Bentonite Branany EXTRA 107 76 157 17
Bentonite Branany STELIVO 86 58 113 13

Zeolite Clinoptilolite 33 21 114 6
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The bentonites Branany EXTRA and STELIVO revealed similar values of SBET 107,
resp. 86 m2/g, as well Vmicro 17, resp. 13 mm3

liq/g, which were significantly higher than
for zeolite clinoptiolite. Zeolite clinoptiolite and Bentonite Branany STELIVO possessed
the same total pore volume of 113–114 mm3

liq/g. However, the Bentonite Branany EXTRA
possessed the highest values of all measured characteristics. Moreover, Bentonite Branany
EXTRA contained a dominant proportion of montmorillonite, which enabled the interca-
lation of plastic microparticles into individual planar layers. For that reason, the natural
sorbent Bentonite Branany EXTRA was chosen for subsequent experiments.

At first, this sorbent was partially dried and grounded in a ball mill to particles below
3 mm in size. Bentonite treated in this way could not be used directly regarding the large
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amount of dust particles that clogged the apparatus. Sieving did not work, as bentonite
was very hygroscopic, and there were clumps of particles in which many dust particles
were absorbed. As another possibility, the hydrodynamic separation of small bentonite
particles that would remain suspended in contact with water was tested.

Raw bentonite was washed with ten times the amount of water. Following the washing,
the large particles sedimented, while the dust particles remained dispersed in the water. In
approximately 20–60 s, the dust particles were removed by decantation. This process was
repeated (6 to 10 cycles), while the used water containing fine particles of bentonite was
recycled during the process by filtration.

Based on the image analysis of the modified bentonite, a geometric mean particle
diameter of approximately 150 µm was obtained; however, a significant part of the popu-
lation contained particles of even above 250 µm. The entire hydrodynamic process was
reproducibly repeated at least five times. The dispersion of particle sizes depended on the
degree of flushing (number of cycles and mass fraction of the fine fraction in raw bentonite).
Figure 5a shows the bentonite particles before the modification, and Figure 5b after the
hydrodynamic treatment, within which the large particles were fragmented and a more
homogeneous mixture of particles was formed. The wet bentonite modified by this way
was used for sorption experiments.
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3.3. Optimization of Laboratory Sorption Experiments

First, the height of the sorbent layer was optimized based on the maximum absorption
of microparticles at the highest possible flow rate. The height of the bentonite layer was
tested in the range of 2–20 cm. It was found that the height of the bentonite bed of above
13 cm that caused the column clogged after a flow of several hundred milliliters of water.
On the contrary, the column with the height below 5 cm supported the too fast flow. It
immediately led to the formation of cavities in the sorbent bed, which significantly reduced
the efficiency of the process. For that reason, the sorbent zeolite clinoptilolite with larger
and more stable particles was tested as an auxiliary support layer under the bentonite.
Only the 2 cm layer of clinoptilolite placed on the perforated bottom of the column under
the bentonite layer (see Experimental part, Figure 1) ensured the flow through the entire
sorbent bed and prevented the formation of cavities.

During the test, 1 L of water with 50 mg of microparticles was poured into the column.
Subsequently, 100 L of pure water was rinsed through the column. The best results were
obtained with the hydrodynamically modified Bentonite Branany EXTRA of the 9.5 cm
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bed layered on the clinoptilolite bed of 2 cm height. Afterwards, it was verified that
this arrangement enabled the capture of up to 95% of microparticles and prevented the
formation of cavities as well as the leaching of Branany Bentonite EXTRA. This is evident
from Figure 6, which shows the images of microplastic amount at the input (a) and the
output (b) of the column.
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Simultaneously, it was inevitable to determine the type of impurities captured at the
exit of the column in order to distinguish the microplastic particles from bentonite particles,
which were also weakly washed out. Therefore, parallel microplastic uptake in the sorbent
was found by the elemental mapping SEM/EDX analysis (Figure 7). Figure 7a shows the
analyzed area of the sample, and Figure 7b the particle type, captured microplastics (red)
and sorbent particles (green and blue). The number of trapped particles per unit mass
of sorbent was calculated by an image analysis. The efficiency of microplastic capture
reached 90%.
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3.4. Design of Pilot Plant Experiments

First of all, it was necessary to develop a simple but effective treatment system for
Bentonite Branany EXTRA, enabling the preparation of a sufficient amount of hydrody-
namically treated sorbent required for a scale up. Thus, the Bentonite Branany EXTRA
was dried at ambient temperature for approximately 7 days. Then, it was sieved by the
so-called cutting (a concrete mixer with a sieve drum), which disintegrated larger clusters
into a fine dust fraction of particles. The bentonite prepared this way was then soaked for
3 days, which caused swelling of the bentonite particles and their eventual disintegration.
The last step was the hydraulic flotation of the bentonite, which was carried out either
in a large tank of 250 L or in a cylindrical column according to the amount of bentonite
being prepared.

Figure 8a shows a flow-through column which was used for a 10 kg batch of bentonite.
It was placed on the sieve mesh of 2 mm and floated by water from bottom to top at the
water flow rate of 4000 L/h. At the start of the floating, the finest particles of bentonite
overflowed from the column; therefore, the water became strongly yellow and cloudy.
The turbidity of the water gradually decreased during the process, and, at the moment of
clarification, the process was terminated. The bentonite was allowed to settle due to gravity,
and the water was drained from the column. The bentonite prepared this way was then
placed into the adsorption column (Figure 8b). The layer of bentonite rested on the layer of
pebble gravel (2–4 mm) on the support grid. This system, similar to at the laboratory scale,
significantly limited the leaching of bentonite from the column.
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The design of the newly developed sorption column apparatus was based on the
cylindrical filter column with a length of 1000 mm and a diameter of 280 mm equipped
with a support grid with a mesh size of 2.5 × 30 mm. In the first version, the column was
made of the Plexiglas material (maximum pressure 1.3 bar) to ensure good transparency of
the bentonite bed. However, the next generation of the column was made of transparent
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PVC-U (non-plasticized PVC) [39], which was still sufficiently transparent and, compared
to the Plexiglas material, was rated for the pressure of 4 bar. A layer of hydraulically
modified bentonite with a thickness of 10–15 cm (8–15 kg) was placed on a 5–8 cm high
thickness of pebble gravel. The inlet water flowed into each column by gravity through
an induction flow meter and a three-way valve. The purified water left the lower part of
the column equipped with a sampling valve and then through the three-way valve into
the common collection pipe of the purified water. To test the efficiency of the column, the
samples were taken at the inlet and outlet of the column. This column for microplastic
capture was implemented in the municipal WWTP in the Czech Republic for 10 months.

3.5. Development and Optimization of Sampling and Analytical Procedures

An integral and very important part for the operational verification of the newly devel-
oped technology was the optimal sampling setup and mainly the design and verification of
the analytical procedure for the determination of microplastics. Sampling was carried out
through a tubular sampler with a system of three mesh sizes of 25, 50 and 500 µm, which
were chosen on the basis of preliminary tests.

First, a visual check was carried out on the individual filters using an optical micro-
scope with a connected digital camera. The standardized procedure of Norén [40] was used
for particle identification, in which the particles on the filter were characterized regarding
their size, color, shape and transparency.

Based on the preliminary measurements of the microplastic particle size and the
amount and size of the found cyanobacteria, the size of the sieves used for sample sieving
was chosen. The particles above 25 µm were analyzed on the filters with the largest filter
mesh size of 500 µm. Thus, cyanobacteria were not considered for pilot-scale samples. The
total microplastic concentration in the water taken from the waste water at each sampling
point of the process was calculated based on the volume of water filtered and reported
as the number of microplastics per m3 of water. The methodology of particle ‘concentra-
tion’ evaluation was based on the methodology used in [38]. The overall procedure for
characterization and identification can be found in [41].

The size distribution of individual fractions of real microplastics found in the WWTP
is summarized in Table 4.

Table 4. Distribution of individual fractions of real microplastics.

Filter Cin
[1/m3]

+-
[1/m3]

Cout
[1/m3]

+-
[1/m3]

MP Removal
[%]

25 µm 6800 550 650 70 >90

50 µm 6400 480 580 130 >90

500 µm 310 50 32 3 >90

The subsamples of filtered particles (1 cm2 on filters) were analyzed by Raman spec-
troscopy (X3) to determine the particle type. Most of the particles analyzed were above
25 µm and below 250 µm in size. Due to the significant presence of particle types other than
microplastic, i.e., particles of both inorganic and organic nature in the aqueous phase, not
all particles above 25 µm could be analyzed. The spectra of each measured particle were
compared with a self-created database of plastic polymers with the reference spectra for the
most common polymer types (PE, PP, PS, PVC, PMMA, PET, PTFE, PA, polyurethane (PU))
and categorized as microplastic (>75% correlation and/or clear agreement of characteristic
peaks) or ‘unknown’ (<75% correlation and no agreement of characteristic peaks).

The strong interferences in the Raman spectra caused by the other materials deposited
on filters were observed. The chemical, mechanical and UV effects on microplastic particles
were also observed compared to the self-created database of Raman spectra. The majority
of microplastic particles showed significant signs of degradation.
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The qualitative analysis of microplastic particles provided interesting data. In terms of
species, a total of six types of plastics were detected in the samples: PE (polyethylene), PP
(polypropylene), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PES
(polyester) and nylon. Figure 9 shows the dominance of PE particles in most of the collected
samples (a total of 102 particles captured). A total of 7 nylon particles, 4 PP particles, 3 PES
particles, 2 PET particles and 1 PBT particle were also represented. Examples of identified
microplastic particles are shown in Figure 10.
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At all sampling points, the largest number of microplastic particles was captured on
sieves with a mesh size of 50 and 25 µm. Detected microplastics occurred mainly in the
form of flakes (PE and PP) or fibers (PA, PES, PET and PBT), while most microparticles
were colorless or with a slight reddish or purple color.

The efficiency of microplastic removal by the newly designed sorption unit at the
laboratory and industrial scales was evaluated based on a statistical method. The statistical
results were analyzed and plotted in R-language using integrated statistical packages
(StatModel). The tentative microplastics concentration in water from the Moldau River and
laboratory samples were compared with a non-paired two-tailed t-test [35]. The particle
size distributions were fitted with a one-phase decay function and bin widths of 25–50–
500 µm. Further, the results from visual microplastic analysis and Raman spectroscopy
were compared with Spearman’s correlation at both the laboratory and industrial scales.
Table 5 summarizes the concentration of microplastics at the laboratory and pilot scales
regarding particle sizes of 25–750 µm.

Table 5. Summary of microplastic removal.

Measurement Cin
[1/m3]

+-
[1/m3]

Cout
[1/m3]

+-
[1/m3]

MP Removal
[%]

Laboratory 7800 600 570 90 >93

Industrial
scale 13,500 900 1100 150 >91

The efficiency of the developed sorption column achieved 93% at the laboratory
scale and 91% at the pilot scale. Nevertheless, it has to be mentioned that the removal of
microplastics of larger sizes (>500 µm) was approaching 99.5% at both scales.

4. Conclusions

The sorption system based on Bentonite Branany and zeolite clinoptilolite for mi-
croplastic removal from water was successfully designed and tested not only at the labo-
ratory scale but also at a designed pilot plant unit in the municipal WWTP in the Czech
Republic for 10 months. To increase the sorption efficiency of Bentonite Branany, a simple,
but very effective hydrodynamic treatment system was developed and successfully applied.
The design sorption column system at the laboratory scale was successfully tested on all
types of microplastic particles prepared by abrasion, with shapes and sizes that corre-
spond to real microplastics found in waters. To obtain results with high reproducibility,
a method for microplastic characterization based on Raman spectroscopy in combina-
tion with SEM/EDX was developed. An efficiency of 93% for microplastic removal was
achieved at the laboratory scale and 91% at the pilot scale without any decrease in efficiency
during the entire period in 2022.
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Abbreviations

SEM Scanning electron microscopy
PE Polyethylene
PET Polyethyleneglycol terephthalate
PP Polypropylene
PS Polystyrene
PC Polycarbonate
PU Polyurethane
PMMA Polymethyl methacrylate
PES Polyester
PBT Polybutylene terephthalate
EDX Energy-dispersive X-ray spectroscopy
FTIR Fourier transform infrared spectroscop(y)
ATR Attenuated total reflection
EG Electric grinder
SP Sand paper
GS Grinding stone
WWTP Wastewater treatment plant
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