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Abstract: Diclofenac sodium was extensively used for treating arthritis, osteoarthritis and skeletal
muscular injuries, which ultimately caused troubles for aquatic organisms as well as human beings.
In this study, homogeneous catalytic advanced oxidation processes, including Fe2+/persulfate,
Fe2+/peroxymonosulfate and Fe2+/H2O2, were used for the degradation of diclofenac sodium
in water, without using UV-C light. About 89, 82 and 54% DCF sodium was decomposed by
Fe2+/persulfate, Fe2+/peroxymonosulfate and Fe2+/H2O2, respectively, in 60 min. The degradation
of diclofenac sodium followed the pseudo first-order kinetics, in all cases. The degradation efficiency
of diclofenac sodium was significantly affected in the presence of various anions, such as NO3

−,
HCO3

− and SO4
2−. The mineralization studies revealed 62, 45 and 32% total carbon removal by

Fe2+/persulfate, Fe2+/peroxymonosulfate and Fe2+/H2O2, respectively, in 60 min. In addition,
the degradation byproducts of diclofenac sodium were determined by FTIR analysis. The results
revealed that the Fe2+/oxidant system, particularly Fe2+/persulfate, was a promising technology for
the elimination of toxic pharmaceuticals, such as diclofenac sodium, from the water environment.

Keywords: diclofenac sodium; homogeneous catalysis; advanced oxidation processes; water treatment

1. Introduction

Pharmaceuticals are medicinal compounds that are extensively used for treating hu-
man and veterinary diseases all over the world [1]. Pharmaceutical compounds are being
used for several other purposes, including cosmetics, food supplements, metabolites and
their intermediate products. In many cases, they may become toxic contaminants for differ-
ent species in the environment [2,3]. The remains of used pharmaceuticals are frequently
detected in sewage and wastewater systems [4]. Trace concentrations of pharmaceuticals
are reported to cause water pollution [5]. An increasing level of toxic organic compounds
seeps down into lakes, rivers and streams, and are hazardous to aquatic life and the
environment [6–8].

Antibiotics and antidepressant pharmaceutical compounds are not completely metab-
olized, and fractions of those compounds are excreted out from the bodies of humans and
animals through urine and feces, which are treated in sewage treatment plants (STPs) [9].
However, these pharmaceuticals are not fully removed in STPs by conventional physical
and biological treatment processes [10] and may require further chemical treatment before
being discharged into the environment.
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Diclofenac sodium (DCF sodium, i.e., C14H10Cl2NO2Na) is a commonly used anti-
inflammatory drug and electroactive painkiller, heavily utilized in human beings and
animals [11]. The chemical structure of DCF sodium is given in Figure 1. DCF sodium is
used as an analgesic, antirheumatic and antiarthritic drug [12]. It may relieve pain related
to neuralgia, cancer, post-traumatic, post-operative and soft tissue complaints, and is used
in the treatment of other inflammatory diseases [13]. The potassium and sodium salts of
DCF soluble in water were used for oral administration. DCF sodium is heavily produced,
and 490 tons of the drug are consumed annually all over the world [14,15]. Although the
acute toxicity of DCF sodium is low, i.e., EC50 value of 33.26 mg L−1 (estimated by EPI
Suite Model (EPA 2008)), its long-term effect on living organisms is highly adverse [16]. A
high consumption of DCF sodium can cause liver and kidney problems, increase uric acid
concentration in body and cause gout, which can lead to death [17]. The long-term exposure
of DCF sodium to the environment is toxic to the health of fish, causing renal lesions and
alteration of gills [18]. A DCF sodium concentration of 5 µg/L is suggested as the lowest
observed concentration in water, which may cause renal lesions to aquatic organisms [19].
DCF sodium was also detected in urban wastewater treatment plants (UWWTPs), in
concentrations ranging from 2–10 µg/L [20]. Owing to its heavy use, DCF sodium was
ubiquitously reported in various environmental compartments [21]. DCF sodium is quite
stable and non-biodegradable in the environment, and conventional WWTPs are inefficient
for the removal of DCF sodium from water [22]. Due to the vast application and high
toxicity, there is a dire need to develop effective methods for removing DCF sodium from
the water environment.
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posites [42], ZnO-WO3 [43], ZnO [44] and F-doped ZnO [45], were employed for the deg-
radation of DCF sodium in water. Fe2+ is a widely used homogeneous and heterogeneous 
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Advanced oxidation processes (AOPs), such as the Fenton process, photocatalysis,
radiolysis, and electrocatalysis, are promising technologies for the removal of recalcitrant
organic pollutants from water [23–26]. The AOPs are characterized by the generation of
highly oxidizing species, capable of oxidative degradation of organic compounds [27,28],
leading to mineralization into non-toxic or less toxic compounds and more biodegrad-
able compounds [29,30]. The hydroxyl radical (•OH) and sulfate radical (SO4

•−) based
AOPs are growing technologies for the degradation of organic pollutants in water, and
hydrogen peroxide (H2O2) as well as persulfate (PS) or peroxymonosulfate (PMS) are the
major precursors of these radicals. Several AOPs, including photocatalysis [31,32], sonol-
ysis [33], sonophotocatalysis [34], UV/PS/Fe2+, UV/PMS/Fe2+ or UV/H2O2/Fe2+ [15],
UV/H2O2 [35], UV/O3/PS [36] and gamma irradiation [37], are used for the degradation
of DCF sodium in water. Most of the reported AOPs are based on ultrasonic or UV light
for the activation of the oxidants [15,33–35]. Both homogeneous and heterogeneous photo-
catalyses were employed for the degradation of DCF sodium in water [38]. Many different
kinds of photocatalysts, including TiO2 [39,40], RuTe2/black TiO2 [41], Ag modified g-
C3N4 composites [42], ZnO-WO3 [43], ZnO [44] and F-doped ZnO [45], were employed
for the degradation of DCF sodium in water. Fe2+ is a widely used homogeneous and
heterogeneous catalyst/photocatalyst for the degradation of a large number of recalcitrant
organic pollutants in water [46,47]. Iron (Fe2+) is a comparatively environmentally friendly
element [48], and traces of iron can be found in surface and ground water resources [49].
The Fe2+ found in natural water resources may be involved in the activation of oxidants,
causing the oxidation (or degradation) of organic pollutants in water [49]. Thus, Fenton,
photo-Fenton and electro-Fenton processes were efficiently used for the removal of organic
pollutants, especially pharmaceutical compounds, from water [50–52]. Fe2+ is a promising
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alternative for the activation of oxidants such as H2O2, PS or PMS; however, studies on
the degradation of DCF sodium by the Fe2+/oxidant system are still very limited. One
study shows the presence of various inorganic ions, especially NO3

−, HCO3
− and SO4

2−,
in natural or ground water resources [53,54]. The efficiency of the AOPs may be affected by
the water quality parameters, including inorganic anions (i.e., NO3

−, HCO3
− and SO4

2−),
which is a subject of interest for practical applications purposes.

In this study, homogeneous catalytic processes, including Fe2+/PS, Fe2+/PMS and
Fe2+/H2O2 processes, without using UV light, are used for the degradation of DCF sodium
in water. The effect of process parameters, such as the initial concentrations of DCF
sodium, Fe2+ and oxidants (i.e., H2O2, PS and PMS), are investigated. The effect of various
inorganic anions, i.e., NO3

−, HCO3
− and SO4

2− on the degradation efficiency of DCF
sodium are investigated. The degradation byproducts of DCF sodium are studied with
FTIR analysis. Additionally, the mineralization of DCF sodium by Fe2+/H2O2, Fe2+/PS
and Fe2+/PMS systems is measured by the total carbon (TC) content removal. The results
reveal that the Fe2+/oxidant system, particularly Fe2+/PS, is a promising technology for
the elimination of toxic pharmaceuticals, such as DCF sodium, from the water environment.
Information concerning the degradation of an anti-inflammatory drug, DCF sodium, by
the Fe2+/oxidant system is very new, and the results of this study could be effectively used
to protect the health of humans, animals and the ecosystem.

2. Materials and Methods
2.1. Materials

DCF Sodium (≥98%) characterized by a water solubility of 237 mg L−1 at 25 ◦C,
potassium persulfate (PS) and peroxymonosulfate (PMS) (2KHSO5·KHSO4·K2SO4) were
purchased from Sigma-Aldrich. Hydrogen peroxide (H2O2, 50%, v/v), FeSO4·7H2O, CoCl2,
AlCl3, EDTA, CuSO4, (NH3)HCO3, Co(NO3)2, KCl, CH3COONa and CaCl2 were of an
analytical grade and were purchased from Fisher Scientific. They were used without any
further treatment for all experiments.

2.2. Degradation Experiment

The degradation of DCF sodium (C0 = 0.3 mM) was carried out in a bench scale reactor
with a volume of 50 mL, containing homogeneous solutions of Fe2+ (C0 = 0.5 mM) and PS,
PMS or H2O2 (C0 = 10 mM). The efficiency of the Fenton-like processes is considered high
at an acidic pH since Fe2+ might be precipitated as Fe3+ at a neutral or basic pH. Hence, the
degradation experiments were carried out at a pH of 4. The experiments were performed
in triplicate unless stated otherwise. The error bars in the figures denote the standard error
of the mean. All the solutions were prepared in Milli-Q water (Resistivity 18.2 MΩ cm).

2.3. Analytical Methods

The DCF sodium was analyzed by using a UV-Visible spectrophotometer (SPECORD
210 PLUS) at a wavelength of 276 nm. The FTIR (Alpha FTIR Spectrometer) analysis was
used for the detection of different functional groups of the degradation byproducts of DCF
sodium. The samples in the liquid state were used for the FTIR analysis. A drop of liquid
sample was used for scanning. The peaks obtained from the degradation byproducts were
also matched with the literature to identify the classes of compounds. For the analysis of
TC removal, a Shimadzu TOC-LCSH/CSN TOC analyzer was used.

3. Results and Discussion

3.1. Degradation of DCF Sodium by Fe2+/PS, Fe2+/PMS and Fe2+/H2O2 Systems

The degradation of DCF sodium in water by Fe2+/PS, Fe2+/PMS and Fe2+/H2O2
systems is shown in Figure 2. The results show that 89, 82 and 54% degradation of DCF
sodium was achieved by the Fe2+/PS, Fe2+/PMS and Fe2+/H2O2 systems, respectively,
in 60 min. Additionally, the degradation of DCF sodium by Fe2+, PS, PMS or H2O2 alone
was less than 5% during 60 min (results not shown in the Figure). The degradation of
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DCF sodium was attributed to the generation of a sulfate radical anion (SO4
•−), hydroxyl

radical (•OH) or both SO4
•− and •OH, by the Fe2+/PS, Fe2+/H2O2 or Fe2+/PMS systems,

respectively, generated via reactions (1)-(3) [55,56]. The degradation of DCF sodium in
water by SO4

•− and/or •OH is reported in the literature elsewhere. Jabbari et al. reported
an 89% degradation of diclofenac in water by the O3/UV/S2O8 system after 30 min,
attributed to the reaction of SO4

•− [36]. Yu et al. reported a 60% degradation of diclofenac
by gamma irradiation at a 20 k Gy radiation dose, attributed to the reaction of •OH [37].
Pourzamani et al. found 78% degradation of DCF in 90 min via •OH oxidation using
a graphite electrochemical reaction [57]. In our previous study, a 98% degradation of
diclofenac sodium was achieved by UV/PMS/Fe2+ in 60 min [15]. Tian et al. [58] found
the mineralization efficiency of the antibiotics by Fe2+/PDS was higher than Fe2+/H2O2,
even though the highest mineralization efficiency was shown by the Fe2+/PMS system.
Wang and Wang [59] reported the degradation efficiency of sulfamethoxazole by Fe2+/PS
was similar to the Fe2+/H2O2 system. On the other hand, Song et al. [55] found the
degradation efficiency of the flame retardant triphenyl phosphate by Fe2+/H2O2 was
higher than the Fe2+/PS system, attributed to the higher radical intensity of Fe2+/H2O2
compared to Fe2+/PS. In another study by Wang and Wang [60], it was also shown that
the degradation efficiency of trimethoprim by the Fenton process was higher than the
Fe2+/persulfate process. However, Wang and Wang [60] found that in the case of actual
wastewater samples, the removal efficiency of trimethoprim by the Fenton process was
lower than the Fe2+/persulfate system.

Fe2+ + H2O2 → Fe3+ + •OH + OH− (1)

Fe2+ + S2O8
2− → Fe3+ + SO4

•− + SO4
2− (2)

Fe2+ + HSO5
− → Fe3+ + SO4

•− + OH− (3)
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Figure 2. Degradation efficiency of DCF sodium by Fe2+/H2O2, Fe2+/PS and Fe2+/PMS systems in
60 min. Reaction conditions: [DCF sodium]0 = 0.3 mM, [Fe2+]0 = 0.5 mM, [H2O2]0 = [PS]0 = [PMS]0 =
10 mM, pH = 4.

3.2. The effect of the Initial Concentration of DCF Sodium

The degradation of DCF sodium by Fe2+/oxidant processes, including Fe2+/PS,
Fe2+/PMS and Fe2+/H2O2 systems, was carried out using different initial concentrations
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of DCF sodium, i.e., 0.1, 0.5 and 1.0 mM, and the results are shown in Figure 3. The
degradation efficiency of DCF sodium by Fe2+/PS was 94, 89 and 80% when the initial con-
centration of DCF sodium was 0.1, 0.5 and 1.0 mM, respectively. Similarly, the degradation
efficiency of the Fe2+/PMS system was 90, 82 and 74% when the initial concentration of
DCF sodium was 0.1, 0.5 and 1.0 mM, respectively. Meanwhile, the degradation efficiency
of the Fe2+/H2O2 system was 65, 54 and 40% at 0.1, 0.5 and 1.0 mM initial concentrations
of DCF sodium, respectively. The results show that the degradation efficiency of DCF
sodium by the Fe2+/oxidant processes was decreased with the increasing concentrations of
DCF sodium. The increased competition between the reaction byproducts and the parent
compound for the reactive species (i.e., SO4

•− and •OH) could be mainly responsible for
the reduced degradation efficiency at high initial concentrations of the pollutant [61]. This
result was consistent with our previous paper, indicating the degradation efficiency of lin-
dane by photo-Fenton-like processes decreased with the increase in the initial concentration
of the pollutant [56]. Furthermore, the results showed that the plots of ln(C/C0) vs. time
were straight lines (i.e., R2 > 0.95) in all cases, indicative of the pseudo-first-order kinetics with
respect to the concentration of the pollutant, i.e., DCF sodium (Figure 4). Zhang et al. [62]
showed the degradation of Norfloxacin in water by nanoscale zero-valent iron-activated
persulfate (nZVI/PS) process followed the pseudo-first-order kinetics consistent with our
results.
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the Fe2+/H2O2, Fe2+/PS and Fe2+/PMS systems. Reaction conditions: [DCF sodium]0 = 0.1–1.0 mM,
[Fe2+]0 = 0.5 mM, [H2O2]0 = [PS]0 = [PMS]0 = 10 mM, pH = 4.
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PMS/Fe2+ reactions.

3.3. The Effect of Concentrations of H2O2, PS and PMS

Different initial concentrations of H2O2—i.e., 5, 10 and 20 mM—were used to study
its effect on the degradation of DCF sodium by the Fe2+/H2O2 system, and the results are
shown in Figure 5. From Figure 5, it is clear that when the concentration of H2O2 was
increased from 5 to 20 mM, the degradation of DCF sodium was also increased from 47 to
57% after 60 min. This result was attributed to the increased concentration of •OH with
the increasing concentration of H2O2. The degradation efficiency of DCF sodium by the
Fe2+/PS system increased from 76 to 96% in 60 min when the concentration of PS was
increased from 5 to 20 mM (Figure 5). This result is explained by the high concentration of
SO4

•− produced at the increased concentration of PS.
By increasing the concentrations of PMS from 5 to 20 mM, the degradation efficiency

of DCF sodium by the Fe2+/PMS system was increased from 74 to 88% in 60 min, indicating
the degradation efficiency of DCF sodium increased after increasing the concentration
of PMS. These results were the same as explained in the literature elsewhere [63]. Using
the above results, 10 mM was chosen as the optimum oxidant concentration during the
degradation of DCF sodium by Fe2+/oxidant systems.

3.4. The Effect of Concentrations of Fe2+

The effect of the initial concentration of Fe2+ on the degradation efficiency of DCF
sodium by the Fe2+/H2O2 system is shown in Figure 6. The results show that the degrada-
tion efficiency of DCF sodium was enhanced from 42 to 65% in 60 min when the concentra-
tion of Fe2+ was increased from 0.1 to 1.0 mM. The higher degradation efficiency of DCF
sodium at the increased concentration of Fe2+ was attributed to an increased activation of
H2O2, followed by the high concentration of •OH under such conditions.
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Figure 5. Effect of initial concentration of oxidants on the degradation efficiency of DCF sodium 
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3.4. The Effect of Concentrations of Fe2+ 
The effect of the initial concentration of Fe2+ on the degradation efficiency of DCF 

sodium by the Fe2+/H2O2 system is shown in Figure 6. The results show that the degrada-
tion efficiency of DCF sodium was enhanced from 42 to 65% in 60 min when the concen-
tration of Fe2+ was increased from 0.1 to 1.0 mM. The higher degradation efficiency of DCF 
sodium at the increased concentration of Fe2+ was attributed to an increased activation of 
H2O2, followed by the high concentration of •OH under such conditions. 

When the concentration of Fe2+ was increased from 0.1 to 1.0 mM using the Fe2+/PMS 
system, the degradation efficiency of DCF sodium was enhanced from 70 to 88% in 60 
min, as shown in Figure 6, attributed to the high concentration of SO4•− and •OH. The 
degradation efficiency of DCF sodium by Fe2+/PS was enhanced from 75 to 93% when the 
concentration of Fe2+ was increased from 0.1 to 1.0 mM, attributed to the high concentra-
tion of SO4•−, as well (Figure 6). 

Figure 5. Effect of initial concentration of oxidants on the degradation efficiency of DCF sodium by
the Fe2+/H2O2, Fe2+/PS and Fe2+/PMS systems. Reaction conditions: [DCF sodium]0 = 0.5 mM,
[Fe2+]0 = 0.5 mM, [H2O2]0 = [PS]0 = [PMS]0 = 5–20 mM, pH = 4.

Water 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

0.0 0.2 0.4 0.6 0.8 1.0
30

40

50

60

70

80

90

100
 

 

%
 D

eg
ra

da
tio

n

Conc. of Fe2+ (mM)

 Fe2+/PS
 Fe2+/PMS
 Fe2+/H2O2

 
Figure 6. Effect of the initial concentration of Fe2+ on the degradation of DCF sodium by the 
Fe2+/H2O2, Fe2+/PS and Fe2+/PMS systems. Reaction conditions: [DCF sodium]0 = 0.5 mM, [Fe2+]0 = 0.1–
1.0 mM, [H2O2]0 = [PS]0 = [PMS]0 = 10 mM, pH = 4. 

3.5. The Effect of Inorganic Anions  
Natural waters may contain different inorganic ions, which can affect the degrada-

tion efficiency of the pollutants [64]. The degradation efficiency of DCF sodium by the 
Fe2+/oxidants system was carried out in the presence of some of the most commonly found 
inorganic anions in water, i.e., NO31−, HCO31− and SO42−, and the results are shown in Fig-
ure 7. It is clear from the Figure that the degradation efficiency of DCF sodium by the 
Fe2+/H2O2 system was 50, 52 and 32% in the presence of 10 mM of HCO3−, NO3− and SO42−, 
respectively. Similarly, the degradation efficiency of DCF sodium by the Fe2+/PS or 
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that the presence of inorganic ions has a large effect on the efficiency of the Fe2+/H2O2 
system compared to the Fe2+/PS or Fe2+/PMS systems. A possible reason could be the rela-
tively high reactivity of the inorganic ions towards •OH rather than SO4•− generated by 
Fe2+/H2O2 and Fe2+/PS systems, respectively [64]. Devi et al. [65] found the presence of 
NO31−, HCO31− and SO42− has a negative effect on the degradation efficiency of di azo dye 
Bismarck Brown using Fe2+/H2O2/UV and Fe2+/PS/UV systems, attributed to scavenging of 
•OH and SO4•− by inorganic anions, according to Equations (4)–(7) [66]. Song et al. [55] 
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Figure 6. Effect of the initial concentration of Fe2+ on the degradation of DCF sodium by the
Fe2+/H2O2, Fe2+/PS and Fe2+/PMS systems. Reaction conditions: [DCF sodium]0 = 0.5 mM,
[Fe2+]0 = 0.1–1.0 mM, [H2O2]0 = [PS]0 = [PMS]0 = 10 mM, pH = 4.

When the concentration of Fe2+ was increased from 0.1 to 1.0 mM using the Fe2+/PMS
system, the degradation efficiency of DCF sodium was enhanced from 70 to 88% in 60 min,
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as shown in Figure 6, attributed to the high concentration of SO4
•− and •OH. The degra-

dation efficiency of DCF sodium by Fe2+/PS was enhanced from 75 to 93% when the
concentration of Fe2+ was increased from 0.1 to 1.0 mM, attributed to the high concentra-
tion of SO4

•−, as well (Figure 6).

3.5. The Effect of Inorganic Anions

Natural waters may contain different inorganic ions, which can affect the degrada-
tion efficiency of the pollutants [64]. The degradation efficiency of DCF sodium by the
Fe2+/oxidants system was carried out in the presence of some of the most commonly found
inorganic anions in water, i.e., NO3

1−, HCO3
1− and SO4

2−, and the results are shown in
Figure 7. It is clear from the Figure that the degradation efficiency of DCF sodium by the
Fe2+/H2O2 system was 50, 52 and 32% in the presence of 10 mM of HCO3

−, NO3
− and

SO4
2−, respectively. Similarly, the degradation efficiency of DCF sodium by the Fe2+/PS or

Fe2+/PMS systems was 83, 76 and 50% or 80, 75 and 52%, respectively. The results show
that the presence of inorganic ions has a large effect on the efficiency of the Fe2+/H2O2
system compared to the Fe2+/PS or Fe2+/PMS systems. A possible reason could be the
relatively high reactivity of the inorganic ions towards •OH rather than SO4

•− generated
by Fe2+/H2O2 and Fe2+/PS systems, respectively [64]. Devi et al. [65] found the presence of
NO3

1−, HCO3
1− and SO4

2− has a negative effect on the degradation efficiency of di azo dye
Bismarck Brown using Fe2+/H2O2/UV and Fe2+/PS/UV systems, attributed to scavenging
of •OH and SO4

•− by inorganic anions, according to Equations (4)–(7) [66]. Song et al. [55]
found the degradation efficiency of the flame retardant triphenyl phosphate by Fe2+/H2O2
and Fe2+/PS was not obviously influenced by NO3

−, which was significantly inhibited by
HCO3

−, and the inhibition was inversely related to HCO3
− concentrations.

SO4
2− + •OH→ SO4

•− + OH− (4)

NO3
− + •OH→ NO3

• + OH− (5)

HCO3
− + •OH→ HCO3

•− + OH− (6)

HCO3
− + SO4

•− → CO3
•− + SO4

2− + H+ (7)
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Figure 7. The effect of inorganic anions on the degradation efficiency of DCF sodium by using
the Fe2+/H2O2, Fe2+/PS and Fe2+/PMS systems. Reaction conditions: [Anions]0 = 10 mM, [DCF
sodium]0 = 0.5 mM, [Fe2+]0 = 0.5 mM, [H2O2]0 = [PS]0 = [PMS]0 = 10 mM, pH = 4.
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3.6. FTIR Studies of DCF SODIUM Degradation

The functional groups of the degradation byproducts of DCF sodium by the Fe2+/PS,
Fe2+/PMS and Fe2+/H2O2 systems were identified by using FTIR analysis, and the results
are shown in Tables 1–3, respectively. The sharp peaks of the degradation byproducts
of DCF sodium were obtained at different wavenumbers. The sharp peaks at different
wavenumbers revealed that DCF sodium was degraded into smaller organic and inorganic
compounds, i.e., alkene, alkynes, amines, alcohols, nitrile and carbon dioxide, before
the end product. The results shown in Tables 1–3 also suggested that the degradation
byproducts of DCF sodium produced during the different AOPs, i.e., Fe2+/PS, Fe2+/PMS
and Fe2+/H2O2 systems, mostly belonged to the same group, although the number of
compounds generated by Fe2+/PMS was slightly larger than the other two systems. The
production of both types of the reactive species (i.e., SO4

•− as well as •OH) by the Fe2+/PMS
system might explain the generation of a large number of reaction byproducts.

Table 1. FTIR analysis of the functional groups of degraded byproducts of DCF sodium using the
Fe2+/PS process.

Sr. No Transmittance at
Wavenumber (cm−1) Group Species Vibration Mode Compound

Class

1 724, 696, 673 C=C Bending Alkene

2 843, 787, 762 C-Cl Stretching Halo compound

3 1662, 1643, 1626 C=C Stretching Alkene

4 2112, 2034, 2000 C=C=N Stretching Ketenimine

5 2260, 2196, 2105 C≡C Stretching Alkyne

6 2275, 2269, 2263, 2250 O=C=O Stretching Carbon dioxide

7 3200, 2890, 2850, 2700 O-H Stretching Alcohol

Table 2. FTIR analysis of the functional groups of degraded byproducts of DCF sodium by the
Fe2+/PMS process.

Sr. No Transmittance at
Wavenumber (cm−1) Group Species Vibration Mode Compound

Class

1 724, 696, 673 C=C Bending Alkene

2 843, 787, 762 C-Cl Stretching Halo compound

3 1662, 1643, 1626 C=C Stretching Alkene

4 2112, 2034, 2000 C=C=N Stretching Ketenimine

5 2260, 2196, 2105 C≡C Stretching Alkyne

6 2230, 2243, 2256 C≡N Stretching Nitrile

7 2275, 2269, 2263, 2250 O=C=O Stretching Carbon dioxide

8 3200, 2890, 2850, 2700 O-H Stretching Alcohol

9 2987, 2913, 2845 N-H Stretching Amine
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Table 3. FTIR analysis of the functional groups of degraded byproducts of DCF sodium using the
Fe2+/H2O2 process.

Sr. No Transmittance at
Wavenumber (cm−1) Group Species Vibration Mode Compound

Class

1 730, 710, 688, 665 C=C Bending Alkene

2 810, 774, 734 C-Cl Stretching Halo compound

3 1662, 1643, 1626 C=C Stretching Alkene

4 2112, 2034, 2000 C=C=N Stretching Ketenimine

5 2275, 2269, 2263, 2250 C=C=O Stretching Isothiocyanate

6 3200, 2890, 2850, 2700 O-H Stretching Alcohol

7 3015, 3085, 2923 N-H Stretching Amine

3.7. Mineralization Studies

The mineralization of DCF sodium by the Fe2/PS, Fe2+/PMS and Fe2+/H2O2 processes
was studied using total carbon (TC) removal, and the results are shown in Table 4. The
results show that the concentration of TC decreased from 0.85 to 0.33 mg/L (i.e., 61%
TC removal) in 60 min by using the Fe2+/PS process, while the concentration of TC was
reduced from 0.85 to 0.47 mg/L (i.e., 46% TC removal) in 60 min via the Fe2+/PMS system.
On the other hand, Fe2+/H2O2 showed the lowest TC removal efficiency, represented by
33% TC removal (i.e., TC reduction from 0.85 to 0.57 mg/L) in 60 min. The results showed
that the highest TC removal efficiency was exhibited by the Fe2+/PS system, consistent
with the degradation efficiency of Diclofenac (DCF) sodium.

Table 4. TC removal for DCF sodium by the Fe2+/PS, Fe2+/PMS and Fe2+/H2O2 processes.

Reaction Time (min)
TC (mg/L) Removal from DCF Sodium

Fe2+/PS Fe2+/PMS Fe2+/H2O

0 0.85 0.85 0.85

10 0.73 0.78 0.78

20 0.64 0.72 0.71

30 0.52 0.67 0.66

40 0.43 0.62 0.63

50 0.37 0.54 0.59

60 0.33 0.47 0.57

3.8. Implications and Limitations

The degradation of DCF sodium by the Fe2/PS, Fe2+/PMS and Fe2+/H2O2 processes
has several implications as well as limitations in practical applications. Iron (i.e., Fe2+)
is a comparatively environmentally friendly element, and traces of iron could be found
in the surface and ground water resources that may take part in catalyzing the oxidation
degradation of the water pollutants, such as DCF sodium. However, the high concentra-
tions of Fe2+ discharged into the environment from the Fenton-like processes may cause
additional pollution as well. The synergistic effect of the sunlight on the efficiency of the
Fe2/PS, Fe2+/PMS and Fe2+/H2O2 processes for the degradation of DCF sodium may be
investigated in future studies for sustainability purposes.

4. Conclusions

Various homogeneous catalytic AOPs, i.e., Fe2+/PS, Fe2+/PMS and Fe2+/H2O2 sys-
tems, were applied for the degradation of DCF sodium in an aqueous solution. The highest
degradation efficiency was shown by the Fe2+/PS process, represented by 89% DCF sodium
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removal in 60 min. The degradation efficiency of DCF sodium was affected by the presence
of different anionic species, i.e., NO3

−, HCO3
− and SO4

2−. The kinetics study showed that
the degradation of DCF sodium by the studied AOPs followed pseudo-first-order kinetics.
The studied AOPs resulted in significant removal of total carbon (TC) as well, represented
by 61, 46 and 33% TC removal by the Fe2+/PS, Fe2+/PMS and Fe2+/H2O2 systems, respec-
tively, during 60 min. The FTIR analysis revealed that prior to mineralization, the DCF
sodium was transformed into less toxic compounds, such as Alkene, alkyne, and amine, by
the Fe2+/PS, Fe2+/PMS and Fe2+/H2O2 systems. It was concluded that the Fe2+/oxidant
homogenous catalytic system, particularly Fe2+/PS, was the most promising method for
the elimination of toxic pharmaceuticals, i.e., DCF sodium, from the water environment.
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