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Abstract: In the face of ongoing anthropogenic climate change, river water quality assessment
has become increasingly important for maintaining ecological balance and supporting local and
downstream livelihoods. This research aims to create a new water quality index (WQI) to assess water
quality in the Andean highlands (>2000 m.a.s.l.) for climate change adaptation and mitigation. We
examined water physicochemical and bacteriological parameters and the benthic macroinvertebrate
(BM) community in three micro-watersheds in Achupallas, Ecuador, to achieve our goal. We analyzed
water quality at 41 sampling points, and samples (replicates) were taken for nine consecutive months.
In addition, we evaluated the accuracy of the WQI developed by the U.S. National Sanitation
Foundation (NSF) in 1970 (WQINSF). The BM community in the Andes highlands was used to develop
and calibrate a new WQI, the Andean Biotic Index* (ABI*). We calibrated the ABI* taxon score in the
area where the WQINSF made the most accurate water quality measurements. Our results show that
the sigma value framework quantifies WQINSF accuracy. Therefore, a higher sigma value means we
measured water quality more accurately. There was no correlation between the WQINSF and the
Andean Biotic Index (ABI). The ABI* considers the presence of BMs and their sensitivity to pollution
to measure water quality. The results also show a strong statistical link between the ABI* and the
WQINSF. The ABI* can aid mountain communities in adjusting to climate change. Mountain dwellers
can monitor a stream’s water quality by observing the BM communities. However, the ABI* is not a
substitute for the WQINSF or biological studies.

Keywords: water quality; biotic index; water quality index accuracy; WQINSF; ABI; ABI*; Andean
highlands; climate change adaptation; climate change mitigation

1. Introduction

As the climate crisis intensifies and the human population expands, water quality
degradation in aquatic ecosystems has become a global concern. Unfortunately, natural pro-
cesses, afforestation, deforestation, agriculture, and overdevelopment have degraded river
water quality globally [1]. Therefore, assessing river water quality has become increasingly
important in maintaining ecological balance and supporting local and downstream livelihoods
in the face of ongoing anthropogenic climate change [2]. Consequently, routine monitoring
and protection of river water quality have become necessary [3]. However, monitoring
river water quality is challenging [4]. The foundations of water valuation are accurate
water measurement, modeling, and accounting [5]. A scientific method for judging river
water quality can give a fair assessment of the water environment’s quality, assure the
sustainable use of water resources, and serve as a basis for environmental management
and decision-making [6].

On the other hand, with a broader recognition of the interdependency of societal well-
being and ecosystem health, it is imperative to address people’s critical role in protecting,
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conserving, and restoring nature and ecosystems, delivering benefits for climate adaptation
and mitigation while ensuring social and environmental safeguards [7]. Therefore, scientific
research must equip locals (mountain dwellers) with the means to protect and monitor the
water quality of rivers. Integrating the WQI, based on physicochemical parameters, with
a biotic index (BI) may be necessary, to involve locals in protecting and monitoring the
river’s water quality and for mountain communities’ climate adaptation and mitigation.
Communities could independently conduct a reliable assessment of water quality by
becoming familiar with the community of BMs in the Andes highlands.

A WQI converts multiple environmental parameter (water quality indicators) data
into a single number using mathematical algorithms to assess water quality and ecosystem
health. WQI models typically include indicator selection, sub-indexing, weighting, and
index aggregation [8]. On a global scale, many WQI models exist, but no single WQI is
universally accepted [1]. The WQI models are not generic because they are typically based
on site-specific parameters for a region. However, most of these indices are based on the
WQINSF, which is used worldwide [3]. The WQINSF model has evolved in numerous ways
to adapt it to a particular region or optimize the set of parameters to be measured for cost
reduction. It needs analytical facilities and many measurements. Noori et al. [9] evaluated
the WQINSF’s application. They found that the WQINSF results changed significantly when
orthophosphate and total suspended solids were used instead of total phosphorous and
total solids, respectively. However, using total dissolved solids instead of total solids and
FC-MPN (fecal coliform based on the maximum probable number) rather than FC-CPU
(fecal coliform based on the colony forming unit) resulted in fewer changes. Uddin et al. [10]
reported a comprehensive review of existing WQI models and their evolution and a critical
discussion of model structures, applications, sources of model uncertainty, and eclipse prob-
lems. Uddin et al. [10] found that over 35 WQI models have been introduced to evaluate
surface water quality worldwide. Furthermore, 82% of WQI models have been used to assess
river water quality. Additionally, 50% of reviewed studies used the Canadian Council of
Ministers of the Environment (CCME) and NSF models.

Current WQI model research focuses on mitigating the uncertainty and eclipse effect,
reducing analytical costs, and improving analysis efficiency [1,11,12]. Therefore, principal
component analysis (PCA), factor analysis (FA), canonical correlation analysis (CCA), step-
wise multiple linear regression (SMLR), and machine learning algorithm extreme gradient
boosting (XGBoost), among others, are used instead of the Delphi method traditionally
used in WQI models, to reduce the WQI models uncertainty, indicators (parameters) and
bias [1,4,8,13,14]. Similarly, a few studies have revealed that the equal weighting approach
is more effective than other techniques in reducing the uncertainty of WQI models [4,8].
Unfortunately, the upgraded WQI models are still out of reach for mountain communities.

Recent techniques for assessing and categorizing water quality include remote sensing
and Monte Carlo simulation (MCS). Zhang et al. [15] reported a short review of studies
concerning remote sensing to categorize water quality. They concluded that these studies
have developed to an acceptable extent and can provide significant and synoptic views
of various types of water. However, Zhang et al. [15] reported that using satellite images to
monitor water quality change in situ and in real time is impossible. Despite this, Kulk et al. [16]
used Sentinel-2 and Landsat-8 multispectral remote sensing and in situ observations to
analyze changes in five WQIs.

On the other hand, Jin et al. [17] used a WQI model and MCS to evaluate the water
quality of the East Tioxi River in China. Jin et al. [17] determined, by performing 10,000 MCS
on primary river water quality data, the mean and standard deviation of all possible
pollution indicators and probabilities. However, despite the emphasis on improving water
quality assessment and categorization, monitoring tools like those shown above for water
quality are unavailable to locals.

Integrating a WQI model based on a few physicochemical parameters with a BI is a
promising method for mountain communities to protect and monitor river water quality. A BI
makes it easier to detect disturbances at a site by looking at how one or more components of
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the biota are affected by the disturbance. Bacteria, protozoans, diatoms, algae, macrophytes,
macroinvertebrates, and fish are used to assess aquatic ecosystems’ water quality and
ecological integrity. BMs is the most widely used group, especially for lotic systems and
lentic habitats. BMs have life cycles long enough to detect disturbance-induced temporal
changes but short enough to observe recolonization patterns. Qualitative sampling makes
them easy and cheap to collect, making them ideal for biomonitoring water quality. Both
lotic and lentic habitats have abundant, nonmobile BMs [18]. BMs are currently considered
bioindicators of water quality due to their varied sensitivity to different types of pollution.
BM community distribution and structure is an essential ecological tool for defining spatial
and temporal changes in water bodies [19]. For the Andean highlands (>2000 m.a.s.l.),
Rios-Touma et al. [20] proposed the ABI. They included several BM families found in the
Andean highlands.

Sparse research has been conducted on the relationship between the Index of Biotic
Integrity (IBI) and WQI model assessment techniques. However, since WQIs and IBIs reflect
the water quality conditions of bodies of water at limited temporal scales, it is essential to
evaluate their performance. Wu et al. [21] compared the performance of a phytoplankton-
based index of biotic integrity (P-IBI) to a WQI based on physicochemical parameters.
Wu et al. [21] reported that the water quality was generally worse when using the P-
IBI. Atazadeh et al. [22] found that the trophic diatom index correlates significantly well
with WQIs.

However, the WQINSF is a stressor-focused approach based on physicochemical pa-
rameters. The ABI, in contrast, is a WQI built on the BM response to any event that modifies
the physical environment, substrate accessibility, or water quality. The ABI index reflects
not only the current water quality but also the overall ecosystem health of a water body and
the cumulative effects of factors impacting that habitat or ecosystem over time. Therefore,
water quality management can be accomplished through stressor- and response-oriented
approaches. The WQINSF is widely used but requires many measurements, making it costly.
In contrast, the ABI costs less [18].

This research examines WQINSF and ABI integration. The objective was to create a
new ABI which works as a tool that communities might use to assess water quality in the
Andean highlands for climate change adaptation and mitigation. To achieve our goal, first,
we examined the accuracy with which the WQINSF categorizes the water quality of three
micro-watersheds within the Ecuadorian parish of Achupallas. Second, we selected the
region where the WQINSF made the most accurate water quality categorization. Finally, we
used this region to create and calibrate a new ABI* that locals can use.

2. Materials and Methods
2.1. The Study Area

The study took place in Ecuador’s Achupallas parish. The Achupallas parish has an
area of 972 km2, located within the southwestern zone of Sangay National Park, Ecuador.
We monitored three micro-watersheds (Ozogoche, Juval, and Zula) to assess the water
quality of their major rivers and tributaries (Figure 1).
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Figure 1. Study area and location of sampling points. The red circle shows a subregion of the Juval
micro-watershed, labeled Juval–Hight.

The Ozogoche micro-watershed is located in the Pastaza river basin. The Juval micro-
watershed is part of the Santiago basin. The Pastaza and Santiago rivers flow eastward to
the Amazon river and the Atlantic Ocean. Finally, the Zula micro-watershed is situated
in the Guayas river basin, which flows westward to the Pacific Ocean. The Juval micro-
watershed study area was divided into two sections based on altitude: Juval-Hight and
Juval. Table 1 displays the attributes of interest in each study area.

Table 1. Attributes of interest in the three studied micro-watersheds.

Ozogoche Juval Zula

UTM coordinates South Zone
17, Datum WGS84

X: 766830
Y: 9751550

X: 765232
Y: 9732190

X: 754418
Y: 9747920

Area, ha 12088 59271 25330
Altitude, m.a.s.l. 3760–4600 2000–3765 2690–4420
Precipitation, mm/year 1000–1200 1500–2500 600–1200
Population, people 6190 854 752

Ecosystem Herbaceos páramo

Ceja Andina Andean Evergreen
Forest.
Montane Andean Evergreen Forest.
Herbaceous páramo

Herbaceous páramo

Productive activity Agriculture, livestock,
and fish farming Agriculture and grazing Agriculture, grazing, and

forest plantations

2.2. Experimental Design

Forty-one monitoring points were established based on their accessibility, height,
vegetation type, and presence of settlements (Figure 1). We collected nine replicates at each
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sampling location over a year, spanning the dry and wet seasons. For the WQINSF calculation,
samples were taken in 1 L plastic bottles rinsed with water from the sampling site [23]. The
bottles were then filled and sealed to keep air out. For ABI calculation, the technician in
charge of sampling was placed on the side of the net to avoid impeding the water flow and
allowing silt to enter the net. Then, within a 20-m radius of the established monitoring
point, different substrata, including sand, gravel, boulders, and vegetation, were sampled.
The duration of monitoring at each location was 5 min, proportional to the sampled area
of each substrate. The BM specimens were preserved in a 5% formalin solution in 1 L
wide-mouth plastic bottles used to transport the samples to the laboratory after being
separated from stones and leaf litter.

The physicochemical data gathered in situ were pH, temperature, and dissolved
oxygen. In addition, in the lab, APHA [24] methodology was used to measure DO, pH,
turbidity, total dissolved solids, phosphates, nitrates, BOD5, total coliforms, and fecal col-
iforms.

2.3. Determination of Water Quality

Three indicators were employed to assess the water quality: The WQINSF [25], the
Andean Biotic Index (ABI) [20], and the proposed new indicator of water quality (ABI*).

2.3.1. Water Quality Index—National Sanitation Foundation

Brown created the WQINSF in 1965 with NSF sponsorship as a modified version of the
Horton model [10]. To develop the WQINSF, the NSF selected 142 water quality experts who
performed the parameter selection and weighting [26]. As a result, nine crucial biological,
chemical, and physical indicators of water quality were found. Then, based on its potential
as an indicator of water quality, each marker was assigned a quality factor Qi and relative
relevance weight wi (Table 2).

Table 2. The WQINSF parameters and their relative weight values [10,26].

Parameters Unit Weights, wi

Dissolved oxygen (DO) % Saturation (DO%) 0.17
Fecal coliform density (FC) CFU/100 mL 0.15
pH u.a. 0.12
Biochemical oxygen demand at 5 days
(BOD5) mg L−1 0.10

Nitrate—nitrogen
(
NO−3 −N

)
mg L−1 (N) 0.10

Total Phosphate mg L−1 (P) 0.10
Temperature (T) ◦C 0.10
Turbidity NTU 0.08
Total solids (TS) mg L−1 0.08

∑
i

wi → 1

Expert opinion was graded on a scale that quantifies water quality at the sampling
time, ranging from 0 to 100 (Equation (1)).

WQINSF =
9

∑
i=1

wiQi (1)

Initially, figures with characteristic plots were provided to graphically obtain each
quality marker’s numerical value Qi as a function of the indicator’s measured value [27,28].
However, these characteristic plots have been digitalized and adjusted to mathematical func-
tions. As a result, websites provide the numerical value of each quality indicator (https://
www.knowyourh2o.com/outdoor-3/water-quality-index-calculator-for-surface-water, ac-
cessed on 10 January 2023). Considering the practical merits of the WQINSF and its scientific
foundations, the WQINSF has become a popular tool for assessing water quality worldwide,

https://www.knowyourh2o.com/outdoor-3/water-quality-index-calculator-for-surface-water
https://www.knowyourh2o.com/outdoor-3/water-quality-index-calculator-for-surface-water
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particularly in rivers. The classification of water quality according to the numerical value
of the WQINSF is presented in Table 3. [28]. The water quality classification helps to identify
river water requiring immediate attention based on a prioritization plan.

Table 3. Water quality classification regarding the WQINSF values [10,28,29].

Classes Water quality Range Comment

C5 Excellent 90 < WQINSF ≤ 100 Clear water is ideal for fish and wildlife without contact with
domestic waste.

C4 Good 70 < WQINSF ≤ 90 Significant water quality changes begin due to environmental
degradation and contact with domestic and agricultural wastes.

C3 Medium 50 < WQINSF ≤ 70

Drastic changes in water quality begin to occur. Some natural
functions may be affected. Some of the biotic communities may
begin to shift. Structural changes in the benthic
macroinvertebrate community are likely to occur.

C2 Bad 25 < WQINSF ≤ 50
Dangerous changes can occur in the ecosystem. Groups
resistant to contamination colonize the ecosystem. May cause
the death of vertebrates and other consumers.

C1 Very Bad 0 ≤WQINSF ≤ 25
Unacceptable levels of contamination. Represents a threat in
whatever form it is consumed. It creates a heterotrophic
community in water.

2.3.2. Andean Biotic Index (ABI)

The ABI uses the bioassessment of the ecological condition of waters and is a region-
specific index. It is based on the BMs’ natural sensitivity and response to eventual or perma-
nent disturbances of their natural habitats in the Andean highlands. The ABI is an adaptation
of the Biological Monitoring Working Party (BMWP) to the Andean highlands made by
Ríos-Touma et al. [20]. Ríos-Touma et al. [20] quantified pollutant sensitivity by assigning
an ABI score to each taxon reported in the Andes highlands (Table 4).

Table 4. Family and Order of Benthic Macroinvertebrates considered in the ABI; also listed are the
quantified values of the pollutant sensitivity (ABI score) [20]. Between parenthesis are the ABI* scores.

Order Family ABI Score
(ABI* Score) Order Family ABI Score

(ABI* Score)

Turbellaria 5 Trichoptera Helicopsychidae 10
Hirudinea 3 Calamoceratidae 10 (8)
Oligochaeta 1 Odontoceridae 10 (8)
Gastropoda Ancylidae 6 Leptoceridae 8

Physidae 3 Polycentropodidae 8
Hyrobiidae 3 Hydroptilidae 8
Limnaedae 3 Xiphocentronidae 7
Planorbidae 3 Hydrobiosidae 5

Ostracoda 3 Glossosomatidae 7
Ephemeroptera Beatidae 4 Hydropsychidae 5

Leptophlebiidae 10 (8) Anomalopsychidae 10
Leptohyphidae 7 Anomalopsychidae 8
Oligoneuridae 10 Limnephilidae 7

Odonata Aeshnidae 6 Lepidoptera Pyralidae 4
Gomphidae 8 Hydrophilidae 3
Libellulidae 6 Hydraenidae 5
Coenagrionidae 6 Diptera Blepharoceridae 10 (8)
Caloterygidae 8 Simuliidae 5
Polythoridae 10 Tabanidae 4

Plecoptera Perlidae 10 (8) Tipulidae 5
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Table 4. Cont.

Order Family ABI Score
(ABI* Score) Order Family ABI Score

(ABI* Score)

Gripopterygidae 10 Limoniidae 4
Coleoptera Ptilodactylidae 5 Ceratopogonidae 4

Lampyridae 5 Dixidae 4
Psephenidae 5 Psychodidae 3
Scirtidae 5 Dolichopodidae 4
Staphylinidae 3 Stratiomyidae 4
Elmidae 5 (7) Empididae 4
Dryopidae 5 Chironomidae 2
Gyrinidae 3 Culicidae 2
Dytiscidae 3 Muscidae 2

Heteroptera Veliidae 5 Ephydridae 2
Gerridae 5 Athericidae 10
Corixidae 5 Syrphidae 1
Notonectidae 5 Bivalvia Sphaeriidae 3
Belostomatidae 4 Amphipoda Hyalellidae 6 (7)
Naucoridae 5 Hydracarina 4

Ríos-Touma et al. [20] assigned a score between 1 and 10 to each taxon, corresponding
to its sensitivity to pollutants. A value of 10 corresponds to a highly susceptible taxon.
In contrast, a value of 1 corresponds to a highly pollutant-tolerant taxon—the ABI value
results from summing the existing taxon scores at the study site (Equation (2)).

ABI =

n
∑

i=1
fiPi

n
(2)

where n represents the total number of taxons present; fi is 1 if the taxon i is present and
0 if it is not. The Pi value is equal to the taxon ABI score given in Table 4. Following the
indications of the Water Framework Directive, Ríos-Touma et al. [20] defined five water
quality classes (Table 5).

Table 5. Water quality classification according to the ABI value [20].

Class Classification Range

C5 Excellent 96 < ABI
C4 Good 61 < ABI ≤ 96
C3 Medium 36 < ABI ≤ 61
C2 Bad 15 < ABI ≤ 36
C1 Very Bad ABI ≤ 15

2.3.3. The New Andean Biotic Index, ABI*

The proposed new ABI*, like the ABI, is based on the BM’s natural sensitivity to
respond to eventual or permanent disturbance of their natural habitats in the Andean
highlands. The ABI* is founded on the presence of the taxon in the study region and the
taxon score (Table 4). The ABI* water quality categorization considers the presence of the
very susceptible taxons (Figure 2). For example, suppose a taxon with a score of 10 is found;
the taxon indicates water quality C5 or a “very good” water quality. The water quality is
C4 or “good” if we cannot find any taxon with a score of 10, and we find a taxon with a
score of 8 or 7. In Table 4, the ABI score does not show any taxon with a score of 9. Water
quality is “medium” if we cannot find any taxon with a score of 10, 8, or 7, and we find a
taxon with a score of 6 or 5.
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Figure 2. ABI* water quality classifications.

Similarly, water quality is “bad” if we cannot find any taxon with a score of 10, 8, 7, 6,
or 5, and we find a taxon with a score of 4 or 3. Finally, water quality is “very bad” if we
cannot find any taxon with a score of 10, 8, 7, 6, 5, 4, or 3, and we find a taxon with a score
of 2 or 1. Figure 2 displays the procedure for water quality categorization following ABI*
principles. The ABI* score in Table 4 was determined by adjusting ABI score values such
that a strong correlation exists between the WQINSF and the ABI*.
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The ABI* calibration involved two consecutive stages: (1) identifying the reference
region and (2) the ABI* calibration.

1. Identifying the best region for ABI* calibration.

a. The raw data from each replicate were transformed into a single WQINSF
numerical value (Equation (1)).

b. The WQINSF values were grouped according to each study region.
c. An Anderson–Darling normality test was conducted to determine if the WQINSF

values in each study region followed a normal distribution.
d. The probability of water quality being C5, C4, C3, C2, and C1 in each study

region was calculated following Equation (12).
e. The water quality category with the highest probability was assigned to each

study region.
f. The study region’s sigma level value associated with the highest probability

class was calculated following Equation (13).
g. The region in which the water quality was measured with the highest degree

of precision, indicated by the highest sigma level value, was designated as the
reference region for ABI* calibration.

2. ABI* calibration

a. Raw data were transformed into a numerical value in correspondence with
WQINSF, ABI, and ABI* non-calibrated (ABI*NC) (initially using the score
values provided by ABI) (Figure 2).

b. WQINSF, ABI, and ABI*NC numerical values were transformed into a water
quality class for each replicate: C5 or C4 or C3 or C2 or C1, in correspondence
with Table 3, Table 5, and Figure 2. The results for each replicate were organized
as shown in Figure 3.

c. The total number of classes obtained for each sampling point was achieved
by summing the classes in each replicate. The results for each replicate were
organized as shown in Figure 3.

d. The total classes obtained for each study region were achieved by summing the
classes at each sampling point. The results for each replicate were organized as
shown in Figure 3.

e. The total classes obtained for the entire study region were achieved by summing
the classes in each study region. The total results were organized as shown in
Figure 3.

f. Spearman’s correlation coefficient between pairs of indicators in each study
region and the entire data set was determined.

g. The ABI* scores were adjusted so that when applied following the ABI* cali-
bration process, the correlation between the results of applying the ABI* and
the WQINSF in the reference region is one.

h. The calibrated ABI* was applied to the remaining study regions, and the
correlation between the three indicators was confirmed.
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Figure 3. Water quality data per replica, sampling point, study region, and total. Data from Juval—
Hight has been re-grouped as a fourth study region.

2.4. Data Processing

We explored the WQINSF uncertainty by scanning the original plot of the WQI given
by Effendy and Romano [27] and Otto [28]. Then, analytical functions were fitted to the
numerical values to incorporate uncertainty. The medium quadratic errors associated with
each analytical function gave the uncertainty. Finally, we found the uncertainty associated with
a given WQINSF value, calculated using the analytical functions of each water quality indicator.
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The accuracy associated with water categorization by the WQINSF value and the
water quality classes given in Table 3 was explored by (1) studying the uncertainty effects
on the variability of the WQINSF values, (2) confirming that WQINSF values follow a
normal distribution, (3) using thresholds defining water quality classes in Table 3 to find
a mathematical expression for the probability of a given water quality class given many
WQINSF numerical values, and (4) recursively finding the sigma level to better understand
the accuracy of a water quality class given by the WQINSF.

Statistical analysis was performed using Minitab software, Minitab®20.4 (Mintab Inc.,
State College, PA, USA). The results were presented in a box plot using OrigPro 9.1.0
(OriginLab Corporation, Northampton, MA, USA). An Anderson–Darling normality test
was performed to determine whether data do not follow a normal distribution. For a
normality test, the hypotheses are as follows. H0: Data follow a normal distribution. H1:
Data do not follow a normal distribution. To determine whether the data do not follow
a normal distribution, we compared the p-value to the significance level. We selected
a significance level α = 0.05. A Spearman correlation analysis was conducted to assess
the strength of the monotonic relationship between water quality indices. We selected a
confidence level of 95%.

Figure 3 illustrates the arrangement of the results. First, we determined the number of
water quality classes at each sampling point by adding the classes in each replica. Next, we
added the classes at each sampling point to calculate each study region’s total class count.
Finally, adding the classes from each study region resulted in the total number of classes
for the entire study region.

3. Results
3.1. The WQINSF Uncertainty

Figures 4 and 5 depict the mathematical functions, the uncertainty in value prediction
with a 95% confidence margin, and the mean squared deviation (MSD) in estimating each
water quality indicator of the WQINSF. Therefore, any WQINSF value must be expressed as
shown in Equation (3).

WQINSF =
9

∑
i=1

wiQi± uncertainty (3)

The MSD illustrates the uncertainty effect in prediction (±δ value in Figures 4 and 5)
and the interval where 95% of experimental data from repeated measurements are expected
to lie. Thus, the uncertainty associated with the water quality categorization by the WQINSF
is labeled δWQINSF and computed according to Equation (4). Therefore, individual WQINSF
values must be expressed together with their uncertainty, as shown in Equation (5).

± uncertainty = ±δWQINSF = ±
9

∑
i=1

wiδi = ±3.46 (4)

WQI∗NSF = WQINSF ± δWQINSF (5)

Equation (4) shows that the global uncertainty value due to the digitalization and
fitting process is constant. However, each water quality indicator has a different uncertainty
value (±δ value in Figures 3 and 4). Additionally, it can be shown that the average of many
WQI∗NSF values has the same degree of uncertainty (Equation (6)).

WQI∗NSF = WQINSF ± δWQINSF (6)

For clarity, let us assume that the WQI∗NSF equals 52, and its uncertainty equals 3.46.
Then, based on Table 3 and the WQINSF’s mean value of 52, the water quality is considered
good. However, given the uncertainty of ±3.46, it is difficult to determine whether the
water quality is good or bad (Table 3).
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3.2. The WQINSF Accuracy

Standard deviations and variances in WQINSF measurements are not affected by
uncertainty δWQINSF , as shown by Equation (7).

σ =

√
∑N

i=1
[(

WQINSF|i ± δWQINSF

)
−
(
WQINSF ± δWQINSF

)]2
N

=

√
∑N

i=1
(

WQINSF|i −WQINSF
)2

N
(7)

Thus, let us consider that WQINSF is a normally distributed random variable with mean
WQINSF and standard deviation (SD) σ (Figure 6). For clarity, let us consider that the mean
values are within the interval suggested in Table 3 for “Good water quality.” Figure 6 shows
the upper and lower limits for a “good” water quality class, WQINSF|class upper limit = 90
and WQINSF|class lower limit = 70, respectively. The probability (Pr) of the WQINSF value
being in any water quality class is written as Equation (8).

Pr = Pr
[

WQINSF|class lower limit ≤WQINSF ≤ WQINSF|class upper limit

]
(8)

Figure 4. Analytical expressions and uncertainty in value prediction with a margin of 95% confidence
for predictor variables utilized in WQINSF estimations. Dissolved Oxygen (a), Fecal Coliforms (b),
pH (c), and Temperature (d).
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Figure 5. Analytical expressions and uncertainty in value prediction with a margin of 95% confidence
for predictor variables utilized in WQINSF estimations. Phosphate (a), Nitrate (b), Biochemical
Oxygen Demand (c), Turbidity (d), and Dissolved Solids (e).
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Figure 6. The distribution function of a set of WQINSF values with a mean of 75. The threshold values
from Table 3 define good water quality.

Considering we have enough WQINSF values, the probability that the water quality
class is “good” is given by Equation (9). At the same time, the probability that the water
quality is “not good” is Pr = 1− Pr.

Pr =
1
2

erf

(
WQINSF|class upper limit −WQINSF

σ
√

2

)
− 1

2
erf

(
WQINSF|class lower limit −WQINSF

σ
√

2

)
(9)

Let us define the upper zu and lower zl sigma level as in Equations (10) and (11),
respectively; thus, Equation (9) can be rewritten as Equation (12).

zu =
WQINSF|class upper limit −WQINSF

σ
(10)

zu =
WQINSF|class lower limit −WQINSF

σ
(11)

Pr =
1
2

erf
(

zu√
2

)
− 1

2
erf
(

zl√
2

)
(12)

The erf is the label for the error function [30]. Finally, by knowing Pr and recursively
using Equation (12), we find the sigma value zSL that yields the Pr value.

Pr =
1
2

erf
(

zSL√
2

)
(13)

The zSL sigma value dictates–considering that the water quality is good–the probability
Pr of “good” and the probability of “no good” water quality 1 − Pr. For example, Table 6
lists the water quality class Pr regarding the sigma level. Therefore, if zSL = 3 (3 sigmas
or 3S), there is a 99.73% probability that the water quality is good. However, at the same
time, there is a 0.27% probability that the water quality is no good. In other words, we have
a change in 1 water quality measurement yielding a “no good water quality” out of 370
water quality measurements. Therefore a high-accuracy water quality measurement would
be expressed as, for example, a 4 sigma or 4S measurement.
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Table 6. Water quality class probability regarding sigma level.

zSL Sigma. “Water Quality Class”
Probability, Pr

“No Water Class
”Probability, 1 − Pr

X water Class Outcome
Wrong out of Y
Outcome, X/Y

1 0.6827 0.3173 1/3
2 0.9545 0.0455 1/22
3 0.9973 0.0027 1/370
4 0.9999 0.0001 1/15787

The zSL sigma or (zSL)S expresses the accuracy of a given water quality class, the Pr
value. The Central Limit Theorem states that WQINSF value distribution approximates
a normal distribution as the available WQINSF values increase, regardless of population
distribution. Typically, 30 or more WQINSF values are deemed sufficient for the Central
Limit Theorem. The fact that the sample means (WQINSF) and standard deviations (σ) are
equal to the population means and standard deviations is a crucial aspect of the Central
Limit Theorem. Therefore, with a sufficiently large number of WQINSF values, it is possible
to express water quality more precisely. However, any interpretation of the WQINSF is
restricted to the parameters measured.

3.3. Parameters Measured and Water Quality

Table 7 and Figure 7 show that the mean water quality calculated by the WQINSF in
the four study areas is good (Table 3).

Table 7. Mean and standard deviation of physical, chemical, and microbiological parameters.

Parameter Ozogoche Juval-Hight Juval Zula

Samples, N 129 71 30 60
Physical
Temperature, ◦C 10.87 (2.24) 10.70 (1.90) 11.74 (1.15) 11.95 (2.25)
Turbidity, NTU 1.82 (2.13) 12.01 (36.93) 1.57 (1.40) 17.48 (57.69)
Total Solids, mg L−1 141.57 (139.02) 216.04 (247.57) 119.77 (45.51) 214.77 (161.65)
Chemical
pH 7.77 (0.46) 7.81 (0.59) 7.93 (0.39) 8.09 (0.32)
Electrical Conductivity µS cm−1 57.44 (14.88) 101.41 (35.16) 79.52 (41.49) 105.93 (62.48)
Dissolved Oxigen,% saturation 60.34 (11.21) 62.95 (10.03) 69.85 (5.36) 63.81 (7.60)
Total Phosphates, mg L−1 1.12 (1.17) 2.52 (12.12) 1.29 (0.72) 1.34 (1.41)
Nitrates NO−3 , mg L−1 0.18 (0.34) 0.20 (0.39) 0.03 (0.02) 0.10 (0.17)
Microbiological
5-day Biochemical Oxygen Demand (BOD5), mg L−1 1.99 (1.47) 2.13 (1.56) 2.49 (1.04) 1.81 (0.81)
Fecal Coliform density, CFU/100 mL 4.57 (6.05) 4.85 (4.81) 2.47 (2.00) 6.08 (5.44)

Mean WQINSF (standard deviation, σ) 75.21 (3.88) 74.59 (4.80) 76.69 (3.50) 73.33 (4.80)
Mean uncertainty, ±δWQINSF ± 3.46 ± 3.46 ± 3.46 ± 3.46
Mean water class C4 (Good) C4 (Good) C4 (Good) C4 (Good)
WQINSF values are normally distributed yes yes yes yes
C5, “excellent” class probability Pr (1 − Pr) 0.000 (1.000) 0.001 (0.999) 0.000 (1.000) 0.000 (1.000)
C4, “good” class probability Pr (1 − Pr) 0.910 (0.090) 0.830 (0.170) 0.972 (0.028) 0.755 (0.244)
C3, ”medium” class probability Pr (1 − Pr) 0.000 (1.000) 0.170 (0.830) 0.028 (0.972) 0.028 (0.972)
C2, ”bad” class probability Pr (1 − Pr) 0.000 (1.000) 0.000 (1.000) 0.000 (1.000) 0.000 (1.000)
C1, “very bad” probability Pr (1 −Pr) 0.000 (1.000) 0.000 (1.000) 0.000 (1.000) 0.000 (1.000)
X1 “No good” outcome up to X2 “good” outcome water
quality class, X1/X2 1/11 1/6 1/36 1/5

Sigma-level zSL for C4 “good” water quality 1.75 1.35 2.10 1.10
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Figure 7. Boxplot showing the distribution of the WQINSF values, the mean value (MEAN), one
standard deviation (1 SD), and two standard deviations (2 SD).

The normality test revealed that WQINSF values at each study region follow a normal
distribution (p-value is shown between parentheses): Ozogoche (0.952), Juval-Hight (0.856),
Juval (0.586), Zula (0.801). Thus, we do not have enough evidence to conclude that the data
do not follow a normal distribution (p-value > 0.05). The mean WQINSF values are between
75.21 and 76.69 (Figure 7, Table 7).

The calculated zSL sigma value was higher (2.10) in the Juval region. A sigma value of
2.10 dictates that there can only be a margin of error up to 2.10 standard deviations from
the mean. This sigma value means that 97% of all outcomes fall within the accuracy range
(WQINSF—good water quality class) (Tables 6 and 7).

Table 8 lists the outcomes of categorizing the water quality at each sampling location.
As an illustration of how to read Table 8, the water quality at all nine replicates classified by
the WQINSF at the first coordinate point (COP01) was C4 or “GOOD.” However, the ABI
classification at the same sample site yielded five replicates of C1 or “VERY BAD” quality
and four of “BAD” quality. In contrast, the non-calibrated ABI* (ABI*NC) classification
produced eight replicates of C3 or “MEDIUM” quality and one replicate of C4 or “GOOD”
quality. For index performance comparison, Table 8’s final row shows the overall number
of each water quality class obtained by each water quality index. The results show that 87%
of the WQINSF measurement yielded good (C4) water quality. In comparison, 2% and 51%
of ABI measurements yielded good (C4) and bad (C2) water quality classes, respectively.
Similarly, 14%, 51%, and 32% of ABI*NC measurements yield very good (C5), good (C4),
and medium (C3) water quality classes, respectively. Therefore, there is a discrepancy in
the water categorization results of the WQINSF and the ABI.
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Table 8. The water quality at the 41 sampling stations and each water quality class frequency for the WQINSF, ABI, ABI*NC before calibration, and ABI* after
calibration. At station COP01, the water quality measured by WQINSF was eight times in the C4 class and twice in the C3 class.

WQINSF ABI ABI* Before Calibration,
ABI*NC

ABI* After Calibration,
ABI*

Label
River

Current
Feature

Height
(m.a.s.l.) C5 C4 C3 C2 C1 C5 C4 C3 C2 C1 C5 C4 C3 C2 C1 C5 C4 C3 C2 C1

Ozogoche
COP01 flat 3759 0 8 2 0 0 0 0 1 4 5 0 1 8 1 0 0 9 0 1 0
COP02 flat 3737 0 11 0 0 0 0 0 1 5 5 0 5 5 1 0 0 10 0 1 0
COP03 flat 3709 0 10 1 0 0 0 0 0 8 3 0 4 6 0 1 0 10 0 0 1
COP04 flat 3520 0 9 2 0 0 0 0 3 4 4 0 6 5 0 0 0 10 1 0 0
COP05 flat 3538 0 7 4 0 0 0 0 2 5 4 1 8 2 0 0 0 11 0 0 0
COP06 flat 3484 0 7 4 0 0 0 0 1 7 3 0 2 9 0 0 0 8 3 0 0
CPIP1 flat 3948 0 8 0 0 0 0 0 0 6 2 0 4 4 0 0 0 8 0 0 0
CPIP2 rapid 3867 0 8 0 0 0 0 0 0 5 3 0 3 5 0 0 0 8 0 0 0
CPIP3 rapid 3861 0 8 0 0 0 0 0 1 6 1 1 5 2 0 0 0 8 0 0 0
CPIP4 rapid 3853 0 8 0 0 0 0 0 0 8 0 0 8 0 0 0 0 8 0 0 0
CPIP5 flat 3812 0 8 0 0 0 0 0 2 5 1 2 5 1 0 0 0 8 0 0 0
CPIP6 flat 3794 0 8 0 0 0 0 0 1 6 1 2 5 1 0 0 0 8 0 0 0
CPIP7 flat 3692 0 8 0 0 0 0 0 1 4 3 1 5 2 0 0 0 8 0 0 0
CPIP8 rapid 3601 0 7 1 0 0 0 0 1 4 3 0 4 4 0 0 0 7 1 0 0

Average Height→ 3727 0 115 14 0 0 0 0 14 77 38 7 65 54 2 1 0 121 5 2 1
Juval-Hight

CJP00 flat 3130 0 1 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0
CJP01 flat 3130 0 5 0 0 0 0 0 0 5 0 2 2 1 0 0 0 4 1 0 0
CJP02 flat 3123 0 3 0 0 0 0 0 0 2 1 1 0 2 0 0 0 2 1 0 0
CJP03 flat 3160 0 3 1 0 0 0 0 1 3 0 1 3 0 0 0 0 4 0 0 0
CJP04 flat 3117 0 3 1 0 0 0 0 1 2 1 1 0 3 0 0 0 4 0 0 0
CPP01 flat 3697 0 9 0 0 0 0 1 1 5 2 1 4 4 0 0 0 7 2 0 0
CPP02 flat 3233 0 7 1 0 0 0 0 2 4 2 0 7 1 0 0 0 7 1 0 0
CPP03 flat 3180 0 8 1 0 0 0 0 2 3 4 0 9 0 0 0 0 9 0 0 0
CPP04 flat 3114 0 8 1 0 0 0 0 0 6 3 1 6 1 1 0 0 7 1 1 0
CSP01 rapid 3181 0 4 3 0 0 0 0 2 1 4 1 4 1 1 0 0 5 1 1 0
CSP02 rapid 3131 0 4 1 0 0 0 0 1 3 1 1 3 1 0 0 0 4 1 0 0
CTP01 rapid 3186 0 6 1 0 0 0 0 2 2 3 2 4 0 0 1 0 6 0 0 1

Average Height→ 3199 0 61 10 0 0 0 1 13 36 21 11 43 14 2 1 0 60 8 2 1
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Table 8. Cont.

WQINSF ABI ABI* Before Calibration,
ABI*NC

ABI* After Calibration,
ABI*

Label
River

Current
Feature

Height
(m.a.s.l.) C5 C4 C3 C2 C1 C5 C4 C3 C2 C1 C5 C4 C3 C2 C1 C5 C4 C3 C2 C1

Juval
QHUP1 rapid 2513 0 4 0 0 0 0 1 1 2 0 3 1 0 0 0 0 4 0 0 0
CJP05 rapid 2603 0 4 0 0 0 0 0 2 2 0 2 2 0 0 0 0 4 0 0 0
CJP06 rapid 2513 0 4 0 0 0 0 0 2 2 0 2 2 0 0 0 0 4 0 0 0
CJU01 flat 3350 0 4 0 0 0 0 0 1 3 0 0 4 0 0 0 0 4 0 0 0
QSCP1 rapid 2756 0 4 0 0 0 0 0 3 0 1 3 0 1 0 0 0 4 0 0 0
CTIP1 flat 2656 0 4 0 0 0 0 1 2 0 1 3 1 0 0 0 0 4 0 0 0
CYUP1 flat 3339 0 2 0 0 0 0 0 1 0 1 1 1 0 0 0 0 2 0 0 0
CYP01 rapid 3329 0 4 0 0 0 0 0 2 1 1 0 4 0 0 0 0 4 0 0 0

Average Height→ 2882 0 30 0 0 0 0 2 14 10 4 14 15 1 0 0 0 30 0 0 0
Zula

QAP01 rapid 3691 0 6 3 0 0 0 1 2 5 1 2 6 1 0 0 0 9 0 0 0
CAP01 rapid 3492 0 9 0 0 0 0 2 1 2 4 2 3 4 0 0 0 7 2 0 0
QHP01 flat 3451 0 7 2 0 0 0 1 2 5 1 1 3 5 0 0 0 7 2 0 0
CMP01 rapid 2691 0 6 2 0 0 0 0 3 2 3 3 1 4 0 0 0 6 2 0 0
CMP02 rapid 2655 0 6 2 0 0 0 0 2 0 6 2 0 4 1 1 0 4 2 1 1
QZP01 flat 3657 0 5 4 0 0 0 0 2 6 1 0 6 3 0 0 0 9 0 0 0
CZP01 flat 3630 0 7 1 0 0 0 0 1 5 2 0 5 2 1 0 0 6 1 1 0

Average Height→ 3324 0 46 14 0 0 0 4 13 25 18 10 24 23 2 1 0 48 9 2 1

Total→ 0 252 38 0 0 0 7 54 148 81 42 147 92 6 3 0 259 22 6 3
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At the Juval region, where water quality determination by the WQINSF shows the
highest accuracy sigma level, 100% of the WQINSF measurements yielded good water
quality (C4). However, 7% and 33% of ABI measurements yielded good (C3) and bad (C2)
water quality classes, respectively. Similarly, 47% and 50% of ABI*NC measurements yielded
an excellent (C5) and good (C4) water quality class, respectively (Table 8). The differences in
amounts of the WQINSF, ABI, and ABI*NC were still evident. However, upon calibrating the
ABI*NC (ABI*), we obtained a complete correspondence between the WQINSF and the ABI*
(Juval’s data in Table 8). The adjustment was performed on the taxon pollutant sensitivity
score, so that we do not introduce changes in water categorization in the other region.
Therefore, when we used the ABI* in the Ozogoche, Juval-Hight, and Zula regions, we still
obtained a significant correlation between the WQINSF and the ABI* (Table 8). Table 8’s
highlighted rows feed a pairwise Spearman correlation analysis. The main idea was to
gauge monotonic correlations between indices and determine the statistical significance of
the link between water quality indices (Table 9).

Table 9. Pairwise Spearman correlation between water quality indicator before and after calibration.

Ozogoche Juval-Hight Juval Zula Total

ABI-WQINSF Spearman correlation coefficient −0.516 −0.335 −0.354 −0.335 −0.335
p-Value 0.373 0.581 0.559 0.581 0.581

ABI*NC-WQINSF Spearman correlation coefficient 0.894 0.894 0.725 0.894 0.894
p-Value 0.041 0.041 0.165 0.041 0.041

ABI*-WQINSF Spearman correlation coefficient 0.894 0.894 1 0.894 0.894
p-Value 0.041 0.041 0.001 0.041 0.041

ABI*NC-ABI Spearman correlation coefficient −0.718 −0.600 −0.564 −0.600 −0.600
p-Value 0.172 0.285 0.322 0.285 0.285

ABI*-ABI Spearman correlation coefficient −0.103 0.100 −0.354 0.100 0.100
p-Value 0.870 0.873 0.559 0.873 0.873

The correlations of ABI–WQINSF, ABI*NC–ABI, and ABI*–ABI in all the study regions
is not statistically significant (p-value > 0.05). Furthermore, all the Spearman correlation
coefficients are negative except for the correlation between ABI* and ABI at Juval-Hight.
Thus, one water quality index increases while the other decreases. Thus, we do not have
enough evidence to conclude that the correlations of ABI–WQINSF, ABI*NC–ABI, and ABI*–
ABI in all the study region are statistically significant (Table 9). However, the strength of
the correlations between ABI*NC and WQINSF and ABI* and WQINSF is high and close to
1. High positive correlation values for ABI*NC–WQINSF and ABI*–WQINSF suggest that
WQINSF, ABI*NC, and ABI* are statistically related with respect to the same attribute (water
quality). Furthermore, the correlation values are positive, implying that the two correlated
water quality indices rise and fall together (Table 9). However, in the Juval region, the
correlation between ABI*NC and WQINSF is not statistically significant (p-value = 0.165),
although there is a high and positive correlation value. Furthermore, adjusting some taxon
pollutant sensitivity scores, we obtained statistically significant high positive Spearman
correlation values between ABI* and WQINSF (Table 4). Therefore we obtained high positive
and statistically significant (p-value ≤ 0.05) correlation values between ABI* and WQINSF
in all the study regions.

4. Discussion and Conclusions

The results in Table 7 show that the mean pH values are between 7.77 and 8.09, con-
sidered typical values for high-quality water. Similarly, the average water temperature
varies between 10.69 and 11.95; temperatures below 15 ◦C un-favor microorganism devel-
opment and intensified odors and flavor. Dissolved oxygen governs most processes that
produce or consume oxygen in aquatic ecosystems. Its concentration results from physical,
chemical, and biological processes that consume oxygen. The results obtained vary between
6.68–7.50 mg L−1 of dissolved oxygen. Thus, the dissolved oxygen is adequate for the growth
and development of aquatic organisms. The electrical conductivity (EC) for good quality
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natural waters should be between 50 and 1500 µS cm−1. However, the sampled waters
of the study area are within the lower range of 105.93 µS cm−1. The highest turbidimetry
measurements, above the WHO’s 5 NTU limit [31], were found in the Juval-Hight and
Zula micro-watersheds; these results demonstrate the sediment-dragging effects of surface
runoff from rain. The Juval-Hight and Zula micro-basins show the greatest EC values.
The same behavior was observed for dissolved solids, although all the average values are
within the permissible range (500 mg L−1). Thus, the mean water quality characterized by
the WQINSF is good. This result suggests significant water quality changes began due to
environmental degradation and contact with domestic and agricultural wastes [10,28,29].

4.1. The WQINSF Uncertainty and Accuracy

Many recent studies discuss the uncertainty issues associated with the WQINSF model [10].
Knowing the uncertainty improves accuracy and gives users a sense of its potential impact.
While uncertainty is unavoidable in any mathematical model [32], there are multiple sources
of uncertainty in categorizing water quality throughout the WQINSF. First is the uncertainty
given by the specific set of indicators used to calculate the WQINSF. Second, uncertainty is
introduced by reading raw indicator data and converting them to a single value. The third
is the uncertainty due to using a specific weighting factor for each water quality parameter
(WQP). Fourth is the uncertainty due to the aggregation function used to obtain a single
value for the WQI using the WQPs and weighting factors for all WQPs [10]. Fifth, threshold
values defining the water quality class could introduce ambiguity (uncertainty). Sixth, natu-
ral systems’ inherent randomness, unpredictability, and non-stationarity introduce natural
variability (uncertainty) [32,33]. The first four sources of uncertainty fall into the category
of epistemic uncertainty, which can be reduced by getting more information, but it is
impossible to separate the epistemic uncertainty caused by how the model is built [10,32].
Moreover, we always have ambiguities due to categorizing the water quality into a finite
number of classes and inherent randomness and natural variability. Furthermore, little
was found in the literature on quantifying WQINSF accuracy. Hence, one of the aims of this
study was to quantify WQINSF accuracy [10].

This study found that the sigma value (Table 6) can quantify WQINSF accuracy. There-
fore, a higher sigma value dictates that we had measured water quality with higher accuracy.
One interesting finding is that the variability of the WQINSF is not affected by the uncertainty
of its measured value (± δWQINSF) (Equation (6)). This finding is somewhat interesting,
given that other research mentions the problem with handling WQINSF uncertainty [10],
but this issue has not been pursued further to the authors’ knowledge.

Hence, it is possible to consider the ambiguities introduced by the thresholds defining
water quality classes and manage the unpredictability and natural variability of the water
body’s natural system. However, with a small sample size, caution must be applied, as
the distribution of the WQI values must follow a normal distribution. According to these
results, the sigma value framework may also control uncertainty when categorizing water
quality using other indices (see Table 4 in Uddin et al. [8]).

4.2. The Proposed Water Quality Index ABI*

This study aimed to integrate the WQINSF and the ABI into an indicator that incorpo-
rates the benefits of both methodologies in categorizing water quality in high mountain
regions. However, we did not find any correlation between WQINSF and ABI. The ABI may
have been affected by the aggregation function’s eclipse effect [10,20]. However, we were
expecting some coincidence and not such a large difference, despite the differences between
the two approaches to water quality categorization, but we found something else that was
important. In three of the study areas, the correlation between the WQINSF and ABI*NC
was close to one (Table 9). It happened when we used the presence of BMs and pollutant
sensitivity given by the ABI score of BMs (Figure 2 and Table 4) to measure water quality,
the ABI*NC [18,20,34]. Although, the WQINSF sigma value in these three areas was low,
we found an excellent statistical correlation between the WQINSF and the ABI* in the four
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areas of study when we calibrated the ABI*NC. After adjusting the sensitivity to pollutants
of the BMs found in the Juval region (Table 4), the correlation between the WQINSF and
ABI* substantially improved.

The use of the presence of specific BMs as an indicator of water quality is an old
concept that originates from the Saprobien or Saprobic system implemented on German
rivers in the early 1900s [18,35,36]. Additionally, after reviewing more than 500 reports,
Ríos-Touma et al. [20] show that the sensitivity to pollutants of some BMs differs from those
reported in other areas and the biotic index. Moreover, the area of Juval is the only study
region between 2000 to 2800 m.a.s.l. Thus, a decrement in the BM sensitivity to pollutants
suggests taxon adaptation to slightly contaminated water (Leptophlebiidae, Perlidae, Calamo-
ceratidae, Odontoceridae, and Blepharoceridae, Table 4). At the same time, an increment in
BM pollutant sensitivity suggests that the taxon is conquering a new environment (Elmidae,
Hyalellidae, Table 4). Therefore, local communities could independently assess water qual-
ity by becoming familiar with the BM community in the Andes highlands. Thus, integrating
the WQINSF and ABI led to the new ABI*. The ABI* is a tool that communities can use to
independently conduct a reliable water quality assessment to protect and monitor river
water quality and for climate adaptation and mitigation. Therefore, communities could
monitor territorial management plans oriented to mitigate and adapt to climate change and
the progress of agricultural frontiers. However, this result hasn’t been described before, and
caution must be used, because the ABI* is not a substitute for the WQINSF or more detailed
biological studies but a precursor. Moreover, the ABI* should be used in conjunction with,
and is not a replacement for, the WQINSF.
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