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Abstract: This study generates intensity-duration-frequency curves for three important cities in Iraq
using Global Precipitation Measurement Integrated Multi-Satellite Retrievals for Global Precipitation
Measurement (IMERG), Global Satellite Mapping of Precipitation near real-time (GSMaP NRT),
and gauge corrected (GSMaP GC) satellite precipitation datasets. Many probability distribution
functions were used to fit the maximum yearly rainfall data. The Sherman equation was used to
create intensity-duration-frequency (IDF) curves for rainfall intensities with 2-, 5-, 10-, 25-, 50-, and
100-year return periods, with the estimated coefficients of the best-fit distribution serving as the fitting
parameters. The discrepancy between the IDF curves produced from the satellites and the observed
data was used to bias correct the satellite IDF curves. The Generalized Extreme Value Distribution
model best describes the hourly rainfall distribution of satellite data. GSMaP GC was the best option
for creating IDF curves with higher correlations with observed data at Baghdad, Basra, and Mosul.
The study indicates the necessity of gauge correction of satellite rainfall data to reduce under- and
over-estimating observed rainfall. GSMaP GC can reasonably estimate rainfall in a predominantly
arid climate region like Iraq. The generated IDF curves may be an important step toward achieving
sustainable urban stormwater management in the country.

Keywords: urban flooding; information shortage; IDF curve; stormwater management

1. Introduction

Flash floods are a major climatic risk in many countries of the world [1]. This is gener-
ally attributed to inadequate urban stormwater management systems (SWMS), particularly
for cities in developing countries. Urbanization causes a reduction of permeable surfaces
and increased runoff, which eventually alters the urban hydraulic dynamics and the di-
mension of rivers and streams [2]. This contributes to the increased frequency and severity
of urban floods. While the number of deaths in urban floods is usually low, financial losses
due to the destruction of buildings and other structures and the disruption of commerce
are substantial [3,4]. Both the population and the value of assets in disaster-prone areas are
growing [5]. It also severely disrupts the people’s well-being and urban livelihoods. The
global urban area has increased from 0.6 to 0.9 million km2 from 2000 to 2010 [6]. However,
the urban infrastructures are not improved proportionately with its expansion in many
regions [7–9]. In some cases, it is often updated but not in line with altering rainfall pat-
terns. Consequently, urban floods caused a dramatic increase in economic loss globally [2].
According to the Intergovernmental Panel on Climate Change (IPCC) [10], there will be
a rise in the frequency of extreme rainfall events and a decrease in the frequency of low
rainfall events.
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The Middle East and North Africa (MENA) is one of the most vulnerable places on
Earth to climatic hazards [11]. The effects of such hazards are projected to be highest in Iraq
among the MENA countries [12]. As a result of decades of conflict and poor administration,
Iraq is now vulnerable to any natural calamity. There has been a rise in the occurrence
and severity of weather-related disasters in recent years, and their effects are becoming
increasingly obvious throughout Iraq [13]. Though drought, aridity, and temperature
extremes are considered the most destructive disasters in Iraq, a substantial rise in rainfall
extremes and flash floods has been noticed in recent years.

Salman et al. [14] indicated changes in daily rainfall mean and variability in Iraq
during 1965–2015, and a consequent decrease in heavy rainfall events in 53% of stations
over Iraq. Therefore, the increase in flash floods may be linked to inadequate drainage
systems with urban development [7]. Iraq has experienced rapid urbanization in the
last few decades. The urban population in the country has increased from 10.53 million
in 1985 to 31.48 million in 2020. The urban SWMS has also developed proportionately.
However, those structures are designed based on available data for the historic period.
Daily data were often employed to assume the recurrence of hourly or sub-hourly rainfall
extremes. This caused the failure of SWMS and urban floods in Iraq. This is also clearly
comprehensible from the accelerated impacts in urban areas. However, one of the major
principles of the country’s national development plan 2010–2014 is sound environmental
management for sustainable urban development [15]. This underlines the need to design
urban hydraulic structures based on the local rainfall extremes. Knowing the features of
intense rain events, or the intensity-duration-frequency (IDF) relationship, is crucial in
this regard. Sustainable urban development can be promoted by adopting guidelines for
urban drainage systems based on IDF. Such curves are developed from the time series of
annual peak rainfall events for different durations. It allows for estimating the recurrence
of different intensities of rainfall, which is required for estimating peak runoff for designing
hydraulic structures [16,17].

Despite its critical importance, very little research has been conducted on the required
rainfall properties for urban hydraulic infrastructure. This is partly because of the difficulty
of undertaking such research without access to high-resolution hourly or sub-hourly rainfall
data. A long-term hourly precipitation record is required for IDF curve generation. There
is a severe lack of such data in Iraq as the country’s meteorological stations have been
out of service for a long time. In addition, several stations had been damaged due to
the military actions in the recent conflicts. Without a dense rainfall monitoring network
or better temporal resolution (hourly or sub-hourly data), hydrological researchers have
increasingly turned to satellite precipitation data in recent years. Satellite rainfall data has
been utilized in recent years to estimate drought in Iraq [18–21]. Some studies also showed
the reasonable functioning of satellite rainfall products in estimating rainfall extremes in
Iraq [22,23]. Unfortunately, such data has not been used to characterize rainfall extremes
for deriving urban drainage design parameters in Iraq.

Several studies have used satellite rainfall data to build IDF relationships in an un-
gauged area [3,24–27]. The biggest issue with using satellite data to create IDF curves
is that they tend to underestimate extreme rainfall occurrences [28–30]. Noor et al. [28]
indicated that all four remote-sensing rainfall methods significantly underestimate the
rainfall intensities in Peninsular Malaysia throughout a range of durations and return
periods. Nashwan et al. [31] compared the accuracy of five satellite precipitation products
over Egypt and showed poor performance of all products in estimating rainfall over a
predominantly arid climate region like Egypt. Ziarh et al. [32] showed bias in satellite
precipitation varies with topography, cloud type, and rainfall intensity. Therefore, it is
recommended that in situ data be used to adjust for bias in satellite rainfall data before their
use in IDF curve generation. For instance, Kyaw et al. [33] bias-corrected remote sensing
data using short-period daily rainfall data available at a single location in Yangon and then
employed the corrected data for generating IDF curves in nearby regions.
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In this study, we employed remotely detected precipitation data for estimating IDF
curves for three major cities of Iraq. Performance of three remote sensing rainfall products,
Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (IMERG), Global
Satellite Mapping of Precipitation (GSMaP) Near Real-Time (GSMaP NRT), and GSMaP
gauge corrected (GSMaP GC) were evaluated to find the best for generating IDF curves for
Baghdad, Mosul, and Basrah. Updating SWMS and reducing rising urban floods in Iraq
is challenging due to the lack of updated IDF curves based on the current rainfall pattern.
The generated IDF curves may be an important step toward achieving sustainable urban
SWM in the country.

2. Study Area and Data
2.1. Physical and Climatological Properties of Iraq

Iraq is located in southwest Asia between the coordinates 28 to 38◦ N and 38 to 48.5◦ E
and has a total land area of 438,320 km2 [34]. Baghdad, Mosul, and Basrah are the major
Iraqi cities considered for IDF curve development in this study. The site of the cities on the
map of Iraq is displayed in Figure 1, which was created using QGIS open source software.
Iraq’s boundary and the digital elevation model (DEM) data were downloaded from the
publicly accessible DIVA_GIS website (https://www.diva-gis.org (accessed on 7 November
2022)). The most rainfall in Iraq occurs in January, while July is the highest rainfall month in
other areas. The average precipitation gradually rises from the south to the north (Figure 2).
However, western Iraq receives only sporadic rainfall each year [35]. Baghdad, the capital
of Iraq, has an average annual precipitation of around 151.8 mm. Located in flat plains
beside the Tigris River, it is home to nearly 6 million people. Basrah is Iraq’s southernmost
governorate, bordering Iran, Kuwait, and Saudi Arabia, with an area of 19,070 km2. The
city has a hot and dry climate, where summer temperatures are among the hottest in the
world. Humidity and rainfall are relatively high due to the proximity to the Persian Gulf.
The city gets an average of 152 mm of rain between October and May [36]. Mosul is located
362 km northwest of Baghdad. It is located near the northern highlands and receives a
higher rainfall (~363.6 mm) than Baghdad and Basrah [37]. A list of extreme rainfall-driven
flash floods in Iraq in the last decade is provided in Table 1. It shows an apparent increase
in extreme rainfall and flooding in Iraq recently.
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Table 1. A list of recent extreme rainfall-driven flash floods in Iraq.

Extreme Rainfall and Floods Date Impact

Heavy rainfall and flash flood in central Iraq 11 November 2013 11 death and heavy damages to building and
civil structures

Flash flood in Baghdad 28 October 2015 58 people died, and 84,000 were evacuated.
Emergency was declared

Heavy rainfall driven flood in south Iraq 5 May 2019 20,00 people were evacuated, and a hundred
thousand were out of water supply

Heavy rainfall driven flood in Erbil 17 December 2021 14 people died, and 7000 evacuated. Damage to
residential buildings, infrastructure, and vehicles

Extreme rainfall in northern Iraq 30 October 2021 3180 people were evacuated. Damages to roads
Heavy storms throughout the country 24 March 2019 1173 families have been displaced
Heavy rainfall and flash floods in
southern governorates 22 November 2018 21 people have died, and 180 were injured as a

result of the flooding
Recorded 67 mm of rainfall in a day in the bordering
region of Iraq 07 November 2018 Heavy damage to infrastructure

2.2. Dataset

This study also employed three types of remotely sensed precipitation data. Table 2
details the remote sensing precipitation datasets. IMERG integrates precipitation data
using the Global Precipitation Measurement (GPM) satellites. The precipitation data in
all the satellite products used in this study was retrieved using a combination of multiple
passive microwave and infra-red sensors [31]. IMERG has three rainfall products, early,
late, and final run. The IMERG final run (FR) is the most accurate of the three precipitation
modes [38]. GSMaP NRT and GSMaP GC rainfall data are collected and compiled by
the Core Research for Evolutional Science and Technology (CREST) of the Japan Science
and Technology Agency (JSTA) in collaboration with the Japan Aerospace Exploration
Agency (JAXA) Precipitation Measuring Mission (PMM) Science Team [39–41]. The former
was developed by fusing cloud movement vectors derived from infrared photos with
global precipitation rates derived from passive microwave radiometers [42,43]. The latter
is a by-product of GSMaP NRT, developed by correcting it with precipitation of Climate
Prediction Center [44]. This study used Google Earth Engine (GEE), a cloud-based system
for universe geospatial research, to retrieve satellite precipitation data [45]. This platform
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provides satellite precipitation products and the required tools for downloading them for
a specific area or point. This study downloaded the satellite rainfall datasets of the grid
locations representing the cities of Iraq using GEE.

Table 2. Dataset list used in this research.

Data Time Spatial
Resolution

Temporal
Resolution Reference

GSMaP NRT 2000 to present 0.1◦ × 0.1◦ 1-h [41]
GSMaP GC 2000 to present 0.1◦ × 0.1◦ 1-h [44]
IMERG 2000 to present 0.1◦ × 0.1◦ 30 min [46]

3. Methodology
3.1. Research Steps

The primary goal of this research was to create IDF curves for three major cities in Iraq
and extend the method for developing IDF curves at ungauged areas using satellite rainfall.
Figure 3 shows the flowchart elaborating the specific technical steps followed to fulfil the
objectives. The goal was accomplished by performing the procedures listed below.

1. Estimate the maximum annual rainfall intensity (ARI) for the study period (2000–2021);
2. Determine probability distribution functions (PDFs) best fit the ARI time series;
3. Use the best-fit PDF for estimating rainfall intensity for each duration and return period;
4. Apply regression techniques to generate the IDF curves using the Sherman equation;
5. Repeat steps 1–4 to generate IDF curves for all locations using all three satellite-based

precipitation datasets, repeat;
6. Quantify the discrepancy between each city’s satellite and observed dataset IDF curves;
7. Select the satellite rainfall with the lowest IDF bias and correct it based on the observed

dataset IDF.

3.2. Distribution Functions

A PDF chosen to fit the distribution of a particular satellite precipitation may not
perform well with another dataset. As a result, comparing different PDFs to choose the
best one is the best practice [28]. This study compared the performance of three generally
employed PDFs, Generalized Extreme Value (GEV), Gumbel, and General Pareto (GP),
to find the appropriate one that best fits the satellite ARI time series. Koutsoyiannis and
Baloutsos [47] reported that Extreme Value (EV1) and Gumbel seem more appropriate
for a short period of data, while GEV may be better for estimating a larger return period.
Kastridis and Stathis [48] also showed that the length of the rainfall time series significantly
influences the selection of the appropriate distribution. Considering the data period of 20
years used in this study, EV1 and Gumbel may be the more suitable. However, the present
study relied on the findings of the previous studies in Iraq to select the distributions for their
relative comparisons and identify the best distribution. According to earlier studies in Iraq,
one of these three PDFs typically offered the best fit for the ARI time series. For instance,
Majeed et al. [22] demonstrated that the Gumbel provided the best rainfall intensities in
Najaf city, Iraq, for various return periods and durations. AL-Dulaimi et al. [49] claimed
that Gumbel distribution was the best frequency analysis technique in Babylon City and
Alluvial Fertile Zone, Iraq. Different stations in northern Iraq showed different best PDFs,
including GEV, Gumble, and GP [50]. Thus, only these three PDFs were considered in the
current investigation. The performance was assessed in estimating PDF parameters using
the Maximum Likelihood (MLE) method based on the negative log-likelihood goodness
of fit test. The negative likelihood ratio is frequently used to evaluate the effectiveness of
a diagnostic test since it offers built-in strength of rule in or out probability [51]. Table 3
contains the equations for the PDFs.
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Table 3. Probability distribution functions used to fit observed dataset and satellite rainfall data at
different locations.

Function Equation Parameter

GEV
f (x) =


1
σ exp

(
−(1 + kz)−1/k

)
(1 + kz)−1−1/k k 6= 0

1
σ exp(−z− exp(−z)) k = 0

z =
x−µ

σ
k: shape

µ: location
σ: scale

Gumbel f (x) = 1
σ exp (−z− exp(−z))

GP f (x) =


1
σ (1 + kz)−1−1/k k 6= 0

1
σ exp(−z) k = 0

The effectiveness of the diagnostic test was evaluated using the negative log-likelihood
test. [52].

L(θ) = ∑n
i=1 ln( fi(yi

∣∣∣θ)) (1)

where y = likelihood function, L(θ) = log-likelihood function, and n = number of observations.
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3.3. Sherman Equation

The Sherman equation [53] was used to regress the IDF curves,

i =
kTx

(t + b)m (2)

where i is the amount of precipitation; t is the length of the storm; kT is the frequency
factor; and x, b, and m are the least squares-derived regression parameters. Regression was
performed using various x, b, and m values for different return durations.

3.4. Evaluation of Satellite Precipitation Data

To be employed for IDF curve estimation, satellite rainfall is expected to accurately
replicate the mean, temporal pattern, and distribution of observed rainfall. The study used
three robust statistical indices to measure those capabilities of satellite rainfall, Spearman
coefficient of determination (R2), percentage of bias (%BIAS), and Perkin’s skill score
(SS) [54,55]. Non-parametric Spearman R2 and Perkin’s skill score were used considering
the high skewness of daily data. Table 4 lists the formulas, ranges, and ideal values of
the indices.

Table 4. Statistical metrics for assessing the performance of satellite-based precipitation data.

Index Optimum Value

R2 = ∑n
1 (xobs,i−xobs)(xsim,i−xsim)√

∑n
i=1(xsim,i−xsim)

2 ∑n
i=1(xobs,i−xobs)

2
1

%BIAS = 100 ∗ ∑N
i=1(xsim,i−xobs,i)

2

(xobs,i)
0

SS =
∫ ∞
−∞ min

[
pd f

(
xsim,i

)
, pd f

(
xobs,i

)]
1

4. Results
4.1. Performance of Satellite Precipitation Data

The performance of satellite precipitation products replicating observed precipitation
was evaluated based on statistical and graphical metrics. Three cities in Iraq’s (Table 5)
indicate how well various satellite rainfall data replicated observed rainfall. The results
revealed the better performance of GSMaP GC at three locations in most metrics. It was
best to replicate the temporal pattern of in situ rainfall at Baghdad and Mosul, with the
least bias at Baghdad and similar probability distribution at Baghdad and Mosul. GSMaP
NRT showed better performance in capturing mean bias and probability distribution at
Basrah, while IMERG showed the best performance in terms of Spearman R2 at Basrah and
%Bias at Mosul.

Table 5. Effectiveness of various satellite rainfall data in reproducing daily in situ rainfall in three
cities in Iraq.

Indices City GSMaP_GC GSMaP_NRT IMERG

Spearman
R2

Baghdad 0.339 0.259 0.292
Basrah 0.505 0.519 0.521
Mosul 0.624 0.593 0.539

%Bias
Baghdad 65.3 213.8 453.6
Basrah 37.6 −16.1 196
Mosul 27.7 −29.4 18.5

Skill Score
Baghdad 0.278 0.159 0.137
Basrah 0.419 0.545 0.278
Mosul 0.466 0.325 0.371

Note: Bold numbers indicate the best performance.

Figure 4 shows boxplots of the in situ and satellite rainfall data at three locations.
Generally, Mosul, located in the north, receives higher and more extreme rainfall than the
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other two cities. None of the products could replicate the high rainfall events in Mosul. In
contrast, GSMaP NRT and IMERG showed rainfall events at Baghdad of more than 200 mm,
which generally does not occur in the cities. IMERG also showed very high rainfall events
at Basrah, where rainfall is generally very low. Overall, the boxplot of GSMaP GC was
closest to the boxplot of in situ rainfall.
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The Taylor diagram (shown in Figure 5) illustrates the effectiveness of satellite-based
products. This diagram can summarize the performance of different satellite precipitation
datasets based on the similarity between correlation and variability. The in situ rainfall is
represented by a circle on the x-axis, while the satellite data are characterized by filling
color circles. The optimal product is closest to the in situ data. Taylor’s Diagram also
showed that GSMaP GC is the best dataset for Iraq’s major cities. It was very close to the
observation at Baghdad. The performance of GSMaP GC and GSMaP NRT was similar
at Basrah, but the variability of GSMaP GC was closer to the observation than that for
GSMaP NRT.
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The probability distribution functions (PDFs) of observed and satellite rainfall data
are presented in Figure 6. Presenting a PDF of highly skewed data like daily rainfall is
always difficult. Most days, the rainfall is zero, particularly in arid regions like Iraq, while
high rainfall events are rare. This makes the PDF of the daily rainfall of Iraqi cities highly
skewed, which is very difficult to judge graphically. Therefore, this study split the PDFs
at each station into two parts, one representing low rainfall (≤1 mm) and the other the
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rainfall more than 1 mm. This made it easy to visualize the similarity of the PDF of different
satellite rainfall with the PDF of observed rainfall. The figure shows that the PDF of GSMaP
GC is closer to the observed PDF at all three locations.
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Finally, the satellite products were tested on how well they could predict the yearly
rainfall maximums that had been seen. For this purpose, the one-, two-, and three-day cu-
mulative rainfall maximum for all the years of the products were estimated and graphically
presented in Figure 7. GSMaP GC was most accurate in capturing the rainfall maxima at
Baghdad and Basrah. However, no product could capture the high rainfall events in Mosul.
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Figure 7. Annual rainfall maxima of in situ and satellite daily rainfall data for 1-, 2-, and 3-days at
Baghdad (a–c), Mosul (d–f), and Basrah (g–i).

Overall, the analysis revealed GSMaP GC as the best product among the three satellite
rainfall products considered in this study to capture the observed rainfall. Particularly, it
performs very well in locations receiving low rainfall. However, it could not capture the
high rainfall in the northern high-rainfall receiving station.

4.2. The Goodness of Fit Test

The annual maximum rainfall of GSMaP NRT, GSMaP GC, and IMERG at three
stations for 1-, 2-, 3-, 4-, 6-, 12-, 24-, 72-, 96-, and 144-h durations were fitted with GP,
GEV, and Gumbel. Table 6 illustrates negative log-likelihood results for Baghdad. The
results showed that the GEV performs better for most rainfall durations at all stations. The
performance of Gumbel was similar to GEV for rainfall durations 1, 2, 3, 4, 6, 12, and 24 h
but higher for other periods at Baghdad. However, IMERG performed better than GP for
1-h rainfall durations. GSMaP GC performed similar to GEV for 144-h rainfall durations.
The other two cities also showed a similar result to that obtained for Baghdad.

4.3. Generation of IDF Curves

Observed daily datasets and satellite-based precipitation datasets were used to gener-
ate IDF curves at all three major cities using the MLE-estimated GEV distribution parame-
ters. Figure 8 illustrates the IDF curves produced using IMRG, GSMAP NRT, GSMAP GC,
and the observed dataset. This study assessed the performance of satellite IDF curves based
on the return durations of observed dataset 24-, 48-, and 72-h rainfall intensities. The results
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showed that the IDF curves of all products were significantly different from the hourly
IDF curve estimated using the observed dataset, except for GSMaP GC. In Baghdad, the
observed 100year return rainfall for 24-, 48-, and 72-h duration was 3.8, 2.7, and 2.0 mm/h,
respectively. The GSMaP GC estimated those 5.5, 2.7, and 1.6 mm/h. In contrast, GSMaP
NRT estimations were 22.0, 10.0, and 6.5 mm/h. All products severely overestimated the
IDF curve at Baghdad, except GSMaP GC, which slightly underestimated the IDF curves.

Table 6. Negative Log-likelihood values of different distributions at Baghdad for GSMaP NRT,
GSMaP GC, and IMERG.

Negative Log-Likelihood Statistics (MLE Estimator)

Product Distribution Duration (h)

1 2 3 4 6 12 24 48 72 96 144

GSMAP
NRT

GEV 93.1 101.5 106.7 110.5 113.4 117.7 120.6 123.0 123.1 123.5 123.8
Gumbel 110.7 116.3 118.4 121.1 121.1 122.4 124.2 125.3 125.1 125.2 125.4

GP 101.0 108.9 112.7 115.8 118.3 121.4 123.6 125.2 126.5 126.1 126.6

GSMAP
GC

GEV 49.9 63.1 69.4 74.6 81.8 87.6 91.6 93.9 94.9 95.8 97.8
Gumbel 50.7 64.8 72.2 77.7 83.7 88.4 92.7 94.2 95.1 95.9 97.8

GP 54.4 69.4 76.2 81.1 86.7 92.7 96.6 97.6 97.3 96.9 96.4

IMERG
GEV 62.1 75.8 84.1 89.1 93.4 102.6 111.0 117.9 119.8 122.1 122.4

Gumbel 62.1 75.9 84.2 89.1 93.5 103.1 112.9 120.2 121.6 123.9 123.9
GP 53.6 79.2 88.3 89.1 101.4 114.0 122.8 127.2 127.9 129.1 129.4

The results were similar in the other two cities. GSMaP GC was slightly underesti-
mated, but the other two products significantly underestimated the observed IDF curve
at the Basrah station. GSMAP GC also slightly underestimated the IDF curve at the Mo-
sul station, and the other products significantly overestimated it. Overall, the results
showed that GSMaP GC showed the most realistic result through slightly underestimated
rainfall intensities.

4.4. IDF Curved Based on Sherman Equation

The Sherman equation generated IDF curves for observed and satellite (GSMaP NRT,
GSMaP GC, and IMERG) precipitation data from 2000 to 2022 for three major Iraqi cities are
shown in Figure 9. In Baghdad, the observed 2-year return period observed rainfall based
on the Sherman equation was 2.5, 1.8, 1.6, and 0.9 mm/h for 1-, 2-, 3-, and 6-h durations,
respectively. The GSMaP GC computed those values as 2.6, 1.8, 1.5, and 0.1 mm/h; GSMaP
NRT as 5.4, 3.2, 2.5, 1.3 mm/h; and IMERG as 7.4, 5.6, 4.7, and 3.4 mm/h, respectively. It
indicates that GSMaP GC based on the Sherman equation provides the most realistic IDF
curves. GSMaP GC also provided the best IDF compared to observation in Basrah and
Mosul. There was a slight underestimation by GSMaP GC in all cities. However, it was
negligible compared to the large overestimation by IMERG and GSMaP NRT.

The difference between the fitted IDF curves of GSMaP NRT, GSMaP GC, and IMERG
with observation for major Iraqi cities are shown in Figures 10–12. The difference at
Baghdad for GSMaP GC ranged from −100 to 5 mm/h. In contrast, it was between
−10 and 170 mm/h for GSMaP NRT and −100 and 10 for IMERG. GSMaP GC and IMERG
underestimated the observed IDF curves, while GSMaP NRT overestimated the IDF curves.
However, the under- and overestimation were much less for GSMaP GC.

The results were similar at the other two locations. However, the differences were
less compared to Baghdad. The difference for GSMaP GC ranged from −15 to 1 at Basrah
and −70 to 10 a Mosul. The difference for GSMaP GC was much less than the other two
products. This indicates the suitability of GSMaP GC IDF curve to be corrected for reliable
estimation of IDF from satellite data.
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5. Discussion

Both statistical analysis and visual assessment of satellite rainfall yielded the same
results for the research. The results revealed GSMaP GC is far superior to other satellite
precipitation products in Iraq. When comparing the three cities, the maximum GSMaP
GC daily rainfall estimates were more in line with the observed maximum daily rainfall
estimates. The distribution of outliers in GSMaP GC was comparable to that observed.
The Taylor Diagram further demonstrated that GSMaP GC is the superior dataset for the
major cities in Iraq. GSMaP GC showed higher correlations with observed data at Baghdad,
Basra, and Mosul. IDF curves for GSMaP GC were less biased than IDF curves for other
products. This demonstrates the viability of adjusting the GSMaP GC IDF curve for accurate
calculation of IDF using satellite data.

No study has been conducted earlier to calculate the IDF using satellite rainfall data
in Iraq. Kareem et al. [56] created the IDF curves for Erbil city using IDF curves and
empirical IDF formulas using metrological stations. Mahdi et al. [57] compared different
probability distributions to update the IDF curve of Baghdad city. They discovered that
the heaviest rainfall ever recorded happened at a duration of 0.25 h with a return time
of 100 years. However, several studies showed the ability of remote sensing data for
hydrological studies in Iraq. Marra et al. [58] compared the radar with satellite data in
nearby countries. They proved the ability of remote sensing datasets to provide quantitative
information on previously unmapped regions of the planet. Suliman et al. [21] evaluated
the skill of remote sensing rainfall products to characterize droughts in Iraq and showed
higher performance of PERSIANN data to study droughts in the country. Jaber et al. [59]
also showed the efficacy of remote sensing precipitation in rainfall-runoff modelling in
Iraq. Studies in the nearby region also showed the applicability of satellite rainfall in
hydrological applications in Jordan [60], Iran [61], Saudi Arabia [62,63], and Turkey [64].

Our analysis found that IMERG had exaggerated the rainfall intensity in Baghdad
and Mosul. This is consistent with the findings of Chen et al. [65]. They looked at global
satellite precipitation products and found that IMERG inflated its estimates of heavy
rain. In contrast to other data, the IMERG regression line was near the diagonal. This is
because IMERG provided more accurate estimates of heavy precipitation than competing
data sources. IMERG showed more bias compared to the observed in the current study.
However, IMERG precipitation biases are larger since they incorrectly predict less-than-
average downpours.

Satellite rainfall data in Iraq have previously been evaluated [21,23,66,67]. However,
there has been no comprehensive analysis of satellite rainfall systems like IMERG and
GSMaP. As a result, it was not possible to draw any comparisons between our study and
other studies. However, studies in nearby regions also showed the higher capability of
GSMaP in replicating in situ rainfall. Saber and Yilmaz [64] assessed GSMaP rainfall with
in situ data to understand their skill in modeling seasonal, annual, and spatial rainfall
distribution. They found a good linear association of GSMaP rainfall with observation.
Darand and Fathi [61] showed the higher potential of GSMaP in characterizing droughts in
Iran. Ghorbanian et al. [68] evaluated the skill of six satellite products in Iran for the last
20-year period and showed better performance of GSMaP precipitation than other datasets.

Remote sensing rainfall data can be biased in several ways, depending on the specifics
of the underlying physiography. This includes the terrain, height, proximity to the shore-
lines, and climatic aspects like the speed of the wind and the sort of clouds present [28].
Future research should focus on linking specific physiographic and meteorological charac-
teristics with the identified bias in remote sensed rainfall to better understand the numerous
variables affecting the bias. After these variables are considered, IDF curves derived from
remote sensing precipitation products can be more accurately estimated thanks to a bias
correction procedure [28].
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6. Conclusions

This study aimed to create IDF curves for three major cities in Iraq from remote
sensing rainfall data. The lack of current rainfall-based updated IDF curves makes it
difficult to update SWMS and reduce rising urban floods in Iraq. Sustainable urban SWM
in the country may be a major step closer with the help of the developed IDF curves. The
intention was to select the best satellite rainfall product which could be used for developing
IDF curves for major cities of Iraq so that they could be updated from time to time without
depending on in situ observation. This study used observed daily data to evaluate the
performance of different satellite rainfall products considering the unavailability of hourly
rainfall data in Iraq. Different PDFs were fitted to ARI time series three satellite products to
identify the best PDF, which was subsequently employed to develop IDF curves at different
cities. The study revealed GEV as the best PDF for estimating hourly ARI distribution
parameters at all studied locations in Iraq. GSMaP GC is the best product to replicate
observed daily rainfall. GSMaP GC showed higher correlations with observed data at
Baghdad, Basra, and Mosul. The under- and overestimation were much less for GSMaP
GC. It is also the most reliable in estimating IDF curves in different cities. The IDF curves
generated using GSMaP GC were more realistic than that produced by the other two
products. Therefore, this study suggests the correction of GSMaP GC IDF biases based on
the percentage of difference estimated in this study to generate IDF curves for major cities
of Iraq. The study also indicates that bias-corrected IDF curves can be used to estimate
the recurrence of different intensities of rainfall events at locations where in situ data are
unavailable. It can help design hydraulic structures for mitigating the growing impacts of
climatic extremes like floods in Iraq due to climate change. The IDF curves were established
for only three of Iraq’s most important cities in this study. This process, however, can be
performed in any other satellite rainfall grid position within the city to generate an IDF
curve for that area. The procedure developed in this study can be extended to generate IDF
curves at ungauged areas of Iraq using satellite rainfall. This is important considering the
rapid urbanization but the unavailability of hourly or sub-hourly in situ rainfall data in the
country. In the future, other satellite rainfall data can be considered to find the best product
for developing IDF curves for Iraqi cities. In addition, global climate model simulations
can be used for the projections of IDF under the future climate of Iraq.
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Abbreviations

Symbol Definition
IDF Intensity-duration-frequency
PDFs Probability distribution functions
SWMS Stormwater management systems
MENA Middle East and North Africa
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IMERG Integrated Multi-Satellite Retrievals for Global Precipitation Measurement
GSMaP Global Satellite Mapping of Precipitation
GSMaP NRT Global Satellite Mapping of Precipitation Near Real-Time
GSMaP GC Global Satellite Mapping of Precipitation gauge corrected
GPM Global Precipitation Measurement
CREST Core Research for Evolutional Science and Technology
JSTA Japan Science and Technology Agency
JAXA Japan Aerospace Exploration Agency
PMM Precipitation Measuring Mission
ARI Annual rainfall intensity
GEV Generalized Extreme Value
GP Gumbel and General Pareto
MLE Maximum Likelihood
R2 Spearman coefficient of determination
%BIAS percentage of bias
SS Perkin’s skill score
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