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Abstract: Analysing the hydrological vulnerability of important structures such as bridges is essential
to ensuring people’s safety. This research proposes a methodology to assess the hydrological vulnera-
bility of riverine bridges through a case study of the Bajo Grau Bridge in the city of Arequipa, Peru.
Topological and hydrometrical data collection play an important role in the study. A topographic
surveying of the bridge and the streambed were carried out, followed by a series of annual maximum
flow rates which were compiled, fitted with empirical and theoretical distribution functions, and used
in a probability analysis. Based on this process, the flow rates were estimated for six scenarios based
on different return periods and critical conditions. Once the hydrological study was completed, the
system was modelled using HEC-RAS. The hydraulic simulation, as well as the soil mechanics study,
provided the parameters to calculate the scour in the bridge substructure, the potential erosion in the
deck, and the possibility of flooding in the superstructure. A hydrological vulnerability assessment
matrix with ten criteria subdivided in environmental and physical vulnerabilities was designed and
used to determine that the bridge has a high hydrological vulnerability. The proposed methodology
can be adapted and transferred to assess other bridges with similar characteristics.

Keywords: bridges; vulnerability; water flow; hydrology & water resource; scouring

1. Introduction

A riverine bridge is a structure intended for people and road traffic to cross wa-
ter currents located in the area of a riverbed, guaranteeing the effective transport and
safety of the end-user. The most critical hazards to which these bridges are exposed are
hydrological [1–4], where the flood and foundation movement contributes to almost half
of the failures compared to other causes of failure [5]. Hydrological agents such as floods
are closely related to climate change [4,6]. The increase in the frequency of extreme events
generates an accelerated deterioration of the bridges, an increase in their vulnerability and
probability of failure; and consequences that translate into significant economic losses [4,7].
Therefore, understanding the potential consequences of hydrological hazards in riverine
bridges becomes a priority matter with regard to complying with regulatory and func-
tionality requirements [6,8]. Consequently, in-depth vulnerability studies support public
institutions in prioritizing investment in vulnerable infrastructure [9]. To this end, a com-
prehensive hydrological vulnerability methodology is proposed and implemented in a case
study of the Bajo Grau Bridge.

The Bajo Grau Bridge serves as an important means of communication and is located
on the Chili River that connects Yanahuara and Cercado; two of the most economically
active districts of the city of Arequipa, Peru. The bridge, as well as many other bridges
that cross the same river, has been affected by the unexpected flow rate, to the point that
they have been closed several times over the years due to the hydrological effect of the
river [10–12]. In the event of the collapse of the bridge, the population would be severely
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affected. Many activities regarding transport and commerce in the city would be paralyzed
due to the disruption. However, there has been little urgency on behalf of the government
to address this situation. As a result of these observations, it becomes necessary to develop
a bridge vulnerability assessment that facilitates the public management of bridges that
could be implemented in Peruvian institutions. Such an assessment aims to be scalable to
other riverine bridges with similar characteristics, so that the bridge users are assured that
these essential pieces of infrastructure are safe, meet the requirements of design standards,
assure the continued provision of services and the prevention of their collapse, even if
investment is required to reduce the vulnerability of the bridge.

An important aspect to carry out a hydrological evaluation is to analyze and predict
the behavior of the river that crosses the bridge. Various types of hydraulic simulations
can be carried out using models in HEC RAS, MIKE 11, FLO 2D, TELEMAC 2D, among
others [13,14]. The debate about which type of model to use persists, since often the
performance of the software depends closely on the availability and precision of the input
data necessary for modeling [15]. The literature suggests that HEC-RAS is a tool that
produces reliable results for hydraulic simulations, both in 1D [16–18] as well as in 2D and
coupled 1D/2D models [15,19], which can be used in conjunction with other software such
as ArcGis [17]. In addition, HEC-RAS enables the characterization and modeling of bridges
in riverbeds [20,21], which are essential for vulnerability analysis, since the interaction of
the flow with the bridge generates erosion and scouring, which are major causes of bridge
failure that must be evaluated [22–24].

Even though erosion, scouring and flooding are key to the overall analysis, this paper
presents a deeper study of a bridge’s hydrological vulnerability through the inclusion
of more essential criteria arranged in a multi-method approach for bridge evaluation.
Recent related hydrological assessment approaches include integrated flooding impact
assessments [6,25,26] using morphometric parameters [27], some of them integrating so-
cioeconomic [28–30] and even cultural factors [31]. Furthermore, several authors have
studied bridge resilience against hydrological disasters [32–35], and some authors even
apply systems dynamics simulations to evaluate bridge resilience [36,37]. Specifically
for the Bajo Grau bridge, three studies are of special interest: a flooding risk assessment
of the Chili River [38], a high-level risk management study of the bridge [39], and the
guidelines established by the Peruvian National Institute of Civil Defence [40], in terms of
evaluating vulnerability.

Although the state-of-the-art focuses on important aspects of hydrological assessments,
there is still not a clear proposal in terms of a vulnerability assessment methodology for
bridges as holistic as the one presented in this research, which takes a different approach of
the bridge’s system. Consequently, this paper sets its main objective as the development of
such a methodology. In order to do so, the following section presents the materials and
methods to meet this objective. The Section 3 explains the results under a hydrological
and hydraulic perspectives. Subsequently, Section 4 presents the development of the
hydrological assessment matrix. Finally, the Bajo Grau bridge analysis is discussed, and
the conclusions are then presented.

2. Materials and Methods

Determining the vulnerability of the Bajo Grau Bridge aims to identify and characterize
the elements and conditions that increase the susceptibility of the bridge to the unfavourable
effects of an adverse hazard. In this case, the main hazard is the flow passing by the riverbed,
which can have several impacts such as scouring the substructure of the bridge and eroding
the deck. The proposed methodology to assess the bridge follows a six-step process that
includes data collection, processing and interpretation. The first step is related to collecting
data of the geometric and technical characteristics of the bridge, which is described in
Section 2.1. The second step, explained in Section 2.2, is a soil mechanics study. These
processes provide essential inputs for the bridge modelling, such as the geometry of the
bridge, the soil distribution curve deciles, and the specific weight. The third step, described
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in Section 3.1, provides six flow rates associated with six scenarios by statistically analysing
the series of the river annual maximum flows. The fourth step, carried out in Section 3.2,
refers to the hydraulic analysis and the modelling of the system, which provides the
necessary information for the fifth step, the scouring study (Section 3.3). These methods are
fundamental in determining the bridge hydrological vulnerability under the multi-topic
assessment matrix, the last step of the process, and it is explained in Section 4.

2.1. Topological Study

The information about the bridge was requested by the local city council. This included
the design technical file, the location, architecture, and the structural plans of the bridge.
However, not all of the information was available, as the design technical file and other
documents had been lost. Thus, it became necessary to carry out a survey of the bridge
and the riverbed to complement the insufficient information. Figure 1 shows a photograph
of the survey carried out as seen from the highest part of the bridge, in the flow direction,
from upstream to downstream. Additionally, a visual inspection was undertaken which
revealed the erosion at the bottom of the bridge deck due to past flow impacts (Figure 2),
and enabled information to be collected about the land use to get Manning’s roughness
coefficient along the channel [21]; a key data set for the vulnerability analysis.
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Figure 2. Erosion on the deck of the bridge.

The software used to process the surveying information was AutoCAD Civil 3D.
The contour lines (major curves every 5 m and minor curves every meter) were obtained,
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which led to a contour map. The variations, both longitudinal and transversal, of the
Chili riverbed along 360 m were modelled in the software as well; the code [41] required a
minimum of 150 m upstream and 150 m downstream. Once this process was finished, the
geometry was imported from AutoCAD Civil 3D to HEC-RAS. This included the alignment,
the flow direction, the cross sections every 10 m, the boundaries of the river, and the main
axis. Figure 3 shows the riverbed models; the minor curves, the 36 cross sections and
the bridge location in section 205 m (section 210 m was changed to section 205 m so that
the bridge could be correctly located and aligned in the model). Figure 4 shows the cross
section of the bridge in the channel from a downstream view. Consequently, the geometry
of the bridge and the riverbed, which represent critical parameters for the study [21], were
obtained. The modelling of the bridge is detailed in the hydraulic study.
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2.2. Soil Mechanics Study

A fundamental parameter for the scouring analysis is the soil, since this phenomenon
occurs where the bridge was founded; likewise, many of the equations for calculating
general and local scour that will be discussed afterwards require data concerning the soil.
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Therefore, a test pit was made in the riverbed and 4 kg of soil were extracted; the soil
samples were transferred to the laboratory in hermetically sealed bags. The tests were
carried out to determine the following properties of the soil: particle size distribution,
moisture content and specific weight.

The particle size analysis resulted in obtaining the deciles of the soil based on the
distribution curve. Sieves of 2”, 1 1⁄2”, 1”, 3⁄4”, 1⁄2”, 3⁄8” (inches, Imperial units used), and mesh
no. 4, 10, 20, 60, 100, 200 were used (Figure 5). Similarly, after a laboratory analysis, the
other two soil properties were obtained. The moisture content was 27.5% and the specific
weight was 2.65 g/cm3. These two properties, along with the parameters obtained from the
particle size distribution curve, concluded the direct collection of data from the soil and the
bridge, and were ready to be used as inputs in the next stages of the vulnerability analysis.
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3. Results
3.1. Hydrological Statistic and Scenarios Proposition

The Bajo Grau Bridge is located in the Medium Quilca-Vitor-Chili Hydrographic Unit,
before the confluence with the Tingo Grande River [42]. This sector is regulated by the
Aguada Blanca Dam and is reinforced upstream by the Charcani hydro-power station,
and has hydrometric data due to the “Water Movement Chili System” [43]. Discharges
have been monitored there since 1960, which allows for a statistical analysis to estimate
the flow rates according to the risk and the return period (T) of the structure. A thorough
hydrological study was necessary to predict the behaviour of the river following the
recommendations given by the Peruvian code [44]. Extreme value analysis plays a major
role in this regard, because random variables describing flows are essential to predict
design values in engineering projects [45]. Even though there are no codes to analyse the
hydrological vulnerability, the study of extreme values related to floods follows the same
procedure, as the behaviour of the river is independent of the behaviour of the bridge.

Consequently, the series of maximum annual flows was obtained, a graphic consistency
analysis was carried out, and then the probability frequency analysis was conducted
using four empirical and four theoretical distribution functions [44,46]. The Kolmogorov–
Smirnov goodness of fit test, which has proved to be valuable when analysing hydrological
data [45,47], enabled the selection of the best distribution by comparing the test statistics, D
with d between all 16 possible combinations (Table 1).



Water 2023, 15, 846 6 of 16

Table 1. Kolmogorov–Smirnov goodness of fit test combination results.

Empirical Model Theoretical Model Max Delta (D) Tabular Delta (d)

California

Normal 0.121

0.176

Log Normal 0.142

Gumbel 0.111

Pearson III 0.118

Weibull

Normal 0.110

Log Normal 0.133

Gumbel 0.122

Pearson III 0.101

Gringorten

Normal 0.112

Log Normal 0.133

Gumbel 0.119

Pearson III 0.108

Blom

Normal 0.111

Log Normal 0.133

Gumbel 0.120

Pearson III 0.107
where D is the maximum absolute value of the difference D between the observed/empirical probability distribu-
tion function and the theoretical/estimated one, and d is the tabular value in the function of the sample size and
the level of significance.

According to the analysis, the Pearson III distribution was the one that best fitted the
hydrological data, as its D was lower than d and it was the lowest of all the other results.
Figure 6 shows the Kolmogorov–Smirnov goodness of fit test with the empirical and the
theoretical models.
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The magnitude of an extreme hydrological event can be represented as the mean
plus the product of the standard deviation and the frequency factor; these parameters are
functions of the return period (T) and the type of probability distribution to be used in the
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analysis [44,48], in this case the Pearson III model. The flow rate prediction is based on the
establishment of different scenarios that consider the bridge’s service life [41], the return
period, an admissible risk to scouring and the extraordinary maximum water level [44].
Similarly, an additional scenario (scenario 6) was considered with Q = 500 m3/s, which is
the design flow rate of the spillway [43] (see Table 2).

Table 2. Flow rates based on each scenario.

Scenario T (Years) Q (m3/s)

1 100 251.74
2 200 276.45
3 400 325.87
4 500 350.57
5 1000 474.11
6 - 500.00

3.2. Hydraulic Aspects

Having concluded the hydrological study by obtaining the flow rates based on the six
proposed scenarios for the Chili river basin, it was possible to advance to the next stage to
determine the hydrological vulnerability of the bridge through hydraulic modelling. By
doing this, two important outputs were obtained: the flow properties to determine the
scouring in the substructure of the bridge, and the profile of the free surface of the flow
along the channel to determine the flood-driven vulnerabilities.

For each flow condition, the elements of geometric description such as number of
cross-sections, spacing, location and structural details are fundamental to achieving an
optimal model [21]. As was previously mentioned, an essential input to the modelling was
the topographic data of the channel obtained from the surveying. This parameter, along
with the geometric configuration of the bridge, was exported to HEC-RAS. The bridge
modelling in HEC-RAS enables the analysis of the bridge hydraulics by defining the deck
and abutments as separate items [49], and the overall model enables the delineation of the
areas vulnerable to floods at different discharge values [20]. The calculations are based
on HEC-RAS equations for one-dimensional steady gradually varied flow, such as Energy
equation [49] (Equation (1)):

z2 +
P2

γ
+ α2

V2
2

2g
= z1 +

P1

γ
+ α1

V2
1

2g
+ E (1)

where z1 and z2 are the elevations of the main channel inverts, P1
γ and P2

γ are the depths
of water at cross sections, V1 and V2 are the average velocities, α1 and α2 are the velocities
weighting coefficients, g is the gravitational acceleration, and E is the energy head loss.

Consequently, the hydraulic simulation in the software was possible after providing
the input data necessary for the analysis that the software required: flow rates, parameters
of roughness obtained by Cowan’s method [50,51], cross section contraction and expansion
coefficients, and slope and bridge dimensions. The results of the hydraulic simulation for
the six scenarios at cross section 205 m are shown in Table 3.

Accordingly, the model shown in Figure 7 represents the simulation of the most critical
scenario, which has a flow rate of Q = 500 m3/s and a flow area of 263.19 m2 in the bridge
section. As it can be seen, the water impacts the deck of the bridge, generating major
flooding; the consequences are analysed in the vulnerability analysis.

Complying with the Peruvian regulations is an important aspect to consider when
determining the hydrological vulnerability of the bridge. In this regard, the EMWL (Ex-
traordinary Maximum Water Level) is a fundamental parameter to analyse. Table 4 presents
the comparison between the deck height according to the code and the flow height after
the simulations for each scenario. Every scenario fails to meet the Peruvian code design
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requirements, since the difference in dimensions between the deck and the EMWL exceeds
the minimum difference of two meters.

Table 3. Hydraulic simulation results at the bridge cross section.

Scenario Return
Period

Flow Rate
(m3/s)

Min.
Elevation (m)

Normal Flow
Depth

Elevation (m)

Critical Flow
Depth

Elevation (m)

Velocity
(m/s)

Flow Area
(m2)

Water
Mirror (m)

Froude
Number

1 100 251.74 2393.99 2397.49 2396.30 2.47 112.31 52.22 0.46
2 200 276.45 2393.99 2397.72 2396.41 2.50 125.64 65.14 0.45
3 400 325.87 2393.99 2398.16 2396.62 2.54 155.35 68.23 0.43
4 500 350.57 2393.99 2398.38 2396.72 2.52 170.14 68.67 0.41
5 1000 474.11 2393.99 2399.39 2397.19 2.47 240.67 70.09 0.36
6 1104 500.00 2393.99 2399.71 2397.29 2.39 263.19 70.37 0.34
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Table 4. Results of the Extraordinary Maximum Water Level analysis.

Scenario T (Years) Inferior Deck
Height (m)

Real EMWL
Height (m)

Code EMWL
Height (m)

Heights
Difference (m) Result

1 100 2396.24 2397.32 2394.24 3.08 Failure
2 200 2396.24 2397.51 2394.24 3.27 Failure
3 400 2396.24 2397.87 2394.24 3.63 Failure
4 500 2396.24 2398.02 2394.24 3.78 Failure
5 1000 2396.24 2399.00 2394.24 4.76 Failure
6 - 2396.24 2399.71 2394.24 5.47 Failure

3.3. Scouring Study

The beginning of the movement of a particle due to the action of the current occurs
when the forces promoting its movement overcomes the stabilizing forces [52]. Some
equations are based on this movement velocity, hence the importance of its calculation.
Many widely used riverbed load sediment-transport models are based on the concept
that sediment transport either begins at, or can be scaled by, a constant value of the non-
dimensional bed-shear stress or the critical Shields stress [53]. The expressions used in
this research are derived from an analysis of the critical velocity, as they incorporate this
consideration in their formulas.

The erosive velocity is the parameter used to determine if the scour occurs in a live
bed or clear water. A large number of the equations are based on this scour classification;
therefore, it is necessary to determine it. It should be noted that scour depths in a live
riverbed may be limited if there is an appreciable number of large particles at the bottom
of the channel, in which case it is advisable to also use scour equations in clear water
and choose a representative depth. As mentioned: (a) Clear water scour occurs when the
erosive velocity is greater than the average velocity, V < Ve; and (b) Live bed scour occurs
when the erosive velocity is less than the average velocity, V > Ve. Three methods were
used to characterize the erosive velocity (Equations (2)–(4)); the comparison for the three
calculation methods for D50 is presented in Figure 8. The scouring type is live bed.
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Melville and Coleman [54]:

Ve = 5.67y
1
6 d50

1
3 (2)

Rodríguez Díaz [52]:

Ve =
1
n

R
1
6 (0.06(γs− 1)dm)

1
2 (3)

Richardson and Davis [55], HEC-18:

Ve = Ku y
1
6 d50

1
3 (4)

where y is the flow depth, d50 is decile 50 of the particle size distribution curve, n is the
Manning roughness coefficient, R is the hydraulic radius, γs is the specific gravity of
the riverbed material, dm is the mean diameter of the riverbed particles, and Ku is the
coefficient based on the Shields parameter.

There are four kinds of scouring that can be determined: general, local, transversal
and in curves [44]. The Bajo Grau Bridge stands in a straight section of the river, which is
why the calculation of the scouring in curves was discarded from the analysis; however,
the other three analyses were carried out. Furthermore, as the bridge does not have pillars,
the local scouring analysis focuses on the bridge abutments.

As for the general scouring, the method by Lischtvan and Lebediev [56] was used
(Equation (5)), as it has proved to be valuable for the calculation of this kind of scouring [57,58].
Moreover, this method incorporates the effect of contraction, which is why a further analysis
of that type of scouring was not necessary.

Hs =

(
α ∗ Ho

5
3

0.68 ∗ β ∗ dm0.28

) 1
1+z

(5)

where Hs is the flow depth measured from the water surface to the eroded bottom; Ho is
the initial flow depth; α = S1/2

n is the coefficient that depends on the roughness and energy
gradient (S); β = 0.0973logT + 0.79 is the coefficient that depends on the return period of
the flow rate; and z = −0.0089log2dm− 0.041logdm + 0.395 is the coefficient that depends
on the mean diameter of the riverbed particles.

As for the local scouring calculation in the abutments of the bridge, this was carried out
using the comparison of three different methods (the Field method, and Equations (6) and (7)),
where the most critical scouring for both abutments was obtained by the Froehlich [59] method.
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Field 3-parameter method [60]:

DsM
y

,
bM
y

, Fr
√

M

where Ds = ds + y is the equilibrium scour depth, measured from the surface of the normal
flow depth; ds is the local scour depth, measured from riverbed level; M = B′

B is the
aperture ratio; B is the average width of the top of the upstream channel; B

′
is the width of

the bridge aperture at a depth of y/2 below the normal flow surface; and Fr is the Froude
number.

Liu, et al. [61]:
Ds
y

= 2.15(
a

Yo
)

0.4
∗ Fr0.33 (6)

where a is the width of the abutment or vertical body.
Froehlich [59]:

ds
y

= 2.27 ∗ K1 ∗ K2 ∗
(

b
y

)0.43
Fr0.61 + 1 (7)

where K1 is the correction factor based in the abutment shape, K2 is the correction factor
based in the angle of impact of the flow against the abutment, and b is the normal projection
to the abutment, measured at the riverbed level.

The sum of the scouring components allowed the total potential scouring to be de-
termined. As the code indicates [44], the three types were calculated for a return period
of T = 500 years; therefore, the total potential scouring is also a function of that scenario.
Under these considerations, the potential total scouring from a downstream perspective
was 8.22 m in the left abutment and 7.32 in the right abutment.

4. Hydrological Vulnerability Assessment

The procedure used to determine the hydrological vulnerability of the bridge is based
on the literature review and the previous bridge analysis. First, the types of vulnerabilities
to be analysed were defined: Environmental Vulnerability (EV) and Physical Vulnerability
(PV). Following this, different criteria and assessment parameters were assigned to each
type of vulnerability. The classification criteria were established as low, medium, high and
very high. Based on these considerations, a hydrological vulnerability assessment matrix
was generated (Table 5).

Table 5. Hydrological vulnerability assessment matrix.

Variable Low—1 Medium—2 High—3 Very high—4

Environmental Vulnerability (EV) Levels

Flow rates variability Average levels Levels slightly higher than
the average

Levels higher than the
average

Levels much higher than
the average

Water quality
and composition Low pollution levels Medium pollution levels High pollution levels Very high pollution levels

Physical Vulnerability (PV) Levels

Building material used
Concrete, steel or similar

resilient materials in a
good state

Concrete, steel, wood or
similar materials in a

regular state

Wood or adobe without
structural reinforcements

in a bad state

Adobe, reed and minor
resistance materials in

precarious state
Location: proximity to a

populated centre
Far,

>5 Km.
Moderately close,

1–5 km
Close,

0.2–1 km,
Very close,
0.2–0 km

Soil quality along
the riverbed

Good conditions, without
obstructions and/or

variability

Regular conditions,
without many

obstructions and/
or variability

Bad conditions, with
obstructions

and variability

Very bad conditions, with
obstructions and
great variability
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Table 5. Cont.

Variable Low—1 Medium—2 High—3 Very high—4

Geometric
characteristics—Bridge

height

The height allows the
water to flow without

inconvenience. It has more
than 2 m of variance

between the water surface
and the deck underside

The height allows the
water to flow without

inconvenience. It has less
than 2 m of variance

between the water surface
and the deck underside

The height does not allow
the water to flow normally.

The water level reaches
the deck

The height does not allow
water to flow normally.

The water level surpasses
the deck

Erosion on the deck The deck is not reached by
the water flow

The deck is reached in the
underside by the water
flow, causing erosion

The deck is reached in a
bigger area by the water

flow, causing
further erosion

The whole deck is reached
by the water flow. It
causes erosion in the

upper section too

Protection against
scouring

The abutments are
protected against the flow

The abutments are
moderately protected

against the flow

The abutments are poorly
protected against the flow

The abutments are
unprotected against

the flow

Overflow and flooding
The flow does not exceed
the deck height and does

not overflow

The flow reaches the deck
height, but does not

overflow

The flow reaches the deck
height and overflows

The flow exceeds the deck
height, causing overflow

and flooding

Regulations compliance Strictly compliance of
the code

Moderately compliance of
the code

Low compliance of
the code

Without compliance of
the code

Considering the results of the bridge analysis, the matrix was used to give a score to
each criterion, making it possible to obtain a value for each type of vulnerability. It should
be noted that some criteria had higher weightings than others, because they represent a
greater vulnerability for the bridge. Furthermore, considering that the PV is directly related
to the structure and its possible failure, it was assigned a higher weighting than EV. Under
these considerations, the hydrological vulnerability of the bridge was calculated.

5. Environmental Vulnerability (EV)
5.1. Flow Rate Variability

Through a graphic consistency analysis, it was determined that the flows of the Chili
River have been increasing considerably (taking into account the data since 1960). Climate
change and the lack of maintenance of the dams in the basin are the reasons for this
situation. Therefore, a score of 3 was assigned to this criterion.

5.2. Water Quality and Composition

This criterion is based on two main factors. The first one relates to the fact that if the
water carries solid waste such as logs (due to pollution), the erosion on the bridge would
be greater than a normal (not polluted) flow. The second one is related to the impact on
the environment itself; in case of flooding, the negative effect on the neighbour ecosystem
would be greater as well. As the Chili River has a high degree of pollution [62,63], this
evaluation parameter has a value of 3.

Therefore, the EV is determined as high:

EV = 0.5 (3) + 0.5 (3)

EV = 3.0

6. Physical Vulnerability (PV)
6.1. Building Material Used

The bridge is made of reinforced concrete, a resistant material. However, as evidenced
in the visits to the bridge, it shows erosion due to the impact of the flow. That is why its
vulnerability was determined as medium (rating of 2).

6.2. Location

The bridge connects two important roads, the avenues La Marina and El Ejercito.
These are located in the centre of the city, a location that produces a greater vulnerability
(rating of 4), not only because of the high traffic of vehicles; but also due to the impact
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that this could have if the scenario for a return period of 500 years is reached; that is, the
flooding of La Marina Avenue and the damage to the buildings located along it.

6.3. Soil Quality

As a result of the inspection 150 m upstream and 150 m downstream of the bridge, and
the soil study, it was determined that the riverbed presents a regular condition, therefore it
is given a rating of 2.

6.4. Geometric Characteristics of the Bridge

As presented in the models, the flow reaches the superstructure for every scenario.
The deck should increase its height with respect to the Extraordinary Maximum Water
Level. This variation in height also implies an increase in the length of the deck, as well as
a change in its slope and possibly new features in the substructure, such as the placement
of pillars. Hence, it is given a rating of 3.

6.5. Erosion on the Deck

Through the inspection carried out on the bridge, it was observed that there is erosion
in the lower part of the deck derived from the impact of the river flow. Similarly, the
results for all critical scenarios translates into an impact on the deck; this supposes an
incremental erosive process in such a way that it increases the fragility of the bridge. Thus,
the vulnerability is high (a rating of 3).

6.6. Protection against Scouring

Since there were no plans or technical specifications for the bridge, a study of the
foundation needed to be carried out to determine if the calculated scouring exceeds the
depth of the abutments. Such an evaluation is out of the scope of this research, which is
why this parameter was estimated according to the protection of the bridge abutments,
which are moderately protected against the flow (a rating of 2).

6.7. Overflow and Flooding

It was observed that for a return period of 500 years, the water flow exceeds the cross
section of the bridge, as well as the sections upstream, due to the fact that, among other
factors, there is a contraction in that area. The result of the poor location of the bridge, as
well as its geometry, is that it produces a flood on La Marina Avenue. Hence, this criterion
was estimated as high (a rating of 4).

6.8. Regulations Compliance

Bridges should provide security. Although the bridge does comply with certain
regulations, the modelling carried out reveals the non-compliance with certain regulatory
parameters, such as the height of the bridge. Therefore, a rating of 2 was assigned to this
criterion.

Therefore, the PV is determined as high:

PV = 0.1 ∗ (2) + 0.1 ∗ (4) + 0.1 ∗ (2) + 0.2 ∗ (3) + 0.1 ∗ (3) + 0.1 ∗ (2) + 0.2 ∗ (4) + 0.1 ∗ (2)

PV = 2.9

7. Hydrological Vulnerability (HV)

Finally, using the two evaluation parameters established for the EV and the eight
parameters for the PV, and following the same classification criteria for each variable of
the matrix, the vulnerability of the bridge, being 2.9, was determined as high:

HV = 0.20EV + 0.80PV

HV = 0.20(3.0) + 0.80(2.9)
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HV = 2.9

8. Discussion

The bridge hydrological assessment methodology was validated through a case study;
however, its implementation process in public bodies in charge of managing bridges is
the subject of further analysis. The proposed methodology, which complies with Peruvian
regulatory requirements, could be adapted to bridges with similar characteristics as long
as there is an investment directed at risk management. The three levels of the Peruvian
government have sufficient financial resources to implement this type of process; however,
there is a low spending capacity, particularly at the local government level [64,65]. This
has been a trend in recent years, so much so that the long-term infrastructure gap in Peru
is 110 billion dollars [66]. In order to progressively close this gap and invest in the whole
life cycle of infrastructure systems, proposals are needed to solve the issues that pertain to
the population, ensuring their safety and avoiding large economic losses due to failures or
collapses of essential infrastructure systems such as bridges.

On the other hand, it should be noted that Peruvian regulations include outdated
design parameters. Implementing technological and innovative processes has become more
than an option, a necessity. Peruvian standards are just taking the first steps to implement
more efficient management systems such as BIM (Building Information Modelling), which
also generate greater transparency in the use of resources to plan, design, operate, maintain
and even dispose of infrastructure. Consequently, the methodology to evaluate bridges
could utilise up to date models for greater precision in the calculations, such as 3D models
and CFD (Computational Fluid Dynamics) [67,68]. Furthermore, a great complement to
the methodology would be efficient alternatives to manage the risks derived from the
vulnerability analysis; for example, sensors could be placed in the infrastructure under
SHM (Structural Health Monitoring) on priority interventions [69,70].

9. Conclusions

The proposed methodology to calculate the hydrological vulnerability of bridges that
cross rivers is based on ten different criteria grouped into two types of vulnerabilities that
are part of the hydrological vulnerability. The number of criteria that can be considered, as
well as the types of vulnerabilities, are not limited, i.e., more assessment parameters can
be proposed in the determination of the characteristics of the bridge. Consequently, the
hydrological vulnerability assessment matrix can be adapted for its use in other bridges.

Regarding the case study, the Bajo Grau Bridge presents a high hydrological vulnera-
bility. Several factors enabled the assessment of the bridge: the field exploration, the soil
study, the topographic surveying, the hydrological statistics based on the annual maximum
flow rates of the river, the hydraulic modelling in HEC-RAS, and the scouring study. The
study shows that the bridge represents a danger for passers-by, especially in the rainy
season when the flow of the Chili River in the city increases. That is why it is recommended
to complement this hydrological analysis with a seismic and structural one; so that, based
on this, alternatives for optimizing the bridge are proposed. In case of a reconstruction, the
height of the bridge should be 4 m higher than it is currently, since, as evidenced in the
modelling, the flow would impact the bridge deck in the most critical scenarios, and its
current height does not meet current regulatory requirements. Moreover, the foundation
depth for the abutments should be 8.5 m.

This research contributes to closing the knowledge gap regarding the analysis of
important vulnerable structures such as bridges by proposing a novel methodology that
can be transferred to other structures that can have a positive impact as long as it is
properly implemented.
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