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Abstract: Nanofiltration (NF) membranes, which can consistently offer safe and reliable water quality,
have become increasingly popular in drinking water treatment. In this study, the conventional
(coagulation-sedimentation-sand filtration) and ozonation-biologically activated carbon filtration
(O3-BAC) advanced treatment processes at a full-scale drinking water treatment plant (DWTP) were
combined with a pilot-scale NF process for treatment of Taihu Lake water. The results showed that
the “conventional + O3-BAC + NF” combined processes had superior effects on removing natural
organic matter (NOM), Br−, and other common water quality parameters (e.g., turbidity, conductivity,
TDS, and total hardness) with efficiencies of 88.8–99.8%, for which the NF process played a critical
role. The conventional plus O3-BAC processes effectively removed formation potential of chlorinated
disinfection by-products (Cl-DBPFPs, by 28.0–46.6%), but had poorer effect in reducing formation
potential of brominated DBPs (Br-DBPFPs, by −2637.2–17.3%). NOM concentrations (characterized
by dissolved organic carbon (DOC), ultraviolet absorbance at 254 nm (UV254), and/or fluorescent
components) were the driving factors for most DBPFP species, while elevation of [Br−]/[DOC] ratio
likely resulted in enhanced formation of brominated trihalomethanes (THMs) during chlorination of
the BAC effluent. By adding the pilot-scale NF process, the “conventional + O3-BAC + NF” treatment
train effectively controlled DBPFP, yielding the removal efficiencies of Cl-DBPFP and Br-DBPFP as
77.6–100% and 33.5–100%, respectively, with monochloroacetic acid, mono-bromo-acetic acid, and
tribromomethane formation potentials (MCAA-FP, MBAA-FP, and TBM-FP) not detected in the final
effluent. Low temperature in the winter season might be the primary reason for the rapid increase of
transmembrane pressure when operating the NF membrane under flux of 25 L/(m2·h), which could
be largely delayed by lowering the flux to 20 L/(m2·h). Characterization of the membrane cleaning
solutions showed that macromolecular biopolymers (6000 Da–4000K Da) such as polysaccharides
and proteins were the main contributors to membrane fouling.

Keywords: pilot-scale nanofiltration (NF); ozonation-biological activated carbon filtration (O3-BAC);
disinfection by-product formation potential (DBPFP); membrane fouling

1. Introduction

Natural organic matter (NOM), ubiquitously found in aqueous environments, is a
heterogeneous mixture of humic acid, fulvic acid, proteins, polysaccharides, and other dis-
solved organic compounds of varying sizes [1–3]. NOM can affect the smell, color, and taste
of water, cause bacterial re-growth in distribution systems [4,5], and unintentionally form
disinfection byproducts (DBPs) during chlorine-based disinfection processes [4,5]. Nowa-
days approximately 600–700 DBPs have been detected in finished drinking waters, some of

Water 2023, 15, 843. https://doi.org/10.3390/w15050843 https://www.mdpi.com/journal/water

https://doi.org/10.3390/w15050843
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/water
https://www.mdpi.com
https://orcid.org/0000-0001-5117-7883
https://doi.org/10.3390/w15050843
https://www.mdpi.com/journal/water
https://www.mdpi.com/article/10.3390/w15050843?type=check_update&version=2


Water 2023, 15, 843 2 of 18

which are known or potential carcinogens related to bladder and colon cancers [6–8]. There-
fore, many countries have regulated the maximum contaminant levels (MCLs) in finished
water for DBPs with known health risks, such as trihalomethanes (THMs) and halo-acetic
acids (HAAs): in the U.S., MCLs of total THMs (TTHMs, i.e., the sum of trichloromethane
(TCM, or chloroform), tribromomethane (TBM, or bromoform), bromodichloromethane
(BDCM), and dibromochloromethane (DBCM)) and HAA5 (the sum of five regulated HAAs,
including mono-, di-, and trichloroacetic acid, and mono- and dibromo-acetic acid (MCAA,
DCAA, TCAA, MBAA, and DBAA)) are regulated as 80 µg/L and 60 µg/L, respectively;
in Japan, concentrations of TTHMs have to be controlled below 100 µg/L; in China, the
sum of the ratios of the detected levels for individual trihalomethanes (THMs) over their
respective MCLs (60–100 µg/L) should not exceed 1 [6,9,10].

Numerous methods to get rid of NOM have been employed to control DBP formation
in drinking water treatment. Conventional water treatment processes including coagulation,
flocculation, sedimentation, and sand filtration (SF) generally have limited effects [11,12],
while the advanced treatment of ozonation-biological activated carbon filtration (O3-BAC)
could significantly improve [13,14] elimination of DBP generation by removing their precur-
sors. However, limitations have been found for O3-BAC when treating water containing
bromide (Br−) and/or algae, such as (i) increased generation of bromate (BrO3

−) and bromi-
nated DBPs (Br-DBPs) during the subsequent chlorination of ozonated water [15], with the
latter being dozens to hundreds of times more toxic than chlorinated DBPs (Cl-DBPs) [16,17];
and (ii) destruction of algae cells by ozonation, releasing intracellular algal organics such
as humus and bio-polymerin, which are important precursors to THMs and HAAs [18].
Moreover, with increasing service time of the BAC filter, the adsorption capacity of the
activated carbon to retain NOM would decrease, likely leading to increased DBP precur-
sors in the effluent [19]; and leakage of microorganisms (e.g., bacteria and invertebrates)
into the BAC effluent and associated health risks could also occur, which has sparked
widespread public concern [20]. As a result of these negative effects, further upgrade of the
“conventional + O3-BAC” treatment processes is urgently needed to guarantee the health
and safety of drinking water.

Previous studies have shown that nanofiltration (NF) technology can largely improve
removal of DBP precursors. Siddique et al. [21] found that the removal efficiency of DBP pre-
cursors in surface water by ozonation integrated with NF reached 90–95%. Ersan et al. [22]
reported that 72–91% of THM precursors in municipal wastewater were removed by various
NF membranes. Kim et al. [23] discovered that the removal efficiencies of THM and HAA
formation potentials (THM-FP and HAA-FP) using the ultrafiltration-nanofiltration (UF-NF)
process for treatment of Han River water were 85–89%, the NF membrane playing the critical
role. However, most of the above studies were based on laboratory experiments, with few
in pilot or full scale, leading to a lack of practical value. Regardless of the merits listed
above, membrane fouling still presents a challenge for application of this technology [24],
and colloid and NOM are reported as the main causes of accelerated NF membrane fouling
during treatment of surface water [25,26]. Thus, to maintain the stability of NF membrane
operation, it is crucial to choose the appropriate pretreatment technology to remove NOM.
Considering its effectiveness in NOM removal, the multi-step treatment consisting of con-
ventional and O3-BAC treatment processes might serve as a promising pre-treatment for NF
membrane operation [27], which to the best of our knowledge, has barely been reported in
the literature.

In light of the above, this project installed a pilot-scale NF process following the existing
processes at a full-scale drinking water treatment plant to form a “conventional + O3-BAC + NF”
combined system, and evaluated its performance in improving water quality and controlling
DBP formation. A commercially-available NF90 membrane that has been widely applied in
lab-scale studies [28–30] was employed here for the pilot-scale NF process. Over the operation
period of August 2020 to December 2021, a variety of water quality parameters were monitored
to characterize NOM concentrations and compositions as well as inorganic components through
the treatment train. Correlation analyses were performed to identify the monitored parameters
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associated with and/or responsible for formation potentials of TTHMs (TTHM-FP) and HAA5
(HAA5-FP) and their individual species. The mechanisms of NF membrane fouling using
“conventional + O3-BAC” effluent as the feed water were also investigated. The ultimate goal of
this study was to provide a meaningful reference for supply of high-quality drinking water in
China and for other regions worldwide.

2. Materials and Methods
2.1. Operating Mode and Conditions
2.1.1. Full-Scale Processes at the Drinking Water Treatment Plant (DWTP)

The raw water of the drinking water treatment plant (DWTP) in this study comes
from the East Taihu Lake, which is one of the primary drinking water sources in Suzhou
City, Jiangsu Province, China. The full-scale system at the DWTP include two units:
(1) conventional treatment processes of pre-ozonation, coagulation, sedimentation, sand fil-
tration (SF); and (2) advanced treatment processes of ozonation followed by BAC (O3-BAC).
Aluminum sulfate was used as the coagulant at a dosage of 42 mg/L. The pre-ozonation
process was not under operation during the study period (i.e., ozone dose = 0 mg/L). For
the post-ozonation process, 0.5 mg/L of ozone was applied with a contact time of 11.7 min.
The BAC filter, with empty bed exposure time of 13.8 min and carbon layer depth of 2.1 m,
was operated at a filtration rate of 9.2 m/h. The BAC filter had been operated for >1.5 years
when this project initiated.

2.1.2. Pilot-Scale Nanofiltration (NF) Process

The BAC effluent of the DWTP was used as the feed water of the pilot-scale NF
membrane system, which was installed with the commercially-available membrane NF90-
4040 (Dow, USA). The NF system was operated continuously under the constant flux and
variable pressure mode. Two different fluxes, 20 and 25 L/(m2·h), were employed with
30% recovery rate for both conditions. Other operation parameters of the NF membrane
system are reported in Table S1. Trans-membrane pressure (TMP) of the NF system was
automatically recorded by a programmable logic controller (PLC) system. Maximum
TMP was limited to 0.5 MPa, at which the filtration operation was paused to conduct
offline circulating chemical cleaning. The chemical cleaning was conducted using the
following reagents in sequence: (i) hydrochloric acid (HCl) solution at pH 2.0 for 2 h;
(ii) ultrapure water (produced from reverse osmosis equipment in the pilot system) for
15 min; (iii) sodium hydroxide (NaOH) solution at pH 12.0 for 2 h; and (iv) ultrapure water
for 15 min. The acid and alkaline elution solutions were collected for analysis of membrane
fouling as described below.

A scheme of the above full- and pilot-scale treatment processes is shown in Figure 1.
During the period of August 2020 to December 2021, samples of the raw water and effluents
of the conventional, O3-BAC (or O3 and BAC separately) and NF processes were collected
regularly (as specified in the results) to monitor various water quality parameters, as
described below.
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trations of TTHMs (including TCM, TBM, BDCM, and DBCM) and HAA5 (including 
MCAA, DCAA, TCAA, MBAA, and DBAA) in the incubated samples were determined 
using a gas chromatograph (GC) with a 7890A electron capture detector (ECD) equipped 
with an HP-5 column (Agilent, USA). For TTHMs, 5 mL solution was directly taken from 
each of the incubated samples and placed in a 7697A headspace sampler (Agilent, USA), 
where the volatile analytes including THMs in the headspace were swept into the GC-
ECD system for analysis [33]. For HAA5, prior to analysis on the GC-ECD, the incubated 
water samples were processed with liquid/liquid extraction using methyl tertiary-butyl 
ether (MTBE) followed by derivatization with acidic methanol according to the HAA5 gas 
chromatography method, under Ministry of Environmental Protection [34].  
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Figure 1. Scheme of the full-scale treatment processes plus the pilot-scale NF system at the drinking
water treatment plant (DWTP) in this study. Raw water of the DWTP comes from the East Taihu Lake,
which is one of the primary drinking water sources in Suzhou City, Jiangsu Province, China. The
pilot-scale NF system was operated during August 2020–December 2021, and the samples (from both
the full-scale and pilot-scale processes) were collected regularly during this period. Pre-ozonation
was not under operation (i.e., ozone dose was zero mg/L) during the period of this study.

2.2. Disinfection By-Product Formation Potential (DBPFP) Analysis

All water samples were amended with 10 mM phosphate buffer at pH 7.0 using
sulfuric acid (H2SO4) and NaOH for pH adjustment [31]. Then each sample was dosed
with sodium hypochlorite (NaOCl) at a final concentration of 20 mg/L as Cl2 and incubated
at 25 ± 1 ◦C for 7 d in the dark [31]. The incubation was terminated by adding excessive
ascorbic acid (molar ratio ≥ 20) [32]. To investigate the impact of bromide (Br−) on
DBPFP, selected samples were dosed with additional Br− (final concentration ranging from
2–162 µg/L) and subjected to incubation in the presence of NaOCl as described above.
Concentrations of TTHMs (including TCM, TBM, BDCM, and DBCM) and HAA5 (including
MCAA, DCAA, TCAA, MBAA, and DBAA) in the incubated samples were determined
using a gas chromatograph (GC) with a 7890A electron capture detector (ECD) equipped
with an HP-5 column (Agilent, USA). For TTHMs, 5 mL solution was directly taken from
each of the incubated samples and placed in a 7697A headspace sampler (Agilent, USA),
where the volatile analytes including THMs in the headspace were swept into the GC-
ECD system for analysis [33]. For HAA5, prior to analysis on the GC-ECD, the incubated
water samples were processed with liquid/liquid extraction using methyl tertiary-butyl
ether (MTBE) followed by derivatization with acidic methanol according to the HAA5 gas
chromatography method, under Ministry of Environmental Protection [34].
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2.3. Other Analytical Assays

Turbidity (Turb) was measured by a desktop turbidity meter (TL2300, Hach, Ames,
IA, USA). Measurements of pH, total dissolved solids (TDS), and conductivity (Cond)
were undertaken using a pHS-3C pH meter (Jingke, Shanghai, China). Chemical oxygen
demand was assessed with the permanganate index (CODMn) using the acidic potassium
permanganate method [35]. Total hardness (TH) was measured using the EDTA titration
method [36]. Anions such as bromide (Br−) and bromate (BrO3

−) were measured by an
Integrion ion chromatography analyzer equipped with an AS19 column (Thermo Scientific,
Waltham, MA, USA).

Ultraviolet absorbance at 254 nm (UV254) was measured using a 1-cm quartz cuvette
on a UV/Vis spectrometer (Evolution 300, Thermo Fisher, Waltham, MA, USA). Dissolved
organic carbon (DOC) concentration was measured with an Aurora 1030w total organic
carbon (TOC) analyzer (OI Analytical Inc., College Station, TX, USA). Excitation-emission
matrix (EEM) spectroscopy was measured with a F-7100 fluorescence spectrophotometer
(Hitachi, Tokyo, Japan) (Excitation: 200–400 nm, 2 nm intervals; Emission: 250–550 nm, 2 nm
increments). Major components of the fluorescent organic matters were extracted from the
EEM spectra using the parallel factor (PARAFAC) analysis, and the maximum fluorescence
intensity (Fmax) values were obtained for each component [37,38]; in addition, fluorescence
regional integration (FRI) was performed by summarizing the EEM spectra into four regions
according to Chen et al. [39]. Molecular weight (MW) distributions were determined with
high-performance size exclusion chromatography (HPSEC), for which water samples were
separated by a high-performance liquid chromatograph (HPLC, Waters e2695, Milford,
MA, USA) system equipped with an SEC column (TSKgel G3000SWXL, Tosoh, Tokyo, Japan)
and subsequently analyzed by a UV detector (Waters 2489, Milford, MA, USA) and a TOC-
specific detector (Modified Sievers 900 Turbo, Boston, MA, USA) [40,41]. For determination
of UV254, DOC, EEM spectra, and MW distributions, the water samples were prefiltered
with 0.45-mm PVDF (Millipore Millex, Billerica, MA, USA) membranes prior to analysis.

2.4. Data Analysis

For each water quality parameter, the removal efficiency with a certain treatment
process/unit was defined as the increment (either positive or negative) of its value before
and after the treatment process/unit over its value measured in the raw water; thus, the
summation of removal efficiencies by all the treatment unit/process is equal to the total
removal efficiency by the whole treatment train. Origin Pro 2023 software was used for
linear regression analysis, Pearson correlation analysis, and FRI analysis of EEM spectra.
PARAFAC modelling was conducted using Matlab® R2017b according to the method
described by Murphy et al. [42]. Statistical significance was defined as p values ≤ 0.05.

3. Results and Discussion
3.1. Water Quality Parameters

Measurements of water quality parameters in the raw water and effluents of the
conventional, advanced O3-BAC, and pilot-scale NF processes (i.e., SF effluent, O3-BAC
effluent, NF effluent, respectively) are shown in Table S2, and the average removal effi-
ciencies of these parameters with the above processes, individually or accumulatively, are
illustrated in Figure 2.
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moval efficiencies by conventional, O3-BAC, and NF processes. Samples from both the full-scale and 
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and n = 17 for the rest parameters) during August 2020–December 2021. For a specific indicator, the 
removal efficiencies were normalized to the values of the raw water as described in the main text). 
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3.1.2. NOM Characterized by CODMn, DOC, UV254, SUVA, and EEM 
As also shown in Figure 2 and Table S2, the conventional treatment processes exhib-

ited moderate removal efficiencies for NOM characterized by CODMn (37.6%), DOC 
(23.4%), and UV254 (19.4%). The following O3-BAC advanced treatment did not largely 

Figure 2. Removal efficiencies of water quality parameters by the treatment processes at the full-scale
DWTP plus the pilot-scale NF system: (a) accumulative removal efficiencies by the conventional,
conventional + O3-BAC, and conventional + O3-BAC + NF processes; and (b) individual removal
efficiencies by conventional, O3-BAC, and NF processes. Samples from both the full-scale and pilot-
scale processes were collected regularly (n = 3 for anions, n = 14 for fluorescence measurements,
and n = 17 for the rest parameters) during August 2020–December 2021. For a specific indicator, the
removal efficiencies were normalized to the values of the raw water as described in the main text).
For panel (a), the circles are filled with different colors for different parameters, and their sizes (circle
areas) represent removal efficiencies.

3.1.1. Basic Parameters (Turbidity, Conductivity, TDS, and TH)

As shown in Table S2 and Figure 2, the conventional treatment processes decreased
turbidity by 62.7% from 2.23 ± 0.72 NTU to 0.76 ± 0.70 NTU, which satisfied the current
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national drinking water standard of China (1.0 NTU) [10], but did not reach the Suzhou high-
quality drinking water quality standard (0.5 NTU) [43]. The subsequent O3-BAC and pilot-
scale NF processes further decreased turbidity to 0.31 ± 0.15 NTU and 0.07 ± 0.02 NTU,
by 21.9% and 12.1%, respectively. Turbidity was often positively associated with levels
of microorganisms (viruses, bacteria, and parasites) including pathogenic ones [44]. The
extremely low turbidity (0.07 ± 0.02 NTU) of the NF effluent indicated that NF could
ensure biosafety of the finished water. Several other parameters, e.g., conductivity, TDS,
and TH, were barely removed (within ±1%) by the conventional plus O3-BAC processes,
though effectively removed by the pilot-scale NF process (>98%).

3.1.2. NOM Characterized by CODMn, DOC, UV254, SUVA, and EEM

As also shown in Figure 2 and Table S2, the conventional treatment processes exhibited
moderate removal efficiencies for NOM characterized by CODMn (37.6%), DOC (23.4%), and
UV254 (19.4%). The following O3-BAC advanced treatment did not largely improve NOM
removal, after which the values of CODMn, DOC, and UV254 further decreased only by 4.5%,
4.2%, and 18.1%, respectively. For the fluorescence results, four components were obtained
from the EEM spectra through PARAFAC analysis: tyrosine-like substances (Component 1,
or C1) [45–48], tryptophan-like substances (C2) [49–51], humic-like substances (C3) [52–54],
and free tyrosine (C4) [55,56] (see more details in Figure S1 and Table S3). The conventional
treatment had limited effect (by 2.2–19.6%) on removing signals (here assessed using Fmax
values) of the four fluorescent components, and the following O3-BAC treatment further
decreased them by 28.0–46.1%.

It is notable that the O3-BAC advanced treatment had a better removal effect on
UV254 (18.1%) than DOC (4.2%) (Figure 2b), likely because post-ozonation converted the
highly UV-absorbing compounds (largely as humic and fulvic substances) into small and
non-humic molecules that were more readily available toward biodegradation during
the following BAC process [33]. It should also be of note that the accumulative removal
efficiencies of DOC and UV254 by the “conventional + O3-BAC” processes turned out to be
27.6% and 37.5%, respectively (Figure 2a), both much lower than the values at the early stage
of the BAC operation (42% and 64%, respectively; data provided by the DWTP). Assuming
the conventional processes had performed stably through the DWTP’s operation period,
this difference might be explained by the fact that the adsorption capacity of the long-term
BAC filter (>1.5 years old here) had decreased significantly compared to a relatively new
one, with NOM removal primarily maintained by microbial degradation [19].

The last NF process effectively removed NOM characterized by various parame-
ters (43.4–71.5%), leading to total removal efficiencies by the whole treatment train from
77.2–99.3% (except 38.4% for SUVA) (Figure 2). In the NF effluent, CODMn was decreased
to 0.32 ± 0.10 mg C/L, which was far below the criteria of Suzhou high-quality drinking
water quality standard (≤2 mg C/L) [43]. Concentrations of UV254 and DOC were also
found to be extremely low in the NF effluent (0.0004 ± 0.0006 cm−1 and 0.03 ± 0.05 mg/L,
respectively). It has been well known that the taste of drinking water is related not only to
content of inorganic ions and residual chlorine, but also to that of NOM [57,58]. This again
implied that NF could not only ensure biological safety but also potentially improve the
taste of drinking water.

3.1.3. Bromide (Br−) and Bromate (BrO3
−)

Both conventional and O3-BAC advanced treatment processes had minimal effect
on removal of Br− (by 9.8% and −9.1%, respectively), while the following NF process
performed high removal efficiency of Br− (79.7%) (Figure 2). Though Br− is harmless,
it has been confirmed to participate in the formation of BrO3

− and other harmful Br-
DBPs during oxidation or chlorination [59]. BrO3

− was not detected through the whole
treatment train including the influent and effluent of O3-BAC, suggesting that low-dose
ozone (0.5 mg/L for 2.41 ± 0.42 mg/L of DOC here) was insufficient to oxidize Br−

(0.065 ± 0.002 mg/L) into BrO3
− (see Table S2) [60]. The very low concentration of Br− in
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the NF effluent indicated that application of NF following the existing treatment processes
at the DWTP was advantageous in lowering risks of Br-DBP formation during disinfection
of the finished water.

3.2. DBPFP
3.2.1. Profile and Variation of DBPFP during Treatment Processes

Results of THM-FPs and HAA-FPs measured for the raw water and effluents of each
treatment unit/process are shown in Figure 3. Here, the results of O3 and BAC effluents
are plotted separately to elucidate variations of THM-FPs and HAA-FPs in each step of the
advanced treatment. Overall, in most of the samples after 7-day incubation, TTHM-FP was
dominated by TCM-FP followed with BDCM-FP, and HAA5-FP were primarily in species
of DCAA-FP and TCAA-FP, generally consistent with profiles of THM-FP and HAA-FP
previously reported for other drinking water systems using surface or ground waters as
sources [61,62].
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Figure 3. Measurements of DBP formation potentials in samples of the raw water and effluents of
each treatment unit: (a) THM-FP (including TTHM-FP and individual species) and (b) HAA5-FP
(including HAA5-FP and individual species). Samples were collected for THM-FP analysis on March
18 2021, and for HAA5-FP analysis on 11 January 2021. Error bars represent standard deviations
obtained from three independent assays for each sample.

Conventional treatment. After treatment with the conventional processes, TTHM-FP
and HAA5-FP were decreased by 11.4% and 19.9%, respectively (Figure 3). Compared
with its performance in removing formation potentials of Cl-DBPs (Cl-DBPFP; 12.9–25.6%),
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the conventional treatment was less effective in removing, or even dramatically increased,
the formation potentials of the brominated species (Br-DBPFP; −877.2% for TBM-FP, and
−2.3–5.1% for the others). DBPFP removal by the conventional treatment processes mainly
resulted from coagulation/sedimentation, which preferentially removed hydrophobic
NOMs due to their lower affinity with water, higher MWs, and higher charge density [63].
It has been reported that chlorine is typically more reactive toward hydrophobic precursors,
while bromine is more reactive toward lower-MW and more hydrophilic precursors [64,65].
Thus, the lower removal of Br-DBPFP than Cl-DBPFP here was likely associated with the
poorer removal effect of hydrophilic NOM than hydrophobic ones by the conventional
treatment processes, such as coagulation/sedimentation. As regards to the dramatic
increase of TBM-FP after conventional treatment, we found that TBM-FP had almost no
change after “coagulation + sedimentation + SF” processes, while significant increase
occurred from 0.015 to 0.34 µg/L after the raw water passed through the pre-ozonation
tank (data not shown in Figure 3), likely due to ozone leakage. (Note that the pre-ozonation
process was technically not in operation during this study).

O3-BAC advanced treatment. The following O3-BAC advanced treatment further re-
duced TTHM-FP and HAA5-FP by 14.4 and 14.6%, respectively, and in total, the “con-
ventional + O3-BAC” processes removed TTHM-FP and HAA5-FP by 25.9% and 34.5%,
respectively (Figure 3). Similar to the conventional treatment, O3-BAC also preferentially
removed Cl-DBPFP (by 10.6–21.0%) over Br-DBPFP (by <2% for all the brominated species,
except 12.3% for MBAA-FP). As evident from Figure 3, post-ozonation contributed to a
significant increase of most DBPFP species (except TCM-FP and BDCM-FP), which can
be explained by NOM transformation from hydrophobic and higher-MW molecules to
more hydrophilic and lower-MW ones, and thus an increase of DBP precursors (especially
those to Br-DBPs as discussed above) during this process [64,65]. Although the follow-
ing BAC process effectively removed most of the DBPFP species, two of the brominated
THM-FP (Br-THMFP) species, DBCM-FP and TBM-FP, were enhanced by BAC, leading to
overall negative removals after the O3-BAC advanced treatment (−20.8% and −1760.1%,
respectively). Some previous studies also reported elevation of Br-THMFP after granular
activated carbon (GAC) or BAC treatment [66–68] and the explanations can be summa-
rized from aspects: (1) With the service life of GAC/BAC increasing and other operation
parameters (e.g., upstream ozone dosage) changing, its adsorption capacity would be
weakened along with changes in microbial respiration, resulting in leakage/desorption of
microorganisms, microbial products, and/or other organic pollutants, which ultimately
alter NOM composition in the effluent and likely benefit the formation of Br-THMs (and
N-DBPs) during chlorination afterwards [69–71]; (2) GAC/BAC retained NOM better than
Br− ion, leading to increased [Br−]/[DOC] ratio in the effluent and, in turn, competitive
formation advantage of brominated DBP species over chlorinated ones [66–68,72].

Pilot-scale NF treatment. The NF process had superior removal effects on TTHM-FP and
HAA5-FP with efficiencies of 64.7% and 45.2%, respectively. In total, the whole treatment
train of “conventional + O3-BAC + NF” removed TTHM-FP and HAA5-FP by 90.6% and
79.7%, respectively, and the removals for Cl-DBPFP (77.6–100%) and Br-DBPFP (33.5–100%)
were both good. In the NF effluent, levels of TTHM-FP and HAA5-FP were decreased to
18 µg/L and 33 µg/L, respectively, with MCAA-FP, MBAA-FP, and TBM-FP not detected.
The results demonstrated that the NF membrane could effectively remove NOM and control
DBP formation in the finished water.

3.2.2. Correlation of DBPFP with Water Characteristics: Factors Driving Elevation of
Br-THMFP Induced by O3-BAC

To further investigate factors responsible for DBPFP variations through the treatment
train (especially for the significant increase of DBCM-FP and TBM-FP induced by the
O3-BAC advanced treatment, as discussed above), Pearson correlation or linear regression
analysis was performed for DBPFP (TTHM-FP, HAA5-FP, and their individual species) ver-
sus various NOM parameters (DOC, UV254, and Fmax values of fluorescence components),
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as well as the ratio of [Br−]/[DOC]. Similar correlation analyses were also conducted for
the bromine substitution factor of THMs (BSFTHMs) versus [Br−]/[DOC]. Here, BSFTHMs,
which describes the speciation of THM-FP, can be calculated according to Equation (1) [73]:

BSFTHMs =
∑3

n=1 n × [CHCl (3−n)Brn]

3 ∑3
n=0 CHCl(3−n)Brn

(1)

The BSFTHMs values (ranging from 0–1) of the water samples typically declined in the
order of BAC effluent > O3 effluent > SF effluent > raw water > NF effluent (see Table S4).
Results of the above correlation/regression analyses are illustrated in Figure 4.
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Figure 4. (a) Heatmap of Pearson correlation coefficients of DBPFP for different species versus
water quality indicators characterizing NOMs; and plots of (b) TCM-FP, (c) BDCM-FP, (d) DBCM-FP,
(e) TBM-FP, and (f) BSFTHMs versus [Br−]/[DOC] with linear regression lines. In panel (a), the
Pearson correlation analyses were performed by pooling data resulted from samples of the raw
water and effluents of each treatment unit/process, which were collected regularly during August
2020–December 2021 (n = 42 for THM-FPs versus DOC or UV254; n = 28 for THM-FPs versus Fmax of
C1–C4; n = 32 for HAA5-FPs versus DOC or UV254; n = 20 for HAA5-FPs versus Fmax of C1–C4).
In panels (b–f), NF effluent0, SF effluent0, BAC effluent0, and Raw water0 represent water samples
without spiking additional Br−, which were collected in November 2021; while NF effluentn, SF
effluentn, BAC effluentn, and Raw watern represent those samples with spiking additional Br−

(bromide dosage, i.e., ∆[Br−] = 2, 6, 18, 54, and 162 µg/L) (n = 15 in total). Linear regression analyses
were performed by excluding samples of NF effluent0 and NF effluentn (see results with inclusion of
NF samples in Figure S4).

Correlation of DBPFP with NOM parameters. As shown in Figure 4a, TTHM-FP, HAA5-
FP, and their individual species exhibited generally strong positive correlations (Pearson’s
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r = 0.51–0.99, median r = 0.81; p < 0.05) with DOC concentrations, UV254, and Fmax values of
fluorescent components C1–C4, except that weaker or insignificant correlations (Pearson’s
r = 0.095–0.66, median r = 0.43) were found for DBCM-FP and TBM-FP. The overall strong
positive correlation of DBPFPs with various NOM parameters are in good agreement with
many previous findings [32,38,62,69,74], which demonstrates the utility of these parameters
in predicting DBPFP of drinking water systems (see linear regression results for selected
datasets in Figure S2). In addition, for certain brominated HAA5-FP species (e.g., MBAA-FP
and DBAA-FP), weaker correlations were found for DOC and UV254 than Fmax of specific
fluorescent components (e.g., C2 and C3), suggesting that tryptophan and humic-like
substances are important precursors for these Br-HAAs and useful indicators, instead of
bulk DOC/UV254 concentrations, of their formation potentials [69].

The weaker/insignificant correlations of DBCM-FP and TBM-FP (even with specific
fluorescent components) are consistent with their distinctive variation trends (i.e., signifi-
cant increase after BAC) from the other DBPFP species, as discussed above. At first, we
considered that this might be due to the failure in capturing important DBCM or TBM pre-
cursors by using the Fmax values obtained via PARAFAC analysis. However, this possibility
was excluded by checking the EEM spectra (see Figure S3), where no new fluorescence
peaks were observed in the BAC effluents, and further FRI analysis confirmed that signals
of each fluorescent region in the BAC effluents were smaller than that in the SF and O3 ef-
fluents (see Table S5). Thus, beyond NOM parameters, we turned out eyes to [Br−]/[DOC]
in the following analysis to investigate its association with DBPFP.

Correlation of DBPFP with NOM parameters. As the [Br−]/[DOC] ratios in the raw wa-
ter and effluents were quite low (<0.35 µg/mg), selected samples were spiked with addi-
tional Br− (2–160 g/L) to extend the range of [Br−]/[DOC] up to 64.3 µg/mg. As shown in
Figure 4b-e, pooling all the spiked and unspiked samples together, strong positive corre-
lations were found for DBCM-FP and TBM-FP with [Br−]/[DOC] (r ≥ 0.96), suggesting
that the relative concentration of Br− to DOC was the driving factor for their formation
potentials; in comparison, the other two less brominated THM-FP species, which strongly
correlated with various NOM parameters, did not exhibit such strong positive correlation
(for BDCM-FP; r = 0.73) or even exhibit negative correlation (for TCM-FP; r = −0.67) with
[Br−]/[DOC], supporting that they were less favorably formed at higher [Br−]/[DOC]
ratios. In addition, strong correlation was also found for BSFTHMs versus [Br−]/[DOC]
(r = 0.98; Figure 4f), further implying that [Br−]/[DOC] has a decisive impact on speciation
of THM-FP. Overall, the results above provide evidence that negative removal of BDCM-FP
and TCM-FP by O3-BAC, largely due to their significant increase after BAC filtration, was
likely to have resulted from the increase of [Br−]/[DOC] induced by the BAC filter.

It should be noted that the correlations in Figure 4b–f were obtained excluding
spiked/unspiked NF effluent samples, for which levels of TTHM-FP and its individual
species were significantly lower than that of the other samples at equivalent [Br−]/[DOC]
levels (see Figure S4). This might come from the extremely low concentration and/or
unique characteristics of NOM (e.g., very low content of THM and HAA precursors) in
the NF effluent, which underwent limited reactions with bromine even at elevated (Br−)
conditions. This result also demonstrated that NF could be a promising process in con-
trolling DBPFP, in particular Br-THMFP, regardless of its enhancement by the upstream
O3-BAC treatment.

3.3. Membrane Fouling Analysis
3.3.1. TMP Variation over Operational Time

In the membrane treatment processes, membrane flux and TMP were the most basic
indicators for monitoring of membrane operational stability and fouling [75]. In this study,
performance of the pilot-scale NF membrane system was investigated at two different
fluxes, 25 and 20 L/(m2·h), and example plots of TMP versus operational time at the two
conditions during November–December 2020 are shown in Figure 5. At flux of 25 L/(m2·h),
TMP was stable within 108 h with nearly constant value of 0.38–0.39 MPa; afterwards, it
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rose rapidly and reached 0.50 MPa (i.e., the requirement for chemical cleaning) at 228 h,
indicating that membrane fouling was quickly aggravated during this stage. In comparison,
under the flux of 20L/(m2·h), the NF membrane was able to run continuously, with TMP
increasing more slowly until 408 h, and afterwards TMP reached 0.5 MPa and off-line
chemical cleaning was conducted. The chemical cleaning only recovered TMP down to
0.46 MPa, still much higher than its original value of ~0.38 MPa. Then, after only 120-h
operation, TMP reached the requirement of 0.50 MPa for chemical cleaning again.
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Figure 5. Example TMP variation curves of the pilot-scale NF process at two different fluxes of 20
and 25 L/(m2·h). The TMP data were obtained during the period November–December 2020.

Although NOM was the main contributor to membrane fouling (as discussed below),
the membrane fouling rate was probably accelerated by the low water temperature during
the winter season, which was indicated by the strong negative correlation of TMP with
influent water temperature (Pearson’s r = −0.82 for 20 L/(m2·h) and −0.96 for 25 L/(m2·h))
during this period. It is known that low temperature causes (i) increase in water density and
viscosity, thus increasing the flow resistance [76]; and (ii) membrane structural alterations
such as pore shrinkage, leading to pore size decrease and, accordingly, TMP increase to
maintain the constant flux operation [77]. Although the NF membrane fouling could be
delayed to some extent by reducing operational membrane flux, it could not be effectively
alleviated by offline chemical cleaning (Figure 5).

3.3.2. Characterization of Membrane Cleaning Solutions

To investigate mechanisms of NF membrane fouling following full-scale conventional
plus O3-BAC processes, the NF membrane cleaning solutions were analyzed with EEM and
HPSEC, with the results shown in Figure 6. MW distributions of organic matters eluted
from chemical cleanings responded to three main peaks (Figure 6a,b): Region I (200–700 Da),
with TOC response stronger than UV254, belonged to small-MW molecules, likely to be
protein-like substances composed of hydrophilic tyrosine and/or tryptophan; Region II
(700–6000 Da), with strong ultraviolet absorption, usually represented the medium-MW
humic acid-like substances; Region III (6000 Da–4000K Da), with strong TOC response but
no UV response, typically represented hydrophilic macromolecular biopolymers such as
polysaccharides and protein-like substances [25,78]. The NF membrane cleaning solutions
contained NOM across a wide MW range, and Region III had the highest signal abundance
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in response to TOC compared to the other two regions in both the acid and alkaline elution
solutions. This indicated that hydrophilic macromolecular organics were the main NF
membrane fouling contributor, and such foulants might not be effectively removed by the
upstream processes of conventional plus O3-BAC advanced treatment.
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Figure 6. Plots of molecular weight (MW) distribution and EEM spectra of NF membrane cleaning
solutions: MW distributions of (a) DOC and (b) UV responses for the acid and alkaline cleaning
solutions; and EEM spectra of (c) acid cleaning solution and (d) alkaline cleaning solution. The
membrane cleaning was performed after 408-h operation at flux of 20 L/(m2·h).

Four fluorescent peaks were detected in the acid elution solution (Figure 6c), namely,
peak A (Ex/Em = 206 nm/392 nm) and peak C (Ex/Em = 288 nm/398 nm), correspond-
ing to humic/fulvic-like substances; and peak B1 (Ex/Em = 273 nm/316 nm) and peak
B2 (Ex/Em = 224 nm/300 nm), usually attributed to tyrosine-like substances [79–81].
Two fluorescent peaks were detected in the alkaline elution solution (Figure 6d): peak
T1(Ex/Em = 278 nm/334 nm) and peak T2 (Ex/Em = 224 nm/330 nm), likely belonging to
tryptophan fluorophores [82]. These results showed that tyrosine and humic/fulvic-like
substances were easily eluted during acid cleaning, while tryptophan compounds were
more easily eluted by alkaline cleaning. In addition, it can be found that hydrophilic
protein-like substances (in both the acid and alkaline elution solutions) yielded stronger
fluorescent signals than those of hydrophobic humic-like substances (only found in the acid
elution solution). This is consistent with the MW distribution results above and further
supports that hydrophilic protein substances, being well retained by NF membranes, were
the primary fouling contributors.

4. Conclusions

The “conventional + O3-BAC + NF” combined processes exhibited good performance
in treating East Taihu Lake water. Compared to conventional treatment alone, addition of
the O3-BAC advanced treatment significantly improved removal of turbidity and NOM,
which could reduce the operational load of the downstream NF membrane. The NF
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process played an important role in further removing organic/inorganic constituents
characterized by various water quality indicators, including those barely removed by the
upstream processes (e.g., conductivity, TDS, TH, and Br−). The removal efficiencies of
CODMn, UV254, DOC, Br−, and other common water quality indicators (including turbidity,
conductivity, TDS, and TH) by the “conventional + O3-BAC + NF” combined process
reached 88.8–99.8%. The quality of the NF effluent satisfied the requirements of the Suzhou
high-quality drinking water quality standard.

The conventional plus O3-BAC advanced treatment processes effectively reduced
Cl-DBPFP, but performed worse in removing Br-DBPFP; two of the brominated THM-FP
species, DBCM-FP and TBM-FP, were significantly enhanced after the O3-BAC treatment,
which was possibly ascribed to elevation of [Br−]/[DOC] induced by the BAC filter. The
following NF process effectively control formation potentials of all the THM-FP and HAA5-
FP species investigated here by effectively reducing both NOM and Br− and, accordingly,
the reaction points of DOM and bromine during chlorination disinfection. The removal
efficiencies of Cl-DBPFP and Br-DBPFP by the “conventional + O3-BAC + NF” combined
process were 77.6–100% and 33.5–100%, respectively, with no detection of MCAA-FP,
MBAA-FP, and TBM-FP in the NF effluent.

Low temperatures during the winter season likely caused the rapid growth of TMP
during the operation of the NF membrane, and the membrane fouling could not be signifi-
cantly alleviated despite offline chemical cleaning. The results of the membrane cleaning
solution revealed that low-MW organic compounds, such as tyrosine-like, tryptophan-like,
and humic-like acids, contributed to the membrane fouling, while macromolecular biopoly-
mers (6000 Da–4000 KDa) such as polysaccharides and proteins were the major foulants.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15050843/s1, Tables and figures addressing details on char-
acteristics of the NF90 membrane, measurements of water quality parameters, EEM spectra of
selected samples and major fluorescent components identified via PARAFAC modeling, FRI re-
sults of EEM spectra, BSFTHMs values, linear regression results of DBPFP versus NOM parameters.
References [29,45–56,83] are cited in the supplementary materials.
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