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Abstract: The present work is focused on the effect of increasing model complexity on calibration fit
and prediction accuracy. Groundwater flow was numerically simulated at a field site with a hydraulic
groundwater protection system in operation with many pumping and observation wells at the site
of the Slovnaft refinery in southwestern Slovakia. The adjusted parameters during the calibration
included hydraulic conductivity, as well as recharge, evapotranspiration, and riverbed conductance.
Four model scenarios were built (V1–V4) within the model calibration for the conditions in the
year 2008, with increasing complexity mainly within artificial K-field zonation, which was created
and step-wise upgraded based on groundwater head residuals’ distribution. Selected descriptive
statistics were evaluated together with chosen information criteria after the models were calibrated.
Subsequently, the real predictive accuracy of individual calibrated scenarios was evaluated for
conditions in the year 2019 in the form of a post-audit. Within the overall evaluation, the calibration
fit increased with increased parameterization complexity. However, the Akaike information criterion,
corrected Akaike information criterion, and Bayesian information criterion detected opposite trends
for model predictability. A post-audit of prediction accuracy revealed a significant improvement of
the V2, V3, and V4 scenarios against the simplest V1 scenario. However, among the V2–V4 scenarios,
the degree of prediction accuracy improvement was almost insignificant. The level of effort spent
on V3 and V4 parameterization seems disproportionate to the benefit of a negligible improvement
in prediction accuracy. Groundwater flow path analysis showed that similarly successful scenarios
(measured by prediction accuracy) can generate very different groundwater pathlines.

Keywords: numerical modeling; model predictability; calibration; prediction; information criteria

1. Introduction

In groundwater modeling, great attention is paid to the calibration and the predictive
accuracy of models in relation to their complexity, especially to the distribution of hydraulic
conductivity K. There are three key parameters of the K-field calibration: the shape and
distribution of K zones, thickness of the aquifer within a particular zone, and optimized K
values in each zone. The most important issue is the determination of spatial K distribution
since the lithological data are generally insufficient due to their point character. Typically,
we sample less than one millionth of the material we are characterizing [1]. The K values
are also affected by the thickness of an aquifer generally interpolated from only limited
point data. The attempt of K-field calibration with artificial zonation based on residuals of
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water level distribution has only limited validity, but may result in a better approximation
of a real system in terms of calibration and predictions.

When simulating most natural systems, commonly there are alternative plausible
models. For example, alternative models of a groundwater system may be developed due
to uncertainty associated with the following: (1) The structure and character of boundary
conditions. (2) Relevant processes. (3) The spatial and temporal distribution of system
characteristics such as hydraulic conductivity, recharge, reaction coefficients, and so on,
including alternatives based on different ideas about the deposition and deformation of
geologic materials. (4) The inclusion or exclusion of transients associated with, for example,
pumping rates, source concentrations, recharge, and so on [2]. A framework for dealing
with uncertainty due to model structure error was introduced, e.g., by [3].

To determine the most probable modeling scenarios, selected descriptive statistics and
the Akaike information criterion (AIC) [4], Bayesian information criterion (BIC) [5], and
corrected Akaike information criterion (AICc) [6] can be used in the post-calibration stage.
Those and other criteria based on information theory have been widely implemented in
the groundwater modeling field. An example can be cited in [7–15], beside many others.
However, despite their broad use in modeling, the foundations of the AIC, AICc, and
BIC, which penalize the likelihoods in order to select the simplest model, are, in general,
according to [7], poorly understood. There have also been various averaging schemes
developed to deal with multiple models (variants) in order to generate the most probable
scenario [2,8,9]. Weighting of models within such schemes can be based on mentioned
information criteria. After the probability of models is set, the real prediction accuracy can
be evaluated for chosen scenarios in the form of a post-audit [16,17], in accordance with the
statement of [18], i.e., that in any event, the accuracy of the prediction cannot be assessed
until the predicted period of time has passed.

Ref. [4] saw that the difficulty of constructing an adequate model based on the informa-
tion provided by a finite number of observations was not fully recognized (by professionals).
Therefore, he introduced the AIC, which provides a mathematical formulation of the prin-
ciple of parsimony in the field of model construction [4]. Ref. [5] introduced the BIC,
which qualitatively, like the AIC, gives a mathematical formulation of the principle of
parsimony in model building. Quantitatively, the BIC procedure leans more towards lower-
dimensional models. For a large number of observations, the procedures differ markedly
from each other [5]. AICc, which is another information criterion that was introduced
by [6], is a bias-corrected version of AIC for nonlinear regression and autoregressive time
series models. In view of the theoretical and simulation results, the AICc should be used
routinely instead of the AIC for regression and autoregressive model selection [6].

Since the end of the last century, one can find the prevailing opinion for inverse
modeling methodology, in which it was emphasized, e.g., by [19,20], to begin calibration
estimation with very few parameters that together represent most of the features of interest,
and to increase the complexity of the parameterization slowly. The importance of keeping
a model simple, the principle of parsimony [2,8–11,19,20], is demonstrated by noting that
more complex models generally fit the observations more closely, yet they can have greater
prediction error compared to simpler models [20] and others.

It is not easy to decide whether to use a more complex model or simple calcula-
tions combined with expert judgement. Ref. [21] introduced several examples of opinions
regarding model simplicity vs. complexity from experts in the field. Some authors ad-
vocate complexity, e.g., [22], while others are not convinced about its definite benefits,
e.g., [20,23,24]. Ref. [25] preferred constructing models that were a compromise between
the effort of the professional’s perfection expressed in very complex models and oversim-
plified models which strive for speed and efficiency. He also saw the real role of models
in extracting the maximum amount of information from the data and minimizing the
uncertainty, both via history matching approaches. Ref. [26] provided a theoretical analysis
of the model simplification process, yielding insights into the costs of model simplification,
as well as into how some of these costs may be reduced. They claim that modern envi-
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ronmental management and decision making is based on the use of increasingly complex
numerical models. They see the advantage of complex models in the possibility of the
expert knowledge application within them. The disadvantage of such models lies in the
problematic calibration and analysis of their prediction uncertainty. On the other hand,
many system and process details on which uncertainty may depend are, by design, omitted
from simple models. According to the authors, this can lead to underestimation of the
uncertainty associated with many predictions of management interest.

Our study site is located in southwest Slovakia close to Bratislava (Figure 1), in the
proximity of the Danube River. In the past, the site was strongly affected by contamination
from petroleum products from the Slovnaft refinery and the hydraulic protection system
connected to the monitoring system has been operating there for several decades. This
means that long-term monitoring data are available for groundwater modeling.
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Figure 1. Location of the model domain in Bratislava, Slovakia, near the Danube River.

The main objective of this work is to illustrate the impact of simple to medium model
complexity (parametrization) on the simulated groundwater head agreement with field
observations within calibration and prediction processes. Additionally, this objective also
includes its impact on calculated groundwater pathlines at the study site.

2. Materials and Methods

The study site is situated in Bratislava, in the southwest of Slovakia, close to the
Danube River (Figure 1). The model area is about 39 km2 and is situated on the northern-
most part of a river island bordered by the Danube’s main course (SW border of the island)
and its branch—the Little Danube River (NE border of the island). There are fluvial sand
and gravel deposits form the main and most significant part of the investigated aquifer.
The thickness of these deposits ranges between 12 m on the NW and 45 m on the east part
of the modeled area. Under the sand and gravel Quaternary layers, Neogene fine sand
occurs with significantly lower hydraulic conductivity. The base of these permeable units
consists of Neogene clays (Figures 2 and 3). In the central part of the model domain, the
SLOVNAFT refinery area is situated with the pumping wells of its groundwater hydraulic
protection system (GWHP) operated by the VÚRUP company. The GWHP system prevents
the spreading of polluted groundwater outside the refinery area [27] and represents an
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important model stressor. The number of pumping wells vary depending on the actual
conditions but is usually around 70 (Figure 4). Additionally, the actual pumping rates of
individual wells vary depending on actual conditions and are measured daily. The refinery
area and its surroundings are highly populated by observation wells (875 at the end of
2019). The monitored parameters consist of a hydraulic head as well as the groundwater
quality. The head observation frequency depends on the position of a particular observation
well. Inside the refinery area, monitoring is conducted either once a day or once a week,
depending on the occurrence of GW pollution in a given well. In the vicinity of the refinery
area, it is four times a year, while in the more distant surroundings of the refinery, it is twice
a year.
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2.1. Model Settings

Model geological settings are based on the lithological data from the GWHP well logs.
The geological conditions were simplified into two aquifers, Quaternary and Neogene, with
underlying Neogene clays representing an aquiclude. The strata interfaces are spatially
interpolated by the natural neighbor method. The hydraulic conductivity within these
aquifers is assumed to be up to 5 × 10−2 m·s−1, and horizontal hydraulic conductivity is
regarded as isotropic (Kx = Ky). The vertical hydraulic conductivity is computed by the
formula Kz = Kxy/5. Groundwater within the modeled area is under unconfined condi-
tions. Model hydrological settings are represented by the long-term (1961–1990) annual
precipitation, which averages around 600 mm [28], as well as the long-term (1961–1990)
annual actual evapotranspiration, which averages around 450 mm [28]. Therefore, around
150 mm of precipitation is left annually for infiltration on average. Recharge of the modeled
aquifer is predominantly secured by water infiltration from the Danube River. This river
also defines the western border of the model domain, and with its average discharge of
around 2000 m3·s−1, it represents one of the model’s constant head boundary conditions.
Its branch, the Little Danube River, is represented as a 3rd type boundary condition and
is situated on the northern part of the model domain (Figure 4). Groundwater within
the study area is intensively extracted by the pumping wells of the GWHP system and is
discharged outside of the model domain after treatment. The overall pumping rate varies
based on the GWHP system dynamic operation. Throughout the years, new pumping
wells have also been introduced, since some of the old ones have been deactivated.

Boundary condition of the 1st type H = f(x,y,z,t). On the western border of the model
area, the Danube is represented by a 1st type boundary condition (Figure 4). The height
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of the water level is obtained by a linear interpolation between two gauging stations that
are located outside but near the model domain. The interpolation was performed between
averaged water levels for the relevant period. The Danube water is directly connected with
the groundwater. With regards to its size, the river represents a conceptually infinite source
of infiltrated water. The other boundaries of the modeled area (northern, eastern, southern)
are also represented by 1st type boundary conditions (Figure 4). In this case, the constant
hydraulic head is computed by linear interpolation of the averaged groundwater head
observed in the monitored wells situated along the model boundary (15 wells, which are
regularly spaced along the model area boundaries). This boundary condition is simulated
by the Time-Variant Specified-Head package (CHD) of MODFLOW-2005 [29].

Boundary condition of the 2nd type Q = f(x,y,z,t)—the recharge defined by the dif-
ference between precipitation and evapotranspiration is variously represented within
individual model scenarios as described further below (Section 2.3). Groundwater extrac-
tion by the pumping wells of the GWHP system is represented by averaged daily measured
pumping rates at individual wells for the given time period. This boundary condition
is simulated by the well (WEL), recharge (RCH), and EVT module of MODFLOW-2005
(Harbaugh 2005).

Boundary condition of the 3rd type Q = f(H)—leakage between groundwater and
surface water of the Little Danube River is simulated by the river module (RIV) [29]. The
infiltration rate is driven by the difference between groundwater and surface water levels,
as well as by the conductance of the riverbed, which was calibrated as a parameter in given
calibration scenarios.

Four alternative steady-state groundwater model scenarios (V1, V2, V3, V4) were
developed which differ in the representation of hydraulic conductivity, recharge, evap-
otranspiration, and riverbed conductance. All the groundwater flow models utilize the
numerical finite-difference method. The following MODFLOW-2005 software modules
were used: layer property flow (LPF), preconditioned conjugate gradient (PCG), CHD,
RCH, EVT, WEL, RIV, and hydraulic head observations (HOB). The first layer within the
LPF module is defined as convertible (unconfined with the possibility to be automatically
converted to confined when fully saturated), while other layers are defined as confined
because of their fully saturated behavior in all simulations. This procedure is standard in
the LPF package within the MODFLOW-2005 program [29]. Intercell hydraulic conductivity
is calculated by the harmonic mean method.

2.2. Model Calibration and Prediction

Within the inverse modeling by the UCODE software [30], the hydraulic conductivity
of the first Quaternary layer was found to be the most influential parameter. The spatial
distribution of K values was optimized for the predefined K zones. Each K zone acts
as an individual calibration parameter. The distribution of the K zones was defined
manually within all scenarios, starting with homogeneous K for individual layers in
model V1. Afterwards, the areas of Quaternary sediments with groupings of positive or
negative head residuals, i.e., the areas of insufficient K distribution, which resulted in a
constant tendency to compute too high or too low groundwater heads by the model, were
split into smaller zones. The number of K zones gradually increased within individual
calibration model variants (V2–V4). All underlying Neogene layers were left as one adjusted
parameter. The conductance of the Little Danube riverbed was calibrated in the V3 and
V4 models. Regional water recharge by precipitation and actual evapotranspiration were
optimized using various approaches within individual model scenarios. A modified Gauss–
Newton method, also called the Marquardt–Levenberg method of nonlinear regression [19],
was used for the parameter optimization. The weights of the individual hydraulic head
observations, which was the only observed parameter, had a uniform value of “1” due to
the assumption of its equivalent error variation range. The set objectives of the presented
work were accomplished by model calibration of each used scenario for conditions of the
entire year of 2008 (averaged observation values used), followed by the comparison of
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real prediction accuracy of individual scenarios in the conditions of the entire year of 2019
(averaged observation value used). For model fit evaluation, the calculated GW head (SIM)
and observed GW head (OBS) were used in various statistical and graphical procedures.
The observed heads also served as reference values in the calibration process. Residuals
(RES)—the differences between OBS and SIM—provided a basic quantitative expression
of a given match. The sum of squared residuals or objective function (OF) is the overall
expression of the SIM and OBS agreement, as well as the residuals’ root mean square
error (RMSE) value and the averaged absolute residuals (ABS AVG RES). The theoretical
relative prediction accuracy of the models was evaluated by the information criteria AIC,
AICc, and BIC and compared with the real models’ performance of predictions for 2019
conditions. The real prediction accuracy of the models was evaluated by the post-audits in
the same manner as for the calibration. The information criteria were calculated as follows
(Equation (1) from [4] in [19], Equation (2) from [6], Equation (3) from [5] in [19]):

AIC = OF + 2 nPAR (1)

AICc = AIC + 2 (nPAR + 1) (nPAR + 2)/(HOB − nPAR − 2) (2)

BIC = OF + nPAR ln(HOB) (3)

OF: objective function (sum of squared residuals),
HOB: groundwater head observations number,
nPAR: number of adjusted parameters.

Since the value of the given information criteria is relative, in equations 1, 2, and 3 the
maximum likelihood function was substituted by the objective function and the constant
terms were dropped from their original formulations in accordance with [12]. For all of the
information criteria, smaller relative values indicate a more accurate model. The OF term
in the equation of both information criteria is the measure of overall fit. In general, its value
decreases with an increase in the number of the parameters. The term nPAR can be seen as
a “penalty” for “too many” parameters. It is evident that the criteria favor a compromise
between a good model fit and a small number of parameters. Model scenarios V1–V4 were
calibrated to the dataset of hydraulic heads computed as the averaged observations for
the entire year of 2008. The prediction accuracy of each calibrated model scenario was
evaluated by assessment of their performance in 2019 conditions, in the form of a post-audit.
The differences between the values of the most fundamental physical conditions in the 2008
calibration period and the 2019 prediction period introduced in Table 1 and Figure 5 are
assumed to be sufficient to consider the performance of calibrated (for 2008) models in 2019
as a prediction in the true sense, i.e., the performance in extrapolated conditions. Finally,
simple GW flow analysis using MODPATH 6 software [31] was performed to compare
pathlines of virtual particles from virtual sources of individual modeled scenarios. This
analysis was applied at the most complex part of the modeled domain—at the refinery area
with the presence of pumping wells.

Table 1. Comparison of the values of main features influencing modeled conditions between the
years 2008 and 2019.

Feature Units 2008 2019 ABS Delta

AVG OBS m a.s.l. 124.27 123.69 0.58

AVG RIV 1 m a.s.l. 131.83 131.99 0.16

AVG RIV 2 m a.s.l. 130.91 130.87 0.04

AVG Q pumping m3·s−1 0.916 1.009 0.093
Notes: AVG OBS: average of observed groundwater head; AVG RIV: averaged Danube River level in used gaging
stations; AVG Q pump: averaged overall pumping rate at modeled site; ABS delta: absolute value of the difference
between 2008 and 2019 period.
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2.3. Conceptual Approach in Individual Model Scenarios

The first (V1) variant (Figure 6a) was calibrated with homogeneous K within the
individual layers of the model. The calibrated parameters were the homogeneous K of the
1st aquifer and the homogeneous K for the 2nd aquifer. Actual evapotranspiration and
regional recharge by precipitation were homogeneous and not calibrated, with the applied
values taken from the Atlas of Landscape of the Slovak Republic [28]. The average annual
EVT for a given locality reaches 450 mm, while the annual average RCH for a given locality
reaches 550–600 mm. A value of 600 mm was used. In the V1 variant, the Little Danube
River was assumed without any connection with groundwater.

In the second (V2) variant (Figure 6b), a software-automated zonal K calibration was
performed within the first layer, formed of Quaternary highly permeable sand and gravels
(39 K zones as parameters). The K of the second layer of Neogene sand was optimized
as one parameter. The rate of water supply by recharge to the system was optimized
through zonal calibration of evapotranspiration (Figure 7). EVT was adjusted within three
zones—forest areas, urban areas, and agriculture field areas. The Little Danube River was
represented in the same manner as in the V1 variant.

The third (V3) variant (Figure 6c) represented the reduction of the computational grid
density to approximately one-quarter of the active cells number compared to all other
variants. The K calibration zones have a different shape and are more refined. The total
number of K parameters (zones) is 135. The conductance of the Little Danube riverbed
sediments was automatically calibrated (Figure 8a). The regional recharge by precipitation
was automatically calibrated using one parameter value applied for the whole model
domain, which was conceptually taken as the difference between RCH and EVT. Thus,
EVT was not calibrated as a distinct parameter. The initially entered value of annual
average precipitation was reduced by the value of the average annual actual EVT based on
data from the Atlas of Landscape of the Slovak Republic [28]. The calculated difference
(150 mm·y−1) is the value of 4.76 × 10−9 m·s−1.
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The fourth (V4) variant (Figure 6d) differed from V3 by the higher density of the
calculation grid and higher parameterization of K spatial distribution (251 K parameters).
The riverbed sediments conductance and regional recharge parametrization approaches
were similar to the V3 variant (Figure 8b).
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3. Results

The resulting groundwater table for the V4 variant is depicted in Figure 9. The ground-
water table within all model variants is approximately the same in the main characteristics
(GW gradients and flow directions). Differences, however, are in the accurateness of the
simulated groundwater level compared to observations at a relatively small scale.
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Figure 9. Resulting groundwater table of the V4 model variant, hydroizohypses, bodies of surface
water, refinery area border, and pumping wells’ location in the 3D modeled site view.

For V1 calibration, the resulting K values are shown in Figure 6a. They range from
0.005 m·s−1 to 1 × 10−8 m·s−1. The variant V1 can be characterized as the worst one
among all variants in each of the evaluated criteria listed in Table 2. In the scatter plot
of OBS vs. SIM (Figure 10), the V1 variant performed relatively poorly within the cali-
bration. The spatial distribution of residuals is not random (Figure 11) and the ratio of
RMSE and OBS dispersion is 4.0% (Figure 12). The lowest value of AIC, AICc, and BIC
criteria (Table 2) is achieved due to the extremely low number of calibrated parameters.
Regarding the mentioned information criteria, the V1 scenario is assumed to provide the
best prediction accuracy.

Table 2. Calibration characteristics of individual model variants.

Model
Variant nPAR OF AVG RES

(m)
AVG ABS RES

(m)
RMSE

(m) AIC AICc BIC RMSE and OBS
Dispersion Ratio (%)

V1 2 64.5 0.04 0.25 0.34 69 69 77 4.0

V2 43 26.5 −0.05 0.14 0.22 113 121 298 2.6

V3 139 11.0 0.05 0.11 0.14 289 389 885 1.6

V4 255 5.8 −0.01 0.07 0.1 516 977 1611 1.2

Notes: nPAR—number of parameters in model; OF—objective function; AVG RES—average of groundwater
head residuals; AVG ABS RES—AVG of RES absolute values; RMSE—root mean square error; AIC, AICc,
BIC—information criteria used; OBS—observed heads.
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blue: simulated heads too high, red: simulated heads too low.
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Figure 12. RMSE of groundwater head residuals and observed head dispersion (HOBdisp%) ratio of
model variants (V1–V4) for calibration and prediction.

In V1 prediction performance, the value of all evaluated characteristics, which are
introduced in Table 3, are the worst from all evaluated variants. In the scatterplot of OBS
vs. SIM (Figure 10), the V1 variant performed relatively poorly within calibration for
2008, and even worse in the prediction for 2019. Residual distribution maps (Figure 13)
show significant grouping of negative and positive residuals. The residual spatial distri-
bution cannot be classified as random. The ratio of RMSE and OBS dispersion is 6.4%
(Table 3, Figure 12). In all evaluated characteristics, the V1 model performed significantly
worse in prediction compared to its calibration fit. Despite the best values of AIC, AICc,
and BIC information criteria, the V1 prediction performance is the worst among evalu-
ated scenarios. Considering the results, the V1 variant can be considered an example of
conceptual oversimplification.
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Table 3. Prediction characteristics of individual model variants.

Model
Variant OF AVG RES

(m)
AVG ABS RES

(m)
RMSE

(m)
RMSE and OBS

Dispersion Ratio (%)

V1_2019 205.7 −0.29 0.45 0.62 6.4

V2_2019 44.2 −0.05 0.20 0.28 2.9

V3_2019 35.7 0.03 0.17 0.26 2.7

V4_2019 31.4 −0.06 0.17 0.24 2.5
Notes: OF—objective function; AVG RES—average of groundwater head residuals; AVG ABS RES—AVG of RES
absolute values; RMSE—root mean square error; OBS—observed heads.

For V2 calibration, the resulting distribution of K values is shown in Figure 6b. They
range from 0.05 m·s−1 to 1 × 10−8 m·s−1. The resulting EVT values are shown in Figure 7.
EVT in urbanized areas reached the highest value of 567 mm·y−1. Here, it is likely that a
significant effect of the interception and drainage of precipitation from the artificial surfaces
of the area takes place. In the forests, the EVT reached a calibrated value of 473 mm·y−1. In
agriculture fields, the EVT had the lowest value of 378 mm·y−1. OF and RMSE values are
significantly lower compared to V1 (Table 2). This result represents a significantly better
overall fit of the higher parametrized scenario V2 over V1 within the calibration. In the
scatterplot of OBS vs. SIM (Figure 10), the V2 variant performs significantly better than
V1. The spatial distribution of residuals is partly random and partly grouped (Figure 11).
The ratio of RMSE and OBS dispersion is 2.6% (Figure 12). The relatively favorable values
of AIC, AICc, and BIC criteria (Table 2) are achieved due to the relatively low number of
calibrated parameters at a relatively low value of OF. From the V1 and V2 comparison,
where the conceptual difference lies in the zonal calibration of the Quaternary aquifer K and
zonal calibration of EVT, it can be concluded that the effect of higher parametrization has a
significant impact on the overall model fit. Regarding the AIC, AICc, and BIC evaluation
results, V2 is the second most successful calibration scenario.

V2 prediction performance is significantly better than the V1 model (Table 3), but still
worse than its calibration fit. This is evident from the scatterplot of OBS vs. SIM (Figure 10).
Residual distribution maps (Figure 13) show significant grouping of negative and positive
residuals. The residual spatial distribution is not random and is worse in the prediction
than in the calibration. The ratio of RMSE and OBS dispersion is 2.9%, which is slightly
higher than for the calibration (Figure 12). In all the evaluated characteristics, the V2 model
performs worse in prediction compared to its calibration fit.

For V3 calibration, the resulting distribution of K values is shown in Figure 6c. They
range from 0.05 m·s−1 to 1 × 10−11 m·s−1. The overall improvement in the calibration fit
against the V1 and V2 models was indicated by the statistics introduced in Table 2. In the
scatterplot of OBS vs. SIM (Figure 10), the V3 variant performs slightly better than the V2
variant. The spatial distribution of residuals is still not random (Figure 11) and is even
worse than in the case of the V2 scenario. The V3 solution represents a ratio of RMSE and
OBS dispersion of 1.6% (Table 2, Figure 12). This is the best value among the evaluated
variants so far. The calibrated riverbed conductance of the Little Danube River is shown
in Figure 8a. It ranges between the values 0.075 m·s−1 and 2.12 × 10−12 m·s−1. From the
AIC, AICc, and BIC evaluation, it follows that the V3 calibration variant is significantly
less accurate for prediction than the V2 and V1 scenarios, due to the increased number
of parameters and less significant OF value reduction (Table 2). Despite a reduction in
the computation grid density, the value of RMSE, OF, and other related criteria are better
than in the previous scenarios. The input precipitation and evapotranspiration difference
of 4.76 × 10−9 m·s−1 (150 mm·y−1), which was applied as one parameter for the whole
model domain (the initial value is regional, not exact for local areas), has been optimized to
4.6 × 10−9 m·s−1 (145 mm·y−1).

Within the V3 prediction performance, all evaluated statistics are slightly better than
in the case of the V2 scenario; however, from a practical point of view, the prediction
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accuracies of V2 and V3 are very similar. The prediction performance of V3 is worse than
its calibration fit. In the scatter plot of OBS vs. SIM (Figure 10), V3 performs similar to the
V2 variant. Residual distribution maps (Figure 13) show a significant grouping of negative
and positive residuals, as well as in the V2 case. The ratio of RMSE and OBS dispersion is
2.7% (Figure 12).

For V4 calibration, the resulting distribution of K values is shown in Figure 6d. They
range from 0.05 m·s−1 to 1 × 10−11 m·s−1. The increased parametrization leads to increased
calibration accuracy, which is the best among the evaluated scenarios. The improvement
was recorded in all the evaluated characteristics (Table 2), and the RMSE reaches 0.1 m. In
the scatterplot of OBS vs. SIM (Figure 10), V4 provides the best solution. Spatial distribution
of residuals is close to random (Figure 11). The ratio of RMSE and OBS dispersion is 1.2%
(Table 2, Figure 12). The resulting riverbed conductance of the Little Danube is shown in
Figure 8b. From the AIC, AICc, and BIC evaluation point of view, the V4 variant is the least
probable (Table 2) due to a significant increase in the number of parameters and a relatively
slight decrease in OF and RMSE.

V4 prediction performance is the best, but is similar to V2 and V3 (Table 3). In the
scatterplots of OBS vs. SIM (Figure 10), the V4 scenario prediction performs the best, as
well as in the calibration stage. Residual distribution randomness (Figure 13) is worse than
in V2 and quite similar to V3. The V4 model performs significantly worse in prediction
compared to the calibration stage.

Particularly interesting is the greater improvement of model prediction accuracy
between the V1 and V2 models compared to the improvement in model calibration fit
between the V1 and V4 models (Figure 12). The finer K zonation (V3 and V4 models)
overcompensated the absence of EVT zonation (applied only in the V2 model) within the
impact on the calibration and prediction accuracy. Flow path analysis (Figure 14) shows that
similarly successful scenarios (by prediction accuracy) can generate different GW pathlines.
This is especially the case in the V3 model, in which the relatively low grid density has an
impact on the shape of the predicted groundwater pathlines. The V1 model produces the
most conservative (if GW is polluted) pathlines, e.g. the virtual particles propagate furthest
between the pumping wells in both (stop or pass-through) representations of the “weak
sinks” using MODPATH 6 code.
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In the calibration process, the difference between particular information criteria values
becomes larger with an increasing number of parameters. The most penalizing criterion is
the BIC followed by AICc and AIC. At the same time, the overall model fit with observation
improves. Within prediction performance, a near constant accuracy of the V2, V3, and V4
models was recorded. This can be an indication of unproper K zonation, which does not
represent the real K distribution with a near-constant structural error effect.

4. Discussion

Larger numbers of zones may lead to a better calibration fit with observation, but too
many zones may lead to poor parameter estimation [32]. This also corresponds to the claim
of [33] that no matter which regularization methodology is employed (e.g. zonation), the
inevitable consequence of its use is a loss of detail in the calibrated field. This, in turn, can
lead to erroneous predictions made by a model that is “well-calibrated”. Additionally, the
“unknown unknowns” in addition to the “known unknowns” always exist, which dete-
riorate the prediction accuracy [34]. Ref. [35], seeking different model conceptualizations
within the Generalized Likelihood Uncertainty Estimation—Bayesian Model Averaging
methods (GLUE—MBA), considered any spatial distribution (zonation) of a hydraulic
conductivity field obtained through proper calibration as a valid representation of the K
field. Since modelers usually know almost nothing about the exact distribution of K, this
approach can then be assumed relevant. Ref. [36] claimed that with the increase in extrapo-
lation, conceptual uncertainty also increases. The author of [37] in [38] demonstrated that
the values estimated for lumped parameters can only be interpreted as the outcomes of a
user-specified averaging process of pertinent system properties. The lumping of parameters
(e.g., replacement of a continuous property field by a small number of zones of piecewise
properties) introduces a structural error [38]. From the K-zonation point of view, the more
K zones, the closer the resemblance to a continuum and a better calibration and prediction
accuracy can be expected. In the current study, the overall calibration fit and real prediction
accuracy are consistent with this conclusion.

The imperfection in the presented models may also be due to the temporal structure
(measurement frequency) of the observation data and boundary condition data with av-
erage values for the calibration period, as well as the various frequencies of GW head
measurement for various parts of the model area and lack of detailed information in the
RCH and EVT distribution. Moreover, the spatial distribution of head observation points is
far from uniform.

In [13], where the horizontal K was zonally calibrated, the information criterion BIC
selected the simplest scenario as the best. This result also corresponds with our results.
Ref. [14] found that the values of the AICc, BIC, and GCV statistics suggest that only
the homogeneous model is clearly inferior, revealing that variations in K are important.
Ref. [15] performed zonal calibration of K in which the most complex scenario had the best
fit to observation data in the calibration stage. The AIC, AICc, and BIC criteria selected the
simplest model as the most probable. These results also correspond with our findings.

The simplest scenario in the presented work can be considered (based on the post-
audit of prediction accuracy results) as the oversimplification example. This statement
is similar to the conclusion of [20] that neither very simple nor very complex models are
likely to provide the most accurate predictions. However, no increased level of complexity
that leads to worse prediction accuracy was found in the presented work. Starting from the
V2 variant stage, the build-up of more complex models (V3, V4) resulted in a better fit in
calibration but, at the same time, to almost zero improvement in prediction accuracy; thus,
from a practical point of view, it can be seen as a meaningless effort.

The principal contribution of the presented study is the given picture of the parametriza-
tion influence on calibration fit and on the real prediction accuracy of the models at the
study site. Since the hydrogeological measurements have been continually performed at
this site for decades, the presented procedure of model prediction accuracy assessment can
be repeated for various calibration and prediction time periods to verify or widen the pre-
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sented results and to obtain more general views. The broader or more specifically focused
investigation findings can lead to savings in parametrization efforts within new models and
to better future optimization. Especially interesting would be the comparison of the result-
ing catchment areas of the pumping wells or the whole GWHP system between individual
model scenarios and the field measurements. These analyses are crucial for predicting the
impact of possible changes (for example, new pumping wells or different pumping rates at
existing wells) in GWHP system operation with the resulting system optimization.

5. Conclusions

In this study performed at the Slovnaft site close to Bratislava in southwestern Slovakia
contaminated by petroleum products, the calibration fit and prediction accuracy of four
model variants with gradually increasing parametrization from the V1 to V4 models were
evaluated in the post-audit procedure. The principal factor considered in parametrization
was the complexity of K zonation.

In terms of objective function in the calibration process, the best value of 5.8 was
recorded in the most parametrized V4 model scenario. Within prediction, the best objective
function was reached in the same scenario with the value of 31.4. The objective function
improved with increasing parametrization in calibration as well as in the prediction stage.
The same development can be seen in all numerical and graphical evaluations performed.

In contrast, the information criteria AIC, AICc, and BIC increased significantly with
model parameterization. The “penalization” for the number of parameters here was much
more significant than the improvement of the calibration fit. From the performed study,
it follows that the prediction accuracy in terms of the calibration fit should be the highest
in the V4 model. In terms of the information criteria, the prediction accuracy should be
highest in the case of the simplest V1 scenario. The real prediction accuracy assessment
revealed that the information criteria provided an inaccurate evaluation.

The residuals’ RMSE to observed head dispersion ratio within the calibration stage
reached 4.0%, 2.6%, 1.6%, and 1.2% in the V1, V2, V3, and V4 models, respectively. The
same indicator in the prediction stage reached 2.9%, 2.7%, and 2.5% in the V2, V3, and V4
models, respectively. The simplest V1 scenario with the value of 6.4% was significantly
worse. The slight prediction improvement from the V2 to the V4 scenario reveals ineffective
parametrization in the V3 and the V4 scenarios from the prediction accuracy perspective.

The procedure of manual refinement of K-field zonation based on the groundwater
level residuals’ distribution reveals a high efficiency for obtaining a better fit within the
model calibration. However, within prediction performance, this procedure was not
effective after an intermediate level of parametrization (V2 scenario). The prediction
accuracy remained almost the same in more parametrized scenarios (V3 and V4 models).
From the perspective of all related circumstances summarized as calibration effort vs.
accuracy of prediction, the V2 scenario with a medium level of parametrization can be
considered as the best solution of the study.

Flow path analysis showed that similarly successful scenarios (based on their pre-
diction accuracy) can generate different groundwater pathlines. This is especially so in
the case of the V3 model, in which the lower grid density has an impact on the shape
of predicted groundwater pathlines. The simplest model scenario produces the most
conservative outcome with respect to pathline propagation and possible spreading of
groundwater contamination.

Based on the study results, there can be the following recommendations:

- the K-field zonation based on groundwater level residuals’ distribution can be valuable
in the calibration process if there are only limited K data from the field survey;

- higher parametrization does not necessarily lead to a more effective solution regard-
ing prediction accuracy and several variants of a solution with continual post-audit
evaluation should be used whenever possible;

- different model variants with similar prediction accuracy in terms of groundwater
level fit can produce different groundwater pathlines; and, finally,
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- the information criteria AIC, AICc, and BIC can be inaccurate in the evaluation of
model prediction accuracy.
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Abbreviations

AIC Akaike Information Criterion
AICc Corrected Akaike Information Criterion
AVG average
AVG ABS RES averaged absolute residuals
BIC Bayesian Information Criterion
E, W, N, S east, west, north, south

EVT
evapotranspiration or evapotranspiration package/module in
MODFLOW-2005 program

f function
GLUE-MBA Generalized Likelihood Uncertainty Estimation–Bayesian Model Averaging methods
GW groundwater
GWHP Groundwater Hydraulic Protection System
H hydraulic head
CHD Time-Variant Specified-Head package/module in MODFLOW-2005 program
K hydraulic conductivity (m·s−1)
Kx, Ky horizontal hydraulic conductivity (m·s−1) in “x” and “y” direction, respectively
Kz vertical hydraulic conductivity (m·s−1)
LPF layer property flow package/module in MODFLOW-2005 program
nPAR number of adjusted parameters during calibration
OBS observed groundwater head
OF sum of squared residuals or objective function
PCG preconditioned conjugate gradient package (solver) in MODFLOW-2005 program
Q discharge or pumping rate (m3.s−1)
Q pump overall pumping rate at modeled site
RES groundwater head residual (difference between observed and simulated head)
RCH recharge or recharge package/module in MODFLOW-2005 program
RIV river package/module in MODFLOW-2005 program
RMSE root mean square error
SIM calculated (simulated) groundwater head
V1–V4 model scenarios (variants)
WEL well package/module in MODFLOW-2005 program
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27. Zatlakovič, M.; Augustovič, B.; Bugár, A.; Durdiaková, L’.; Gavuliaková, B.; Greš, P.; Guman, D.; Krebs, P.; Kuric, P.;
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