
Citation: Al-Anzi, B.S.; Fernandes, J.

Measurement of Total Air

Entrainment, Disentrainment and

Net Entrainment Flow Rates Utilizing

Novel Downcomer Incorporating

Al-Anzi’s Disentrainment Ring

(ADR) in a Confined Plunging Jet

Reactor. Water 2023, 15, 835.

https://doi.org/10.3390/w15050835

Academic Editor: Alejandro

Gonzalez-Martinez

Received: 7 December 2022

Revised: 9 February 2023

Accepted: 14 February 2023

Published: 21 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Measurement of Total Air Entrainment, Disentrainment and
Net Entrainment Flow Rates Utilizing Novel Downcomer
Incorporating Al-Anzi’s Disentrainment Ring (ADR) in a
Confined Plunging Jet Reactor
Bader S. Al-Anzi * and Jenifer Fernandes

Environment Technology Management Department, College of Life Sciences, Kuwait University,
P.O. Box 5969, Safat 13060, Kuwait
* Correspondence: bader.alanzi@ku.edu.kw; Tel.: +965-97885589

Abstract: Plunging liquid jet reactor (PLJR) has gained popularity as a feasible and efficient aerator
and mixer. However, the measurement of air disentrainment rate (Qads), which affects aeration
performance, has been overlooked by many researchers. In this work, a newly invented Al-Anzi
disentrainment ring (ADR) device was incorporated in CPLJR to experimentally measure Qads and
its effect on the net air entrainment rate. Furthermore, the effect of new variables (lADR and ds)
and old variables (Lj and VL) on Qanet were also investigated. Results showed that shorter ds and
lADR produced higher Qanet for the same ADR device. A new net entrainment jet velocity at the
impingement point (VLnet) was measured at about 651 cm/s, above which bubbles left the base
of downcomer as Qanet. Qanet increased linearly with VL; however, Qads increased until it reached
maximum value, and then decreased. Bubble penetration depth and liquid rise height increased for all
VL until they reached maximum, and then leveled off for the same lADR. A significant increase in Qanet

values was achieved with this downcomer in comparison with the conventional one. The increase in
Qanet was measured to be approximately 2.5–15 times of that measured by the standalone downcomer.

Keywords: ADR; air net entrainment rates; air disentrainment rates; CPLJR; downcomer; entrainment
jet velocity

1. Introduction

The plunging liquid jet reactor (PLJR) concept was originated with natural environ-
mental phenomena such as waterfalls and carbon dioxide absorption in oceans [1]. Recently,
however, the PLJR concept has been used as an aerator in a wide range of applications,
such as aerobic wastewater treatment processes, fermentation processes, biological aerated
filters, bubble floatation of minerals, chemical stirring and in other applications that require
mixing of gas and liquid phases [2,3].

As shown in Figures 1 and 2, PLJR systems can be divided into three categories:
(a) unconfined, (b) confined and (c) confined PLJR systems incorporating an annular
riser [2,4]. The first two categories have been in use for decades in different applications.
The third category, however, was first introduced by Al-Anzi [2] to aerate and mix more
fresh water than that aerated by PLJR technologies, at almost no additional cost.

Al-Anzi has been studying PLJR systems since 2004, and recently, with his counterparts
at MIT, introduced to its numerous applications a new dimension: the use of PJLR as an
outfall or a dispenser for high saline, rejected brine effluent from desalination plants in
Kuwait [4–6]. The nature of PLJRs enables the rejected brine to be safely discharged
into the ambient seawater in an optimum manner that promotes aeration and dilution,
simultaneously, at a lower cost. This will increase the dissolved oxygen (DO) concentration
levels in the seawater and mix the receiving pool water vigorously to hinder stratification
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of dense brine layers, thus preserving the flora and fauna of the region, especially those of
the shoreline, which is the most vulnerable part of seawater.
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Figure 1. (a) An unconfined plunging liquid jet reactor system (PLJR), (b) a confined plunging liquid
jet reactor system (CPLJR) [2].
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Figure 2. Schematic diagram of the air-lift column in the confined plunging liquid jet reactor: (1) top
flange, (2) bottom flange, (3) liquid jet, (4) supporting rods, (5) riser rods, (6) nozzle, (7) down-
comer, (8) air tapping, (9) water tank, (10) water supply, (11) drain, (12) recycled water, (13) bypass,
(14) pump, (15) valve, (16) rotameter, (17) bubble meter, (18) wires, (19) annulus, (20) connection
point, (21) amplifier, (22) PC, (23) injecting salt by syringes, (24) electrodes [2,4].
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PLJRs are efficient and cost-effective due to their multiple advantages over other
conventional technologies (e.g. surface and diffused aerators). PLJR is the only technique
that requires no air blower/compressors nor any external agitation device. It achieves high
oxygen dissolution and rigorous mixing of the surrounding liquid content at very minimal
cost [2]. It presents minimal operational challenges and operates free from clogging because
all CPLJR parts are connected above the water level. It does not demand heavy maintenance
nor high operational costs.

When a falling jet impinges on a liquid pool, descending through a distance Lj (jet
length), at a velocity VL (jet velocity at the impingement), it carries the potential to plunge
deeper into the liquid pool until depth Hp (penetration depth), and entrain air bubbles
into the liquid phase [5]. Depending on the system’s operating conditions and the liquid’s
characteristics, such as density and depth of the receiving pool, the penetration depth
of the bubbles is determined. In the case of shallow water, entrained bubbles may reach
the bottom and spread radially in an outwards direction. This will then be followed by
the rise of the larger/coalesced bubbles to the liquid’s surface [5]. For unconfined PLJR,
entrainment of air will occur only if the jet’s velocity is greater than the critical onset velocity,
which is often reported to be in the vicinity of 1.5–2.5 m/s [7–9] under specific operating
conditions. As defined by Bin [10], the critical onset velocity, which Bin referred to as
the minimum entrainment velocity Ve, is “the threshold value of the jet velocity at which
gas entrainment commences”. Bin also mentioned that “Ve is well defined for coherent
viscous laminar jets and is far more ambiguous for turbulent jets”. This critical velocity is a
function of many main parameters such as fluid properties, turbulence characteristics and
jet angle [7]. The other main variables that are of importance to air entrainment rate (Qa) are
jet velocity (VL), jet length (Lj), nozzle diameter (dn), downcomer submergence depth (Hc)
and downcomer diameter (Dc).

Many authors have investigated the effect of main parameters such as jet velocity,
jet length, submergence depth, penetration depth, jet turbulence, and the effect of nozzle
design and downcomer diameter on air entrainment [3,4,7,10–14] and dilution rates [5,6].
A comprehensive review of the research on entrainment of air by plunging jets until 1993
can be found in Bin’s work [10]. The mechanism involved in the air entrainment process
was detailed in a study carried out by McKeogh and Ervine [15]. Schmidtke et al. [16]
identified different regions of air entrainment (no entrainment, intermittent and continuous
entrainment regimes) in similar processes. Air entrainment mechanisms have also been
studied by a number of authors with the aid of computational fluid dynamics [17–20].

Despite the long history of PLJR, dating back to the late 1960s–early 1970s, none of the
previous works have presented any method to simultaneously measure air disentrainment
rate (Qads) and air net entrainment rate (Qanet) experimentally.

When a jet impinges into a water body, it carries the potential to plunge deeper into
the liquid pool and entrain air bubbles from the surrounding headspace into the liquid
phase [5]. As the jet velocity impinges on the receiving pool, the entrained air will be broken
into a downflow of primary/fine bubbles surrounded by an upflow of larger, coalesced
bubbles. Some of the initially entrained bubbles ascend to the water’s surface and into the
headspace, going unmeasured. This air is referred to as disentrained air flowrate (Qads); the
measurement of this air is the subject of this publication. At low jet velocities and short
jet lengths, all of the entrained air becomes disentrained, since the jet’s momentum is not
powerful enough to carry the bubbles in a downward direction and out of the base of
the downcomer. This is due to the superficial velocity of the liquid being lower than the
terminal velocity of the bubbles (0.25 m/s) [21].

As the jet velocity increases for fixed operating conditions, the liquid momentum will
also increase until the liquid superficial velocity inside the downcomer or the liquid jet
velocity is strong enough to push the bubbles out of the base of the downcomer, resulting in
net entrained air (Qanet). In this case, the total entrained air (QaT) = net entrained air (Qanet),
since the disentrained air is counterbalanced by the system (whatever is disentrained is
re-entrained by the same jet). For unconfined PLJR with a given jet geometry, smooth jets
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of a viscous liquid will entrain air when the jet velocity exceeds the same critical value (Ve)
as defined previously.

The only reference that proposes a technique to measure Qads, Qanet and total air
entrainment rate (QaT) simultaneously is the recent US patent by Al-Anzi [22], the author
of several papers on CPLJR since 2006 and the main author of the current study. The
effect of Qads on net air entrainment rate has been discussed in the literature for different
downcomer lengths and jet velocities [23]; however, none of them has proposed a method
to accurately measure different Qas (Qanet, Qads and QaT) experimentally at the same time,
until the patent by Al-Anzi [22].

The aim of the current study is to measure Qads and QaT experimentally and simul-
taneously for the first time ever, utilizing a CPLJR apparatus with a novel downcomer
incorporating an Al-Anzi disentrainment ring (ADR) device. This device is discussed
further in the methodology section. Measuring Qads accurately is essential to the PLJR
concept and of interest to those who work in this field since it is strongly connected to the
amount of air escaping from the bottom of the downcomer to the surroundings, known
as Qanet, and the total air entrainment of the system (QaT). This, ultimately, will affect
the entire performance of CPLJR as an aerator and mixer. The effect of the novel ADR
downcomer on Qanet, Qads and QaT is examined in the current study. Furthermore, the effect
of a range of main variables such as jet velocity at the impingement point (VL) and Lj on
Qads, Qanet, bubble penetration depth (Hp) and liquid rise height (HR) are also investigated
in the current study. Other new variables pertinent to the novel ADR, such as distance from
the end of ADR to the receiving pool (ds) and ADR length (lADR), are introduced as main
variables, and their effect on Qads, Qanet and QaT are investigated in this study. Finally, Qanet
measured by a conventional downcomer is compared to that measured by a downcomer
incorporating the ADR device for a range of ds and lADR.

2. Materials and Methods
2.1. Confined Plunging Liquid Jet Reactor System

The CPLJR apparatus—similar to that used by the same author earlier—used to
generate experimental results is shown in Figure 3 [4]. Water was withdrawn from the base
of a reservoir (1.5 × 0.5 × 0.5 m3) by a centrifugal pump, to be recycled through rotameters
and a nozzle located at the top of the same reservoir to form a water jet. Two rotameters
were used to measure a maximum liquid flowrate of 60 LPM. The nozzle was designed
with a length to diameter ratio of 5, according to Ohkawa et al. [24] and Al-Anzi et al. [23],
and with a nozzle exit diameter (dn) of 8.1 mm. The nozzle was placed concentrically in the
downcomer column, the diameter (Dc) of which was 7.4 cm, at Lj distances of 36–51 cm
from the receiving water body.

2.2. Supporting Flange/Frame

Figure 4 shows an extra external flange/frame with four adjustable screws that were
spaced evenly in a radial manner. The external flange was fixed inside the tank and outside
the downcomer to provide extra support for the downcomer with ADR device. The screws
were adjustable; therefore, they can hold various downcomer diameters and lengths. The
supporting frame/flange was rested on ledges mounted to the interior of the reservoir
walls, which provided more stability to the entire system. This helped to eliminate any
possible vibration and placed the nozzle concentrically inside the downcomer during the
runs to ensure that the jet flowed directly into the center of the downcomer.

2.3. ADR Device

The other important device that was newly added to CPLJR apparatus was Al-Anzi’s
disentrainment ring (ADR) device. It comprises a hollow cylindrical column with two
diameters, one at each end; the larger diameter, DADR, is at the top, and the smaller one,
dADR, is at the bottom. The two diameters are lADR apart; this figure represents the length of
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ADR device (Figure 5c). As shown in Figure 5b, ADR device is placed concentrically inside
the CPLJR downcomer and is supported by two inner narrow ADR supporting flanges.
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Figure 3. (a) The upgraded CPLJR apparatus with two bubble meters for measuring both entrainment
and disentrainment rate: (1) tank, (2) tapping, (3) nozzle, (4) ADR, (5) supporting flange/frame,
(6) receiving pool, (7) drainage outlet, (8) rotameters, (9) pump, (10) bubble meter 1, (11) bubble
meter 2, (b) picture of the upgraded CPLJR apparatus in the laboratory in College of Life Sciences,
Kuwait University.
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Figure 5. (a) Design of the novel ADR downcomer showing the ADR device. (b) Front view of the
novel ADR downcomer showing the ADR device and other parts (ADR supporting flange, tapping 1
and tapping 2. (c) Design of the ADR device with dimensions.

The purpose of the ADR device is to divide the downcomer into two headspaces
(Figure 5a), top headspace above ADR and bottom headspace below ADR, which allow
the initial entrained air from the top headspace to be released by the jet further down into
the receiving pool below the ADR device. The released air will either leave the base of the
downcomer as Qanet or ascend inside the downcomer as Qads. Qads will be prevented from
escaping back to the top headspace by ADR device, so it can be collected in the bottom
headspace below the ADR. Basically, ADR prevents Qads from ascending back into the
top headspace. Qads will then leave the downcomer through tapping 2 to be measured by
bubble meter 2. ADR is placed at a distance ds from the receiving water pool. Experiments
were carried out with ds lengths of 0, 1, 3, 5 and 7.5 cm, and lADR of 34, 35, 37, 39 and 40 cm.

2.4. Downcomer (Confining Tube)

As shown in Figure 5, the novel downcomer differs from the original one by possessing
the ADR device and two tappings. The top tapping is used to allow QaT to enter the system,
measured by bubble meter 1, and the bottom tapping is used to allow Qads to leave the
downcomer to be measured by bubble meter 2.

The measurements of QaT and Qads (volumetric air entrainment rate) were carried out
as reported by Al-Anzi [4], i.e., using a soap bubble meter. Since soap bubbles provide
negligible resistance to air flow, the bubble meter was the proper device for measuring
both air entrainment and disentrainment flow rates. Soap bubble meters 1 and 2 comprise,
respectively, a cylindrical tube with an inner diameter of 73 mm and a length of 1000 mm,
and a cylindrical tube with an inner diameter of 36 mm and a length of 500 mm, to measure
total and disentrainment rates, respectively. A solution of 10% household detergent, 5%
glycerin and remaining water was used to prepare the soap bubble solution.

2.5. Calculation

The following assumption was made in deriving the QaT formulas: all the disentrained
air leaves the downcomer through tapping 2 and does not escape through ADR back into
the top headspace.
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The PLJR downcomers are divided into standalone (original) and novel ADR down-
comers. The addition of the novel ADR changed the mass balance around the two-phase
flow mixture inside the downcomer, as described below:

1. Standalone/conventional downcomer:
Figure 6a shows a schematic of the standalone downcomer, including the control

volume around the two-phase flow mixture inside the downcomer. Performing a mass
balance around the selected control volume produces:

QaT + Qads = Qanet + Qads (1)
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Qads in the case of the standalone downcomer will be re-entrained by the jet, reducing
Equation (1) to Equation (2):

QaT = Qanet (2)

where the initial/total air entrainment rate, QaT, is equal to the net entrainment rate, Qanet
(amount of the bubbles leaving the base of the downcomer).

At low jet velocities where no bubbles are leaving the base of the downcomer, QaT, in
this case, is equal to zero, because Qanet = 0:

QaT = Qanet = 0 (3)

2. Novel ADR downcomer:
The addition of the ADR device prevented Qads from being re-entrained by the jet

(Figure 6b), and Equation (1) becomes:

QaT = Qanet + Qads (4)

At low jet velocities, Qanet = 0, Equation (4) is simplified to:

QaT = Qads (5)

At high jet velocities, when the bubbles leave the base of the downcomer, Equation (4)
remains the same.
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3. Results and Discussion
3.1. Effect of Distance between ADR Device and Receiving Pool Surface on the Air Entrainment
and Disentrainment Rates

As shown in Figure 5a, ds is the distance between the end of the ADR device and
the receiving pool’s surface. Figures 7 and 8 show the effect of ds on QaT and Qads whilst
keeping other main variables constant (Dc, Lj, dADR, Hc and lADR). The results obtained
in this study show that QaT increases linearly with VL for all ds values with the shortest
ds = 0 measuring the highest QaT values for all VL values. The high values recorded by the
shortest distance, ds, could be attributed to the ADR hindering the formation of eddies
that contributed in increasing Qads, as reported by Al-Anzi et al. [23]. As ds increased,
another liquid jet is developed below the ADR that behaved in a similar manner to the
original jet, which enhanced the Qads phenomenon in the second headspace (below the
ADR). These results can be divided into two groups for VL values lesser and greater than
VLnet ≈ 651 cm/s, where VLnet is the liquid jet velocity at the impingement point that is
high enough to push the first bubble/bubbles out of the base of the downcomer to record
the smallest Qanet. Group 1 represents measured QaT for VL values less than VLnet and
group 2 includes QaT values generated by VL greater than VLnet. In group 2, the QaT values
(shaded area) were higher than that of group 1, because QaT is equal to both Qads and Qanet;
however, this was not the case for the set of results in group 1 where QaT is equal to Qads
(no Qanet) for all of ds values.
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However, the effect of ds on Qads was different from Qanet, particularly at higher VL
(>VLnet), where Qads increased with VL until it reached maximum, and decreased thereafter
(Figure 8). This is consistent for all ds values. The reason for the decrease of Qads at high
VL was that the superficial velocity of the liquid in the downcomer was strong enough to
carry most of entrained bubbles downwards out of the downcomer and, hence, the net
entrainment rate (Qanet) increased at the cost of Qads.
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3.2. Effect of VL on Air Disentrainment and Entrainment Rate Measurements

Figure 9 shows four representative sets of data for an 8.1 mm nozzle diameter,
36–51 cm jet length and 74 mm downcomer diameter, corresponding to Hc of 43–46 cm. All
sets of results showed 2 distinct regions of QaT for VL values lesser and greater than VLnet
(651 cm/s) for all ds values. For VL less than VLnet, QaT = Qads because all of the entrained
bubbles rose back inside the downcomer to be measured by disentrainment bubble meter 2.
As VL increased further beyond VLnet, the liquid’s superficial velocity (momentum) was
sufficient to push the bubbles downward out of the base of the downcomer to increase
Qanet. This led to increased QaT in this region, since it is equal to the sum of both Qads and
Qanet. These findings are important when designing CPLJR, because they determine when
the system is efficient as an aerator and mixer, thus helping in designing an efficient and
feasible system.

3.3. Effect of Jet Length on Air Disentrainment and Total Entrainment Rate Measurements

Lj is one of the important variables in PLJR systems and its effect on Qanet for a
standalone downcomer has been investigated previously, by many authors, for confined
and unconfined PLJR systems. Previous results in the literature showed that Qanet increases
with Lj as long as the liquid jet is coherent and less than the break-up jet under the
same operating conditions. This is because longer jets tend to increase the amplitude of
disturbances on the surface of the rough jet [23] and increase the value of Vj to VL at the

impingement point, since VL =
√

V2
j + 2gLj, which is significant at low Vj [25]. The effect

of Lj on Qads is depicted in Figure 10a–d for ds = 1–5 cm. All sets of data showed that
Qads exhibited a similar trend as that described in the previous Section 3.2, with longer Lj
measuring higher Qads, as expected. The current results confirmed the previous findings,
in Section 3.2, of two distinct regions in each set of data at about VLnet (Qads increased for
VL < VLnet and Qads decreased for VL > VLnet). Furthermore, the same results also showed
that Qads is independent of ds (almost the same range of Qads for all ds).
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(b) ds = 1, Lj = 44 cm, Hc = 45 cm; (c) ds = 3, Lj = 46 cm, Hc = 43 cm; and (d) ds = 5, Lj = 48 cm,
Hc = 43 cm for downcomer with lADR = 40 cm.

QaT, however, increased linearly with Lj for all VL values. This increase is more evident
in the second region (VL > VLnet), as shown by the sets of data plotted in Figure 11a–d. The
effect of Lj on QaT in the current study is small because the difference between the two jets
is small (∆Lj), with longer jets measuring slightly higher QaT.

3.4. Effect of ds and lADR on Bubble Penetration Depths (Hp)

One of the aims of using confined plunging jets is achieving greater bubble penetration
depth to augment dissolved oxygen (DO) and provide better mixing. Figure 12 showed
that Hp increased linearly with a sharp slope in region 1 (VL < VLnet), whilst in region
2 (VL > VLnet), the penetration depth almost remained constant for the rest of VL values
forming an “S” trend. The penetration depth, Hp, decreased with ds. This is because short
ds hinders the formation of recirculating eddies responsible for the enhancement of Qads;
thus, Qads is reduced, forcing most of the bubbles to leave the base of the downcomer as
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Qanet. This, in turn, led to greater bubble penetration depths. This is under the assumption
that there is no momentum loss by the jet, for all ds values, as it passes through the ADR
device.
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The effect of two ADR devices (lADR = 34 and 40 cm) on Hp, for all ds values, has also
been investigated in this study. The results are plotted in Figure 13a–d. One can clearly
see the “S” trend displayed consistently in all figures for the two lADR values and four ds
values (0, 1, 3 and 5 cm). This confirms the “S” shape, as discussed in the previous section
(Figure 12). The effect of lADR is negligible at low jet velocity (region 1), particularly for
short ds values; however, at high VL (region 2), the difference became visible, with higher
Hp obtained for longer lADR. Again, higher lADR and ds values mean shorter Hc, and, thus,
low Qads inside the downcomer. This meant that most of the bubbles left the base of the
downcomer as Qanet and a small portion rose inside the downcomer as Qads, reducing the
resistance of the counter current flow and achieving higher Hp.
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(b) ds = 1, Lj = 44 cm and 37 cm; (c) ds = 3, Lj = 46 cm and 40 cm; and (d) ds = 5, Lj = 48 cm and 43 cm.
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Figure 13. Effect of Hp for varying VL for different smart devices of length 40 and 34 cm at (a) ds = 0
(b) ds = 1, (c) ds = 3, (d) ds = 5.

3.5. Effect of Rise Heights (HR) for ds Values

The HR trends corresponded to those of Hp, except for the longest lADR of 40 cm,
where HR increased linearly until it reached a maximum and then decreased for all ds
values. Decreasing HR is a good sign as it indicates that more bubbles are penetrating
through the downcomer to leave as Qanet. The effect of ds on HR was small for the majority
of the data (Figure 14a–c). It is still premature to fully understand the reason for such
phenomena, since there were several factors/variables simultaneously contributing to the
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results. For example, high HR reduced the original Lj of the system which, in turn, reduced
VL and, hence, the QaT. This affected the physics of the entire system. Having said that, we
have made significant progress in understanding PLJR as an aerator and efficient mixer.
Figure 15a–i is the actual impression of the novel ADR downcomers with lADR = 37 cm,
showing HR and Hp levels for a range of ds and VL.
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length (a) 40 cm, (b) 37 cm, and (c) 34 cm.

3.6. Comparison of the Effect of the Novel Downcomer (with ADR Device) and a Standalone
Downcomer on Qanet

Figure 16 is generated to show the effect of the novel ADR downcomer and standalone
downcomer on the Qanet. The same operating conditions were used for both downcomers
(Dc = 7.4 cm, Lj = 45 cm, dn = 8.1 mm, Hc = 46 cm and lADR = 40 cm, 39 cm, 37 cm and
35 cm) throughout the experiments. Qanet for the standalone downcomer was measured
experimentally by bubble meter 1, whereas Qanet for the novel ADR downcomer was
estimated from Equation (4) by subtracting the experimental values of QaT from Qads
measured by bubble meters 1 and 2, respectively. In total, five ds values from 0 to 7.5 cm
were used for the ADR downcomer in this experiment. Both downcomers demonstrated
increasing trends for Qanet, with VL that fit quadratic behavior: R2 ranged from 0.94–1.0. The
results obtained consistently showed that the ADR device enhanced Qanet significantly for
all ds values in comparison with the results of the standalone downcomer. It is noteworthy
and interesting that the ADR device actually increased the Qanet significantly. For example,
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at low VL (654 cm/s, corresponding to the VLnet), Qanet increased from 0 for the standalone
downcomer to a relative maximum of 477 cm3/s for the novel ADR downcomer with
ds = 4 cm. At higher VL, Qanet increased by 2.5-fold, with ds = 5 cm (from 458 cm3/s for
the standalone downcomer to an absolute maximum of 1143 cm3/s for the novel ADR
downcomer). If it stands, this could be revolutionary in the field of CPLJR aeration. Clearly,
more investigation under a wide range of operating conditions is required to confirm such
important findings.
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Figure 16. The effect of standalone downcomer vs. novel ADR downcomer on Qanet for CPLJR with
Dc = 7.4 cm, Lj = 45 cm, Hc = 46 cm and dn = 8.1 mm.

4. Conclusions

The current work is entirely novel from the perspective of idea generation, manufac-
turing, implementation and results. A novel ADR device with various dimensions was
manufactured locally and successfully affixed inside CPLJR downcomers to measure air
disentrainment rates experimentally and accurately, for the first time ever, for a range of
new and old operating conditions. New variables came with the ADR, such as length of
the ADR (lADR) and the distance (ds) of the ADR to the receiving pool. A new jet velocity
value at the impingement point (VLnet) was defined as the minimum jet velocity for Qanet to
be measured. The difference between QaT and Qads was negligible for VL < VLnet; however,
this difference became substantial for VL > VLnet under the same operating conditions. Net
air entrainment rate (Qanet) increased linearly with VL and Lj for all ds values, with the
shortest ds (zero) measuring the highest Qanet; however, Qads exhibited different behavior
for VL > VLnet, where it decreased after reaching an absolute maximum for all ds values.
Bubble penetration depths (Hp) and liquid rise height (HR) increased for all VL until they
reached maximum values and leveled off for the same lADR. Results also showed that
shorter lADR produced higher Hp values; however, the measured HR values were lower
under the same operating conditions.

One of the great contributions of this work is the substantial increase in Qanet measured
by the novel ADR downcomer in comparison with the conventional standalone downcomer
(2.5 to 15 times increase in Qanet), at no extra cost. This has been confirmed over a range
of ds values (0 to 7.5 cm). Despite the significant progress we made in understanding
PLJR as an aerator and efficient mixer, it is still premature to fully understand the reason
for such phenomena since there were several factors/variables contributing to the results
simultaneously. Thus, more studies under a wide range of operating conditions are required
to confirm such important findings. This, in addition to the application of new primary
variables and designs pertinent to the novel ADR device, will constitute the focus of our
future work.
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